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This article proposes a practical modeling approach that can accommodate a rich va-
riety of predictors, united in a generalized linear model (GLM) setting. In addition to the
usual ANOVA-type or covariate linear (L) predictors,we considermodeling any combina-
tion of smooth additive (G) components,varying coef�cient (V ) components,and (discrete
representationsof) signal (S) components. We assume that G is, and the coef� cients of V
and S are, inherently smooth—projecting each of these onto B-spline bases using a modest
number of equally spaced knots. Enough knots are used to ensure more � exibility than
needed; further smoothness is achieved through a difference penalty on adjacent B-spline
coef� cients (P-splines). This linear re-expression allows all of the parameters associated
with these components to be estimated simultaneouslyin one largeGLM throughpenalized
likelihood. Thus, we have the advantage of avoiding both the back� tting algorithm and
complex knot selection schemes. We regulate the � exibility of each component through a
separate penalty parameter that is optimally chosen based on cross-validationor an infor-
mation criterion.

Key Words: Generalized additive models; Multivariate calibration; P-splines; Signal re-
gression; Varying-coef�cient models.

1. INTRODUCTION

Linear structures occur at many places in statistical models. We encounter them in the
classical, as well as in the generalized linear model (GLM, Nelder and Wedderburn 1972).
In the last decade or so, we have seen many extensions: the generalized additive model
(GAM, Hastie and Tibshirani 1990), the varying-coef� cient model (VCM, Hastie and
Tibshirani 1993) and penalized regression on signals (Hastie and Mallows 1993; Marx and
Eilers 1999). This article provides a practical mechanism to simultaneously combine all of
these models into one generalizedadditivestructure, avoidingback� tting and with excellent
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control over smoothness. Our approach is based on penalized B-splines or P-splines (Eilers
and Marx 1996). Smooth components are estimated with B-splines (purposely over� tting
using a modest number of equally spaced knots) combined with a difference penalty on
their coef� cients, to reduce unnecessary � exibility. A nice feature of this approach is that
smooth components are coerced into linear structures. We invented the acronym GLASS:
generalized linear additive smooth structures.

Section 2 discusses the components and illustrates the richness of GLASS. We then
give an overview of P-splines in Section 3. Using P-splines, each model component can
be described by penalized regression on a moderately sized B-spline basis. These compo-
nents can be mixed and matched like LEGOTM construction blocks; details are provided in
Section 4. The building blocks are the regressors in a large penalized GLM; details of the
estimation procedure are given in Section 5. Choosing the right amount of smoothing (op-
timal penalty parameters), using an information criterion or cross-validation, is discussed
in Section 6. Section 7 contains several illustrative examples, while Section 8 discusses
computational details. We close with a brief discussion.

2. COMPONENTS OF GLASS

This section gives an informal description of the model components. We start with
the familiar generalized linear regression model (of which linear regression is a special
case). Let the data be (y; X), where y (m £ 1) is the response variable with independent
entries from a particular member of the exponential family of distributions, and X (m £ p)
contains explanatoryvariables, which can contain a constant vector to account for a possible
intercept. The model is:

E(Y ) = · = h( ² ); (2.1)

where · is the expected value of the response, and h(¢) is an inverse (monotone and twice
differentiable) link function. For the standard GLM, we have a linear predictor in the form:

² L = XL ¬ L: (2.2)

We add the subscript L here to discern this X from other matrices that will be introduced
below. The unfamiliar reader can reference McCullagh and Nelder (1989), who also pre-
sented ef� cient algorithms for estimating ¬ . GLMs are standard in most modern statistical
software.

Whereas the GLM constructs the linear predictoras a linear combinationof the columns
of X , a generalized additive model (GAM) assumes smooth nonlinear functions (Hastie
and Tibshirani 1990):

² G = f1(x1) + f2(x2) + ¢ ¢ ¢ + fp(xp); (2.3)

where xj indicates column j of X , j = 1; : : : ; p. A GAM can be estimated by back� tting:
updatingan approximate solutionby repeated weighted smoothingof the scatterplot formed
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by xj and the partial residuals y ¡
P

k f̃k(xj) + f̃j(xj), where the tilde indicates an
approximate solution. In principle any type of smoother can be used. Marx and Eilers
(1998) showed how to write a GAM as a large penalized GLM, using P-splines, eliminating
back� tting.GAMs are standard in some statistical software, perhapsmost notably in S-Plus.

In contrast to the GLM, where the regression coef� cients in ¬ are assumed to be
constant, the varying coef� cient model (VCM) was proposed by Hastie and Tibshirani
(1993). This model accommodates situations in which one or more of the coef� cients are
allowed to vary smoothly (interact) over an additional m-vector t, for example, time or
space. The analog for (2.2) now is

² V = f1(t)x1(t) + f2(t)x2(t) + ¢ ¢ ¢ + fp(t)xp(t); (2.4)

where we explicitly indicate the dependence of each column of X on one speci� c t. In
principle there can be a unique t for each column of X , yielding TV = (t1; : : : ; tp).
Hastie and Tibshirani (1993) described an algorithm for estimating the smooth curves
that make up the VCM, through back� tting and minimization of a criterion that penalizes
smoothness much like Reinsch (1967). Their S-Plus software is available at StatLib (http:
//lib.stat.cmu.edu).

