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The penalized signal regression (PSR) approach to multivariate calibration (MVC) assumes a smooth vector of
coefficients for weighting a signal or spectrum to predict the unknown concentration of a chemical component.
P-splines (i.e. B-splines and roughness penalties, based on differences) are used to estimate the coefficients. In
this paper we allow the PSR coefficient vector to vary smoothly along a covariate (e.g. temperature), which
results in a smooth surface on the wavelength–temperature domain. Estimation is performed using two-
dimensional tensor product P-splines. As such, a slice of this surface effectively estimates the vector of coefficients
at any arbitrary temperature. As an added generalization, we further relax the implicit assumption of an identity
link function by allowing an unknown, but explicit, link function between the linear predictor and the response.
Again, we allow the signal's link function to vary smoothly along a covariate, which produces a two-dimensional
link surface. The unknown link surface is also estimated using two-dimensional P-splines, which is sliced at the
same arbitrary temperature to bend prediction. Typically we use a common covariate (e.g. temperature) to
vary the associated link function, as with the signal coefficients, but nothing prohibits the use of two different
ones.We termourmethod: varying single-index signal regression (VSISR). Themethods presented are grounded
in penalized regression, where difference penalties are placed on the rows and columns of the tensor product
coefficients. Each row and column of each surface has its own tuning parameter. An application to ternary
mixture data illustrates that both the varying-coefficient and varying-nonlinearity (due to the link) are present.
External prediction performance comparisons are made for both the identity link varying-coefficient penalized
signal regression (VPSR) and partial least squares (PLS).

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we take yet another approach to the multivariate
calibration problem, in particular where the signal (spectra) regressors
appear to have two-dimensional structure. Although we generally use
the term signal throughout the paper, our application considers NIR
spectra (taken over several temperatures). Through simultaneous
estimation, we identify and estimate two separate modeling compo-
nents, both of which are surfaces: (a) a single smooth regression
coefficient vector, which effectively ensembles a smooth surface while
varying along the temperature covariate [1], and (b) an unknown and
nonlinear link function, which also varies along the temperature covar-
iate, yielding a link surface and thus extends the work of Eilers, Li and
Marx [2] and [3]. Although the first component is linear, the second
component explicitly models the nonlinearity, allowing us to learn
something about features of the transformed mean, which in some
cases enhances insight into the process.We choose to use a common co-
variate (e.g. temperature) to vary the associated link function, as with
the signal coefficients, but the interacting covariate could differ. We
will see that the combination of these components can lead to a
systematic and tractablemodeling approach, that is statistical in nature,
while in some cases having improved external prediction performance
when compared to identity link model variants and partial least
squares.
2. Motivating example

We revisit data used in [3], with permission from ZhenyuWang and
Age Smilde, where the response y comes from the composition (mole
fraction) of a mixture, here consisting of three components (water,
1,2-ethanediol, 3-amino-1-propanol). These data are an expanded
version of the data used in [4,5], and [6]. The ternary plot for the m =
34 mixtures is provided in Fig. 1. The center data point in the triangle
represents equal concentrations of the three components, the edge
points are mixtures containing only two components, and the corners
are pure. Note that there are 3 pure, 12 edge, and 19 interior (1 center)
mixtures. The components are modeled one at a time, and not jointly.

Corresponding to each ternary mixture, there exists an extremely
rich spectroscopy regressor information, taken under pk ¼ 12 tempera-
ture conditions: (30, 35, 37.5, 40, 45, 47.5, 50, 55, 60, 62.5, 65, 70 °C).
Fig. 2 displays signal regressors (at only two different temperatures)
for each of m = 34 observations. Each “signal” actually consists of
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Fig. 1. Ternary plot for mixtures, withm = 34: 3 pure, 12 edge, 19 interior.
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numerous digitizations (p = 401) along the wavelength axis v (700 to
1100, equally-spaced by 1 nm). The top (bottom) panels present the
raw (first differenced) spectra. The latter will be our choice, which is
in part attractive since constant shifts across spectra are removed.