Finally,we havesignal regression.Now the rows of X(m£n) are (equidistantlysampled)
signals: for example, time series, discrete (optical) spectra or histograms. The number of
columns (n) of X generally is much larger (often 10 or 100 times) than the number of
observations (m). One column of X represents the same point in time (for time series),
the same wavelength (for spectra) or the same histogram bin. An n-vector t indexes the
particular signal associated with the ordered columns. Usually the regression problem is
singular; in the chemometric literature it is known as multivariate calibration. One possible
solution was presented by Marx and Eilers (1999), extending a proposal by Hastie and
Mallows (1993). The assumption is that detailed knowledge of a large vector of regression
coef� cients is impossible to obtain, given the relatively small number of observations. As
the columns of X are ordered, it may be reasonable to assume that neighboring coef� cients
have similar values, that is, it is a smooth vector. The ² in (2.1) now can be viewed as

² S = XSfS ; (2.5)

where we assume fS to be a smooth function of t. Marx and Eilers (1999) presented a
solution,based on P-splines, called penalized signal regression (PSR). Software is available
on www.stat.lsu.edu/bmarx.

To keep the notationsimple,we introducedonly one signal regressor. But it will become
clear below (Section 5) that multiple signals, each of possibly differing dimension and
domain, can be accommodated as well.

We are interested in a structure where any or all of the four components presented
above can be combined at will. The regressor information can be summarized as follows:

X = [XLjXGjXV jXS ]; (2.6)

where

http://www.stat.lsu.edu/bmarx
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° the m £ pL matrix XL contains ANOVA-type or covariate regressors that are to be
treated in the standard GLM way;

° the columns of the m £ pG matrix XG are each candidates for smooth (GAM)
additive modeling;

° the columns of the m £ pV matrix XV are regressors for which we want to � nd
coef� cients along corresponding indexing column vectors t 2 TV ;

° the rows of the m £ n matrix XS contain sampled signals, indexed by a vector t.

We assume that XL at least contains a vector of ones when an intercept is to be included.
Although presented in a general form, a composite additive predictor can be constructed as
follows

² = ² L + ² G + ² V + ² S : (2.7)

We will show, in the next two sections, how using P-splines can coerce the above ² into a
linear predictor and further how to construct buildingblocks that correspond to three of the
four models (GAM, VCM, PSR) using P-splines (the GLM needs no special treatment).
As a service to the reader, who might not be familiar with P-splines, we � rst present an
overview in the next section. A full account can be found in the article by Eilers and Marx
(1996) and its accompanying discussion.

3. A CRASH COURSE ON P-SPLINES

A B-spline is a bell-shaped curves resembling a Gaussian density. In contrast to the lat-
ter, a B-spline has only local support, as it is constructed from smoothly joining polynomial
segments, as shown in Figure 1. The positions on the horizontal axis where the segments
come together are called the knots. We will use only equidistantknots, but B-splines can be
de� ned for an arbitrary grid of knots. Many details and algorithmscan be found in the books
by de Boor (1978) and Dierckx (1993). Usually a B-spline is said to have order q + 1 if the
polynomial segments have degree q. In contrast to this custom, we will call it a B-spline of
degree q; the reason being that we will also introduce difference penalties of certain orders
and wish to avoid confusion.For example, a cubic (quadratic) B-spline has degree 3 (2) and
consists of cubic (quadratic) polynomial segments.

When computing a set of B-splines, each shifted by one knot distance, we get a basis
of local functions that is well suited for smoothing of a scatterplot of points (xi; yi), i =

1; : : : ; m. If bij = Bj(xi), j = 1; : : : ; K (< m) indicates the value of the jth B-spline at
xi, and B = [bij ], we minimize

S = jy ¡ B¬ j2; (3.1)

with the explicit solution

ˆ¬ = (B 0B)¡1B0y: (3.2)
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Figure 1. One quadratic (top panel) and one cubic (bottom panel) B-spline based on knots at 0.2, 0.4, 0.6, 0.8,
and 1. To emphasize the construction, the polynomial pieces have also been drawn as broken lines, alternately
shifted vertically by 0.05 and ¡0.05.

Given ˆ¬ , the estimatedpointon the curveat any (new) x is
P

j Bj(x) ˆ¬ j . Thisway smoothing
is reduced to linear regression. The number of B-splines is the degree plus the number of
segments between the left-most and right-most knot.

We emphasize that we consideronly equidistantspacing of knots. Some details are now
clari� ed. If x is the vector that gives the values for which the B-splines are to be computed,
(rounded values of) min(x) and max(x) are used as the boundaries of the domain of x. The
domain is divided in equal divisions. The number of B-splines is the number of divisions
plus the degree of the splines. For example, with two divisions and cubic B-splines, there
are three “visible” knots, two at the boundaries and one in the middle of the domain. Three
“invisible” knots are constructed by the recursive algorithm that compute the splines.

The amount of smoothing is determined by the size of the B-spline basis and thus
implicitly by the number of knots. The smaller the number of knots, the smoother the curve.
This is shown in Figure 2 for a well-known dataset (Härdle 1990). Using leave-one out
cross-validation we � nd that 17 (equally spaced) B-splines are optimal. Fits with more
and less B-splines are shown for comparison. Note that cross-validation can be done very
quickly, since

yi ¡ ŷ¡i = (yi ¡ ŷi)=(1 ¡ hii); (3.3)

where hii is the ith element on the diagonal on the “hat” matrix H , ŷ = B(B 0B)¡1B0y =

Hy, and ŷ¡i is the � tted value for yi that would be obtained if the model were estimated
with yi left out. It follows that hii = b0

i(B
0B)¡1bi, where b0

i indicates the ith row of B.
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Figure 2. Fitting a smooth curve to a scatterplot using equally spaced cubic B-splines. In the middle panel the
number of B-splines is optimal according to least-squares cross-validation. The upper (lower) panel illustrates
over� tting (under� tting).

Hence the diagonal elements of H and the cross-validation residuals can be computed with
little additional work. More details on optimal smoothing can be found in Section 6.

The upper panel of Figure 3 shows the central part of the dataset and a purposely
over� tted curve, based on too many B-splines. We see that the heights of neighboring
B-splines—which are proportional to the corresponding coef� cients—differ strongly. We
would get a smoother result if, in some way, we could force the coef� cients to vary more
smoothly, as illustrated in the lower panel of Figure 3. This is exactly the purpose of an
additionalpenalty,weighted by a positive regularizationparameter ¶ , that we attach to (3.1):

S ¤ = jy ¡ B¬ j2 + ¶ jDd ¬ j2: (3.4)

The matrix D constructs dth order differences of ¬ :

Dd ¬ = ¢d ¬ : (3.5)

The � rst difference of ¬ , ¢1 ¬ is the vector with elements ¬ j + 1 ¡ ¬ j , for j = 1 : : : K ¡ 1.
By repeating this computation on ¢ ¬ , we arrive at higher differences like ¢2 ¬ and ¢3 ¬ .
The (n ¡ 1) £ n matrix D1 is sparse, with dj;j = ¡ 1 and dj;j + 1 = 1 and all other elements
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Figure 3. The P-spline principle illustrated using central portion of the motorcycle data. Scatterplot of data with
individual B-splines (thin lines) and the corresponding � tted curve (thick line). Top panel: due to over� tting the
heights of neighboring B-splines differ strongly. Bottom panel: a difference penalty forces the heights to change
more gradually, yielding a smoother curve.

zero. Examples of D1 and D2 of small dimension look like

D1 =

2

64
¡ 1 1 0 0

0 ¡ 1 1 0
0 0 ¡ 1 1

3

75 ; D2 =

"
1 ¡ 2 1 0
0 1 ¡ 2 1

#

:

Actually, the number of equally spaced knots does not matter much provided that enough
are chosen to ensure more � exibility than needed: the penalty gives continuous control for
further smoothing. The solution of (3.4) is

ˆ¬ = (B 0B + ¶ D0
dDd)¡1B 0y; (3.6)

and the hat matrix is now given by

H = B(B 0B + ¶ D0
dDd)¡1B 0: (3.7)

Cross-validation to � nd an optimal value of ¶ is just as fast as in the nonpenalized case.
Since P-splinesare basedon (penalized) linear regression, it is quitenatural to transplant

the methodology to the generalized linear model. Thus non-normal responses, such as
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Poisson counts or binary data, can be smoothly modeled with E(Y ) = · = h(B¬ ). Now
we must maximize a penalized log-likelihood function,

l ¤ = l( ¬ ; B; y) ¡ 1
2

¶ jDd ¬ j2; (3.8)

which is equivalent to minimizing (3.4) for normal responses. The 1
2 is a trick to eliminate

the 2 after differentiating.The solution for (3.8) can be achieved through iterative weighted
regression:

ˆ¬ t + 1 = (B 0ŴtB + ¶ D0
dDd)¡1B 0Ŵtẑt;

where ẑ = (y ¡ ˆ· )=h0( ˆ² ) + B ˆ¬ is the working dependent variable and the weight matrix
is Ŵ = diag[fh0( ˆ² )g2=var(Y )].

To illustrate P-splines with a binary response and a logit link function, we use the
kyphosis dataset in S-Plus. These data were also modeled at some length in a case study
presented by Hastie and Tibshirani (1990, sec. 10.2). The response is the binary outcome
of presence (1) or absence (0) of postoperative spinal deformity in children. The regressor
used here is age of patient (months). There are m = 81 observations; 17 ones and 64 zeros.
Figure 4 displays the � tted smooth probability of kyphosis as a function of age, for varying
¶ , using 13 equally spaced knots, cubic B-splines and a second-order difference penalty.
The twice standard error bands for the predicted probabilityare also displayed;construction
of these bands is discussed in further detail in Section 5. We see some evidence of increased
probability of kyphosis near 100 months age. For certain GLMs, it is easier to monitor and
minimize an information criterion, like AIC. Figure 4 suggests ¶ º 10, which yields a
smooth � t having effective df of about 2 and a deviance of approximately 74 on 79 residual
df. Information criteria and effective df are discussed in greater detail in Section 6.

As also seen in Figure 4, larger ¶ lead to smoother results, even with many B-splines in
the basis. One can show that the � tted curve approaches a polynomial of degree d ¡ 1 as ¶

gets large. P-splinescan be interpretedas a projectionontoa relativelysmooth subspacewith
additional smoothing caused by the penalty, as with a smoothing spline. O’Sullivan (1986)
did this literally, using the integral of the square of the second (or a higher) derivative of the
� tted curve as the penalty. In practice, our penalty and O’Sullivan’s penalty give essentially
the same results, but for the latter it takes careful programming to construct the equivalent
of D0

dDd, especially for d > 2; yet for the difference penalty approach, higher orders are a
simple mechanical procedure.

The penalty also solves problems with ill-conditioning that may occur with non-
penalized B-splines. In some datasets one encounters a rather uneven distribution of data
points on the x-axis. Some of the B-spline coef� cients then will have large coef� cients and
will be very sensitive to small changes in the data. This can especially occur at the bound-
aries of the domain of x. It is visible in the rightmost portion of the top panel of Figure 2.
In extreme cases some coef� cients may even be inestimable, because of missing data on
the support of some of the B-splines. One may also encounter rather erratic behavior of
leave-one-out cross-validation.
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Figure 4. Smooth estimated probability of kyphosis as a function of age (with twice standard error bands). Three
panels illustrate varying amount of smoothness using a second-order difference penalty. The bottom-right panel
displays AIC with increasing log(¶ ).
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These problems have led to the practical advice to use unequally spaced knots, deter-
mined by quantilesof x. Unequally spaced knots would ruin the simplicityof P-splines and,
because of the penalty, there is no need for them. Generally we also see no need for choosing
(new) unequally spaced knots after � nding a curve. Of course, for some datasets, variable
smoothness might be strongly indicated. Ruppert and Carroll (2000) gave an example, and
a solution: a spatially varying penalty implemented as a diagonalweightingmatrix W , such
that D0

dDd is replaced by D0
dW Dd. In this article we will not make use of this extension.