Notice that the left and right panels of Fig. 2 present signals at the
extreme temperature levels of 30° and 70 °C, respectively. One could
30 C: raw spectra

30 C: first differenced
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Fig. 2. Signal regressors (raw and first differenced) for m
imagine many more given (or interpolated) temperatures, resulting in
a sequence of several “extremely narrow images” to build out a two-
dimensional regressor surface.
2.1. Motivation for this paper

Thus a natural question to ask is: what is the true, or more impor-
tantly, the most useful regressor structure to predict y?

The primary goal is reliable future (external) prediction. The data set
brings someunique structure and several challenges: (a) for all practical
purposes, the response is measured exactly at the molar level, and only
at several dozen concentrations. (b) The rich covariate information has
dimension far greater (at least an order of magnitude greater) than the
number of observations. (c) Internal prediction is not of interest, as it
could be perfectly done, if desired, in infinitely many ways. (d) Oddly,
it is the signal regressors themselves, and not the responses, that change
with changes in the covariate t.

The data structure considered by Marx and Eilers [7] and Marx,
Eilers, and Li [3] is rethought, where in the latter each of the m = 34
mixtures had one image regressor (400 × 12). As such, the composite
of signal regressors was then viewed as fully two-dimensional, where
spatial information was taken into account in both (the wavelength
and temperature) directions, and this information was related to the
response (component concentration). The problem was viewed in the
light of a multivariate calibration with multi-dimensional spectra,
where, e.g., the second dimension was temperature. Fig. 3 illustrates
such a two-dimensional spectra structure with 4800 regressors,
summarized in a 400 × 12 matrix (using first differences), for the
center mixture unit, with corresponding scalar responses (water, 1,2-
70 C: raw spectra

70 C: first differenced
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ixture experiment, at two different temperatures.
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Fig. 3. Two-dimensional (first differenced) signal regressor image for center mixture.
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ethanediol, 3-amino-1-propanol, each at 1
3). We will come back to this

data structure below in Section 10.

2.2. Realistic data structure

Perhaps it is more realistic to think of the additional covariate t as
simply being recorded, while the signal regressors are generated.
In this way the classical MVC approach could be more appropriately
modified to allow interactive effects of t with the signal regressors.
Such an approach is related to the work of Eilers and Marx [1]. Visually,
one can think of unfolding the image in Fig. 3 into twelve separate
univariate signals (each of dimension 400), each with a separately
measured covariate. This structure plays right into the hands of an
interesting varying-coefficient model: as temperature affects the signal
regressor information, it stands to reason that their corresponding coef-
ficients should also vary with t. With a smoothness constraints within
the estimation of both the signal coefficients and the varying-index t,
a coefficient surface gels into shape. In fact, cutting through the surface
returns us to classical MVC regression vector, providing the coefficients
with which to weigh the signal information. In this paper, we will focus
on modifications and extensions of exactly this varying-coefficient
signal regression model.

2.3. Some unique modeling contributions

A unique contribution of this work is the presence of a varying-link
function associated with an already varying-coefficient signal regres-
sion model. In essence, the single-index signal regression model of
Eilers, Li, and Marx [2] is generalized on two fronts: (i) the unknown,
but explicit, link function is estimated within the context of a varying-
coefficient signal model, and (ii) the link function is further allowed to
vary itself, producing a link surface. Details of estimation and regulariza-
tion of this doubly-varying model will follow below.

This paper additionally takes the opportunity to clearly delineate
between two competing regressor structures, each of which produces
a variant of an estimated two-dimensional coefficient surface. Despite
similarities in appearance, distinctions quickly manifest: one model
uses a one-dimensional signal regressor with measured covariate,
whereas the other model uses a full two-dimension image regressor.
This paper broadly unifies and bridges notation across the two penal-
ized signal regression approaches of [1] and [7], clearly detailing specific
similarities and differences between the modeling approaches. Al-
though motivated through a real data mixture example, the presented
notation is rich enough to generalize applications.