To summarize, our practical recipe is:

° use a quadratic or cubic B-splines basis of moderate size (10 to 50), but large enough
to over� t the data;

° use a second- or third-order difference penalty;
° optimize ¶ by minimizing a cross-validation measure or an information criterion,

for example, AIC; and
° report the results as the vector of coef� cients (and the parameters of the B-spline

basis), the � tted curve can be reconstructed from this information.

B-splines are easily computed. S-Plus has a function to compute B-splines for arbitrary
knots. Eilers and Marx (1996) presented a short Matlab function to compute B-splines with
equally spaced knots. In S-Plus or Matlab, one can just apply the function diff() d times
to the identity matrix to get Dd.

In the rejoinder to the discussion of Eilers and Marx (1996), there is a “consumer score
card” that compares P-splines to many other types of smoothers. Their good properties
make them very suitable to construct the building blocks of GLASS, which we describe in
the next section.

4. B-SPLINE BUILDING BLOCKS

In Section 2, we introduced the models we consider as components of GLASS, sum-
marized in (2.6) and the description following it. In this section we show how to translate
each component into building blocks, using B-splines. The building blocks are combined
to form one large GLM regressor matrix. In Section 5 we will add difference penalties in
P-spline style.

One main point that we emphasize here is that smooth functions are constructed in a
simple way: f = B¬ , whether its for a GAM component or smooth coef� cient vectors in
varying coef� cient regression or signal regression components. In fact, we will see below
that it is convenient to view the building blocks in a more modular fashion by further
generalizing the notation to Mf = MB¬ = U ¬ . The B-splines are constructed on a
domain, generally denoted as t, and M is a modifying matrix, each depending on the type
of component. In this way, each component has a pair (t; M ). Thus (2.7) can be viewed in
a compact linear fashion through

² = ² L + ² G + ² V + ² S = ² L + U ? ¬ ?; (4.1)
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where U ? = [U1j; : : : ; jUp] and ¬ ? = [ ¬ 0
1j; : : : ; j¬ 0

p]0 for p mixed and matched GAM,
varying and signal components.

4.1 THE LINEAR PORTION

The standard generalized linear model portion is denoted: ² L = XL ¬ L, where XL is a
standard (m £ pL) matrix of ANOVA-type or covariate regressors and ¬ L is the associated
coef� cient vector. The pair (t; M) is null.

4.2 THE SMOOTH ADDITIVE PORTION

Now we consider the jth column (j = 1; : : : ; pG) of the component XG in (2.6) and
thus the corresponding portion of (4.1). Recall that fj(¢) is modeled by Kj equally spaced
B-splines with coef� cients ¬ j = [ajk ]. More explicitly, we have:

fj(xij) =

KjX

k = 1

Bj
k(xij)ajk =

KjX

k = 1

bj
ikajk : (4.2)

Here the pair is (t = xj ; M = I). In general, the B-spline bases can be different in their
support, as well as the degree of the B-splines. Thus each GAM term in (4.1) is simply
U ¬ = B¬ .

4.3 THE VARYING COEFFICIENT PORTION

Consider the jth column, xj of XV (the m £ pV matrix of candidates for varying
coef� cientmodeling)and the correspondingindexingm-vector t. Hence we havexj(t), and
want to � nd a smooth coef� cient vector fj(t). Thus, we re-express each varying coef� cient
term in (4.1) with U ¬ = diagfxjgB¬ , where the pair is (t; M = diagfxjg).

4.4 THE SIGNAL PORTION

In (2.5) we de� ned ² S = XSf (t), where XS is a m £ nS matrix of signal regressors,
f (t) is the smooth signal coef� cient vector, and t is the corresponding row index of length
nS . We reduce the signal componentin (4.1) to U ¬ = XSB¬ , where the pair is (tn£1; M =

XS). As with the varying coef� cient components, this step can dramatically reduce the
dimensionality of the problem. For example, in a typical chemometric application (see
Section 7) optical spectra are given for nearly 500 wavelengths, while a B-spline basis of
size 20 or less is often suf� ciently � exible. The U associated with the signal has dimension
m£KS , is full column rank and can be computedin advance.Of course XS is not discarded,
but just is not neededduringparameter estimation.Multiplesignalswould lead to multipleU

matrices; Marx, Eilers, and Auer (2002) modeled multiple signals for a large scale medical
study on tumors.
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5. GLASS REGRESSORS AND PROPOSED ESTIMATION

Despite the formidable initial appearance of the GLASS, the use of B-splines as de-
scribed in the previous section makes it easy to model smooth curves by regression while
curtailing potentiallyenormous dimension. In each case, B-spline bases are constructedand
used to (linearly) reduce the problem to a moderately large sized standard GLM.

One can imagine arbitrary combinations of component submatrices, X = [XLjXGj
XV jXS ]. From X, we see that the GLM model matrix can be constructed:

R = [XLjU ?] (5.1)

of dimension m £ c with c = pL +
PpG

j = 1 KGj +
PpV

j = 1 KV j + KS : For the generalized
linear model setting, we have

· = h( ² ) = h(R³ ) (5.2)

with the GLASS parameter vector of ³ = ( ¬ 0
L; ¬ ? 0

)0. If the GAM portion is non-null, note
that we do not need to include the intercept term in XL since the column of ones is already
in the span of R. We now explainhow to estimate these componentssimultaneouslythrough
a modi� ed scoring algorithm using P-spline methodology.

The penalized log-likelihood function that was presented in Section 3 must now be
further modi� ed such that a separate difference penalty is attached to the log-likelihood
function for each of ¬ in ¬ ?. This results in maximizing the penalized version of the log-
likelihood function

l ¤ ( ³ ; y; R) = l( ³ ; y; R) ¡ 1
2

X

¬ j 2 ¬ ?

¶ j jDdj ¬ jj2; (5.3)

where the p nonnegative ¶ ’s are the regularization parameters. Note that l( ³ ; y; R) is the
usual log-likelihood of the standard GLM, and we see in (5.3) that further smoothing is
achieved through difference penalties as outlined in Section 3.

The Fisher scoring algorithm can be modi� ed to the following iterative estimation
technique

ˆ³ t + 1 = (R0ŴtR + P )¡1R0Ŵtẑt; (5.4)

where again Ŵ are the GLM weights and ẑ is the working dependent variable, evaluated at
iteration t. The matrix P is a block-diagonalmatrix of proper dimension (c £ c), which has
zeros in the block for the XL terms, followed sequentially by diagonal blocks of appropri-
ately chosen ¶ D0

dDd for each contribution in ¬ ?, respectively. With the P-spline approach,
note that the number or positions of knots do not have to be changed to vary smoothness,
rather the various ¶ ’s can regulate such control continuously.This is ef� cient since R only
has to be computed once in the estimating equations above.

We would like to point out, with the sum of (many) linear combinations in a model, we
cannot avoid aliasing: the columns of R will in general be linearly dependent, leading to
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underdetermined systems of equations. The smoothness penalty will not remedy this. Our
way out is to add a small “ridge penalty" (with a weight of, say, 10¡6) on all coef� cients
for B-splines. Speci� cally we replace P with P + 10¡6I, where I is the identity matrix of
proper dimension. This way the lengthof these vectors of regression coef� cients are pushed
gently toward a minimum, by centering them around zero.

Standard error bands can be constructed for ˆ² using the diagonal elements of the
estimated covariance matrix Ĉ:

Ĉ º R(R0Ŵ R + P )¡1R0Ŵ R(R0Ŵ R + P )¡1R0: (5.5)

The preceding covariance formula is only asymptotically correct if the ¶ s are chosen a
priori. Additionally,GLM deletion diagnostics to help identify in� uential observations can
be constructed using the converged effective hat matrix (Pregibon 1979)

H( ¶ ) = R(R0Ŵ R + P )¡1R0Ŵ : (5.6)

With Normal errors and the identity link, W is the identity matrix and standard regression
diagnostics can be used routinely, for example to identify outliers or particular in� uence
on ³ parameter estimates. Myers (1990) provided a nice coverage of such diagnostics for
standard multiple regression.

6. OPTIMAL SMOOTHING

The GLASS model involves one or more penalty parameters, and in any application
one has to optimally and objectively choose values for them. The ingredients of leave one
out cross-validation were given in Section 3 (for standard regression), which leads to the
cross-validation statistic

CV =

Ã
1
m

mX

i = 1

(yi ¡ ŷ¡i)
2

! 1
2

:

Again yi ¡ ŷ¡i = (yi ¡ ŷi)=(1 ¡ hii), and now hii are the diagonal elements of the hat
matrix H from (5.6). We can write

ˆ³ = (R0R + P )¡1R0y;

and

ŷ = R ˆ³ = R(R0R + P )¡1R0y = Hy;

since W is proportional to the identity. Thus, the model is � tted only once and the diagonal
of H is computed. Because of the moderate number of columns of R, computation is not
expensive. One searches for a minimum of CV by varying the smoothing parameters in a
systematic way, or by using an optimizationroutine. We mention other options in Section 9.
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For generalized linear applications there is no simple expression for cross-validation,
because the link function generally is nonlinear and the deviance is nonquadratic. We
propose to simply monitor and minimize an information criterion, such as

AIC = D(y; ˆ· ) + 2f(T );

where D(y; ˆ· ) is the model deviance. Using cyclical permutations for trace computations,

T = trace(H) = trace(R0W R(R0W R + P )¡1)

upon convergence. We interpret T as the effective dimension of the model. Hurvich, Si-
monoff, and Tsai (1997) noted that the original de� nition of AIC, with f (T ) = T has a
tendency to undersmooth. They showed that f (T ) = 1 + 2(T + 1)=(m ¡ T ¡ 2) is an
improvement, especially in applicationswith many parameters. Certainly other information
criteria, such as Bayesian or Schwartz’s can also be used. We must add that the information
criterion generally assumes that the observations obey, say, a binomial or Poisson distribu-
tion. Frequently one encounters overdispersion, in which case the appropriateness of the
criterion is doubtful.

7. APPLICATIONS

We illustrate the use of GLASS with several experimental datasets. The emphasis is on
its practical use: we will give little attention to the interpretation of the models themselves
and the estimated results. The � rst example was chosen because it was presented in the
literature to illustrate slow convergence of the back� tting algorithm for variable-coef� cient
models. The second and third examples consider modeling of time series with trends and
seasonal components of varying strength, for normal and Poisson responses, respectively.
Binomial responses are modeled with a factor (L), a smooth (G), and signals (S) regressors
in the last example.

7.1 EXAMPLE 1

We revisit the data from Daniel and Wood (1980, p. 142) which presented a marketing
price-volume study with 124 observations taken over a six-month period in 1970 (holidays
omitted). The response variable is the (log 10) volume of gasoline sold (log(volume)). The
explanatoryvariablesare date index(ranging from 48 to 228), price, and differentialprice to
competition.Daniel and Wood considered standard multiple regression approaches, adding
indicator variables for weekday and for month (discrete trend).

As with using indicatorsfor month, we note that zero degree B-splines (constantcurves,
each covering just one interval between knots) are also capable of producing nearly identi-
cal rough stepwise trends. However, one can imagine the usefulness of modeling the time
or date trend smoothly, rather than through a rough estimate of stepwise trend (see Figure 5,
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Figure 5. Daniel and Wood (1980). From top to bottom: L effects for price, differential price, and weekday;
Smooth trend for date index (or varying intercept). For comparison, Daniel and Wood’s stepwise month trend is
overlaid the bottom � gure.
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bottom). In fact, Green (1993) tried to estimatesuch a smoothnonparametrictrend,but found
convergence of back� tting to be extremely slow. He additionally proposed a noniterative
penalized least squares algorithm that leads to a system of equationswith as many unknowns
as the number of observations. In this setting, the back� tting algorithm alternates between
regressing the residualof thesmoothon XL and smoothingthe residualof XL. We con� rmed
that it took several hundreds of iterations for a ten-fold reduction of size of the error, and
the number of iterations increased with the number of B-splines used. Despite this lack
of success, we would like to offer for the record that we did � nd considerable relief in
convergence rates by simply subtracting the mean from each column of XL: two to � ve
iterations gave a ten-fold reduction of the error.

Nevertheless, our GLASS solution is more attractive than the above scheme because it
is faster and it allows economic cross-validation.We recognize that a time-varying intercept
term (over the date index) is equivalent to a smooth trend componentfor the date index.Such
a GLASS model now can be coerced into the framework of direct GAMs using penalized
likelihood (Marx and Eilers 1998) with a solution found in one step. The model can be
written as

ŷ = XL ˆ¬ L + f̂ (t) = [XLjBG] ˆ³ = XL ˆ¬ L + BG ˆ¬ G;

where f̂ (t) is the smooth time trend and XL contains the � xed regressors. Figure 5 displays
the estimated effects using constant coef� cients, or the linear portion, for price, differential
price and weekday indicators (6 linear df), while smoothly estimating the time or date
trend (XG). The matrices XV and XS are empty. There are no longer any convergence
problems since back� tting is avoided. The smooth in Figure 5 (bottom) was � t with cubic
B-splines (eight equally spaced knots) and a second-order difference penalty on the B-
spline coef� cients. The optimal ¶ = 0:1 (effective df of 4.56) minimized cross-validated
standard error of prediction, CV = 0:0085. Figure 6 presents the response (log(volume))
as a function of date, as well as the above model’s predicted values and residuals.

7.2 EXAMPLE 2

Our next example models seasonal time series of monthly (January 1963 through De-
cember 1986) concentrationsof sulphur dioxide, SO2, air pollution in the Netherlands. The
data were collected by the Rijnmond Environmental Agency in units of · g/m3, originally
hourly values at approximately 30 monitoring stations. These measurements were then
averaged over all stations and all hours in each month, producing the m = 288 monthly
composite responses. Figure 7 (top) presents the SO2 concentrations (in log 10 unit) as a
function of time. We � nd a downward trend. Additionally we see a strong seasonal compo-
nentwith peaks in the winter and troughsin the summer, howeverwith decreasingmagnitude
in time. We choose to GLASS model log(SO2) with one smooth component (XG) in time
and two entries for the varying coef� cients (XV ), seasonal sine and cosine waves. We
propose

Eflog(SO2)ig = ¬ 0 + f (i) + f1(i) sin(!i) + f2(i) cos(!i); (7.1)
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where i = 1; : : : ; 288 indexes months. An approximately Normal error distribution is
assumed. The seasonal component uses the circular frequency ! = 2 º =12 with coef� cients
( ¬ V 1i, ¬ V 2i) indexed by i to modulate slowly varying signals. For both G and V , cubic
B-spline bases with 13 (10) equally spaced knots (interval segments) were used with a
second-order difference penalty on the B-spline coef� cients. A grid search for the optimal
penalty parameter produced ¶ G = 0:10 (effective dimension8.94) and (common) ¶ V = 10
(effective dimension 3.54 for each of the sine and cosine portion). These optima were based
on minimizing CV = 0.0798.

Figure 7 (top) also displays the 8.94 df estimated (downward) smooth time trend.
Figure 7 (second from top) displays the sum of the seasonal sine and cosine components
(multiplied by their respective varying coef� cients). The plots of the � tted values and the
residuals are shown in the bottom two panels. The latter shows that this simple model does
not catch all the structure in the data: the residuals show strong serial correlation and their
variance seems to vary. Also the � t is quite bad around 1979, which was an unusually severe
winter in the Netherlands.

7.3 EXAMPLE 3

The above SO2 model assumes a sinusoidal seasonal component, a rather strong as-
sumption. If this is not satisfactory, then more harmonics can be added to allow more
complicated seasonal patterns. Consider the discrete count time series taken from Zeger
(1988). Figure 8 (top) displays the observed (and � tted) counts of monthly polio incidences
in the United States (reported to the U.S. Center for Disease Control) during the years 1970
through 1987. For these data we consider extending the XV matrix with pairs of columns,
giving the sines and cosines at double frequency. Using the Poisson random componentand
the log-link function, we � t the GLASS

log( · i) = ¬ 0 + f (i) +

2X

k = 1

ff1k(i) sin(k!i) + f2k(i) cos(k!i)g:

The above model allows varying coef� cients for the sine and cosine frequencies of 2 º i=12
and 2 º i=6, where i = 1; : : : ; 216 is the month index.

Figure 8 (second, third, and fourth panel) also provides the multiplicativefactors for the
smooth trend, annual seasonal component, and semi-annual seasonal component, respec-
tively. Multiplying these portions produces the � tted curve in the top panel. The deviance
residuals are also displayed (bottom). We further address their autoregressive tendency in
Section 9. Some details of this Poisson model include: convergence in 4 scoring iterations,
the trend is � t with 8.3 df, each seasonal term is � t with (a common) 7.6 df, and cubic
B-splines with 13 knots and a second-order penalty for each term. Optimal smoothing
was determined by an AIC grid search on the smooth (¶ = 0:1) and a common seasonal
smoothing parameter (¶ = 0:1). The residual deviance is approximately 215 on 176 df.
This deviance is not a reliable measure of goodness-of-� t since the large sample chi-square
theory is violated in two ways: we have many small or zero counts and the number of
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settings for the regressors (time) is not � xed as m ! 1.
It is possible to � t constrained forms of the model, in which the relative strengths of

the sines and cosines do not vary with time. In such a model the shape of each period is the
same, but the size varies smoothly. These are interesting extensions, but they lead us into
bilinear models, which are outside the scope of this article.

7.4 EXAMPLE 4

The last example offers elements of both signal regression and smooth additive model-
ing to predict the probability that a freesia’s bud will � ower. The signal was a near-infrared
re� ectance (NIR) spectroscopy taken on m = 100 branch bunches. Within a branch bunch,
several branches (in most cases 20) were collected and then split into two groups: The � rst
group (usually consisting of 14 branches) was put into a vase and monitored for successful
budding, and the other branches (usually 6) was used for NIR spectroscopy. For a given
source, the total combined buds (Ni) in the vase were counted, i = 1; : : : ; 100. We are
interested in how the NIR and other factors are related to the number of buds that produce
� owers in vase i, yi 2 f0; : : : ; Nig. For the moment, we assume yi ¹ binomial(Ni; pi),
with pi unknown.

Some details on the explanatory information follow. The NIR spectra consisted of 476
log re� ectance (1/R) readings ranging from 600 nm to 2,500 nm in equal steps of 4 nm.
See Figure 9 (top, left) which displays the NIR spectra for the m = 100 freesia sources.
There also existed a variety of other lab information (storage time, drying time, etc.); we are
particularly interested in the two cultivar levels. To predict the probability of a successful
� owering (1) or unsuccessful � owering (0) bud, we entertain the logit model

log
pi

1 ¡ pi
= XL ¬ L + f (N ) + USfS = XL ¬ L + BG ¬ G + XSBS ¬ S ;

where XL contains the intercept term and a 0/1 dummy for cultivar, N is the number of
buds found on a branch in a source, and XS is the NIR spectra matrix (100 £ 476).

Both the smooth additive (9 knots) and the signal (11 knots) terms were � t with cubic
P-splines. Third-order difference penalties were used. Convergence was achieved in three
iterations of the GLM scoring algorithm. Optimal smoothing (based on a AIC grid search)
showed that a good deal of � exibilitywas needed for each of these terms ( ¶ G = 0:01, effec-
tive df = 6.9 and ¶ S = 0:001, effective df = 8.9). The over� tting of the smooth and signal
terms may be a result of the overall � t which is further discussed below. A ridge penalty of
10¡4 was also used to remedy aliasing. Figure 9 (upper, right) displays the smooth additive
portion for N , along with the partial residuals. This smooth is signi� cant (¢ deviance =

255.7 on 6.9 df) and generally suggests that a decrease in odds of budding with increasing
N . Note that in the residuals associated with small N all correspond to cultivar 1 and have
positive residuals, indicating a warning of a pure-region effect. For moderate and large
N , we also � nd several distinct negative residuals associated with cultivar 2. The culti-
var effect is signi� cant (¢ deviance = 19.9 on 1 df). Figure 9 (lower, left) provides the
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signi� cant signal coef� cient vector (on t = (600; 2500)) for the XS matrix; ¢ deviance =

182.2 on 8.9 df.
Technically, the model is a success (it quickly gives straightforward estimates of all

parameters without any signs of numerical problems), and the � t to the data is improved
by adding the various L, G, and S portions. Figure 9 (lower, right) displays the observed
versus � tted predicted probabilities of successful � owering which at � rst glance appears
somewhat promising. However, the residual deviance is 378.3 on 82.2 df, indicating that a
binomialmodelmay not beappropriateor thatotherexplanatoryinformationmay beneeded.
For reasons described in the previous example, this deviance is not a reliable measure of
goodness-of-� t. Although we do not pursue outliers here, we � nd three deviance residuals
less than ¡ 2:3. Lastly, overdispersion is likely present, and caution should be taken when
using AIC for optimal smoothing.

8. COMPUTATIONAL DETAILS

Using the details presented in Marx and Eilers (1998), we have broadened the S-Plus
P-spline ps() function to accommodate not only smooth G terms, but also varying V

and signal S terms. Like ps(), the new glass() functions work directly with the existing
gam() function.Thus, the variety of arguments (such as link, family, etc.) are all accessi-
ble. The glass() function parallels the bs() (B-spline) function, except equidistantknots
(interval segments) are used rather than ones on the quantiles. However, glass() has its
own arguments: the degree=3 of B-splines, number of ps.intervals (knots¡ degree),
order=3 of penalty, and regularization parameter lambda=0. Additionally for varying
terms, varying.index must be speci� ed (NULL is default); this is the tc vector. When
signal S entries are used, then signal.index (i.e., tr , NULL default) and x.signal

(the signal matrix, NULL default) must be speci� ed. Based on the speci� c arguments pro-
vided in glass(), the Dd matrix is constructed and either BG, UV or US is passed to
glass.wam() which orchestrates the (iterative) penalized method of scoring (avoiding the
call to back� tting). The penalization is constructed through data augmentation techniques.
An example function might look like:

glass1 <- gam(Y ~ glass(X1, ps.int=10, degree=2, order=1,

lambda=.01)+ X2 + glass(X3, ps.int=8, varying.index=t.c, degree=3,

order=3, lambda=10) + glass(1:length(Y), ps.int=20,

spectra.index=t.r, x.signal=S1, lambda=1) + factor(block),

family=binomial(link=logit), na.action=na.omit).

The glass1 object would � t a logistic regression on binary Y using a P-spline smooth for
X1, a linear term for X2, a varying coef� cient term (on t:c) for X3, a signal term for S1
(on t:r), and a block. The usual gam list would be available with some additional entries,
such as: linear and nonlinear df’s for terms. The function plot.glass() provides plots of
smoothes, varying coef� cients, and signal coef� cients with twice pointwise standard error
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bands if desired. The S-Plus code is available at www.stat.lsu.edu/bmarx and Matlab code
(for a variety of common applications) is available from the � rst author.

9. DISCUSSION

We have presented a model based on generalized additive structures and penalties and
illustrated its use with various applications. We believe that we have a sensible solution
to a complex problem. Although some of the ideas presented have been addressed in the
existing literature, a practical approach was lacking, especially when addressing all of these
structures simultaneously. We hope that this work will highlight just how simple P-splines
are to use and how they lead to such a manageable system of equations. GLASS offers
a uni� ed modeling framework that eliminates the need for back� tting and knot selection
schemes, and further allows easy computation of diagnostics, compact results useful for
prediction, computation of standard errors and fast cross-validation.

In our opinion,P-splines are the only viable smoother for the GLASS framework. With
back� tting, kernel smoothers and local likelihood methods can be used for the GAM and
VCM components. The computation of standard errors and diagnostics is complicated and
cross-validation is expensive. For signal regression these smoothers are useless. Smoothing
splinescan be used only in principle: they lead to (very) largesystemsof equations.Although
these can possibly be sparse for the GAM and VCM components, this is not the case for
signalregression.Regressionsplineswith � xed knotscan encounterproblemswith unevenly
distributed data. A solution is to locate the knots at evenly spaced percentiles of the data,
but this gives only coarse control over smoothness, as the number of knots is an integer.
Knot optimization is a nonlinear problem; we also have doubts of its applicability to signal
regression. The closest to P-splines come penalized truncated polynomials, as presented by
Ruppert and Carroll (2000). Implicitly they only used a second-order difference penalty.
Elsewhere, in the context of GAM (Marx and Eilers 1998), we have shown that it may be
useful to try several orders of the difference penalty to detect potentialpolynomial � ts to the
data. Another aspect of truncated polynomial bases, that up to now seems to have largely
gone unnoticed, is their extremely bad numerical condition.

In larger GLASS models several smoothing parameters occur, each of which has to
be optimized. Our present approach is to simply do a grid search; as cross-validation or
computation of AIC is fast, this is feasible. More elegant approaches can possibly derived
from mixed model theory. Verbyla, Cullis, and Kenward (1999) show how smoothing
splines can be written as a mixed model. In the discussion to that article Eilers (1999a)
showed how the same can be done for P-splines. Algorithms and software for the estimation
of variance components in mixed models are rather well-developed (see Coull, Ruppert,
and Wand 2001).

Our development of GLASS did assume independentobservations. In the applications
to time series data we noted apparent autocorrelation of residuals. With a normal response
(and identity link) a solution is to introduce a covariance matrix, say §, derived from an
autoregressive or moving average model and minimize a sum of squares that is weighted by

http://www.stat.lsu.edu/bmarx
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§¡1. Currie and Durbán (2001) reported good results on the use of P-splines with correlated
responses in a mixed model framework. Further conditionalmodels can be explored that add
lag(Y ) in the XL or XV portion. When the response is non-normal, no such simple solution
exists. A � rst step in the right direction would be to adopt GEE (generalized estimating
equations) (Zeger 1988).

As we showed, each of the GAM, VCM and PSR components constructs a linear
predictor as MB¬ , where B is the B-spline matrix, ¬ the coef� cient vector, and M a
component-speci�c matrix: the identity matrix for GAM, a diagonal matrix for VCM, and
the signals matrix for PSR. This suggests a search for additional components. An example
is regression on time series at several delays, like distributed lags of order l ( Malinvaud
1970): ŷi =

Pl
j = 0 xi¡j ¬ j , with x given and smooth ¬ to be estimated. The rows of M

would be shifted copies of x.
In this article we consider only a univariate response. One area of future work could be

to extend GLASS to a multivariate response, like the multivariate GAM of Yee and Wild
(1996). GLASS building blocks can also be used for modeling sets of crossed or nested
curves. This would offer large computationaladvantagescompared to the smoothingsplines
used by Brumback and Rice (1998) and Verbyla, Cullis, and Kenward (1999), as indicated
by Eilers (1999b), and additionallyopen the possibility to use VCM and PSR components.
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