2.4. General data structure: triplet {y, x(v), t}

The specifics of this particular data structure are as follows: each
observation consists of the data triplet: {yi, xi(v), ti}, where i =
1, … , N. The response yi is again a scalar, and independence among
the responses is assumed,with commonvariance var(y)=σ2. However,
the signal is nowone-dimensional, consisting of a p×1 vector of ordered
regressors, e.g. a digitized signal, along the indexing (wavelength) axis v.
In fact, we have xi(v). Completing the triplet is the covariate ti,
e.g. temperature, which is measured along with each (signal) xi. The
indexing axes v for xi that define the support coordinates of xi are very
often equally-spaced, but again the only requirement for our method
is that of a common support for all i or vi = v. As suggested by Fig. 3,
xi could be viewed as a signal at each temperature slice, again with
discrete digitized support (wavelength) with p = 400 channels
(v takes values of 701 to 1100 nm, by 1 nm). In this example, the com-
panion covariate ti takes on only pk ¼ 12 levels (30, 35, 37.5, 40, 45,
47.5, 50, 55, 60, 62.5, 65, 70 °C), but prediction could be made at any
arbitrarily recorded t. An important distinction needs to be made
regarding the response dimension: y is now N × 1, with N ¼ mpk ,
i.e. each recorded value of y is replicated pk times. In the example
above, y now has length (34 ⋅ 12) × 1, as the response is modeled
using the signal information at each level of t.

3. Organization of this paper

In Section 4, we recap a general two-dimensional smoothing tool:
tensor product B-splines. Such an initial presentation allows us to not
only define central notation, but also frames smoothing in a regression
setting. Section 5 then applies this two-dimensional smoother to con-
struct a varying-coefficient signal regression paradigm. As we suggest
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a rich tensor product basis, regularization is implemented in Section 6,
defining the tensor product P-spline approach to estimation. The second
modeling component is presented in Section 7,where now an additional
two-dimensional link surface is defined and also estimated, along with
the model fitting algorithm that simultaneously estimates both the
varying-coefficient andvarying-link surfaces. Suggestions for optimizing
the tuning parameters (associated with the surfaces) are outlined in
Section 8, and Section 9 follows with an illustrative example using the
motivating ternary mixture data. In Section 10, we elaborate on the
connections between alternative views of the data structure (i.e. data
triplet vs. data pair with image). Lastly, we close with a Discussion.

4. Jump start notation: tensor product B-spline smoothing

Tensor product B-spline smoothing is a general tool used in two (or
more) dimensions. Such a choice is often attractive because of its
simplicity and ability to produce very general surfaces that are based
in regression. As an added value, with the use of tensor products, deriv-
atives of the smooth surface are easily computed. Among others, Eilers
and Marx [1] (Section 4) provided a basic presentation Tensor product
B-splines in a nutshell, giving essential details to building smooth
surfaces, while more complete coverage can be found in various texts,
e.g. Dierckx [8] (Chapters 1 and 2).

The essential building block is a bicubic basis function, which is

the tensor product of the two univariate (cubic) B-splines, say B and B
k

(placed on the margins). Despite more general possibilities, we only
consider n nk

� �
equally-spaced B-spline basis functions that are placed

along the v vk
� �

axis. Such a construction requires nþ 2q nkþ 2qk
� �

knots, where q denotes the degree of the B-splines basis and is typically
set to three (cubic). The extra 2q (external) knots ensure that there is
enough support for the boundary basis functions. Ultimately, the v� vk

plane is carved out into regularly-spaced subrectangles that support
the nnk bicubic basis functions. More specifically, the rth–sth single

tensor product Br vð ÞBks vk
� �

is positive in the rectangular region defined

by the knotsR ¼ φr ;φrþqþ2

h i
� φks;φ

k
sþqkþ2

h i
or on a support of spanned

by qþ 2ð Þ � qkþ 2
� �

knots. Similar to univariate B-splines, it is conve-

nient to index each tensor product by one of the n� nk knot pairs and

Br vð ÞBks vk
� �

N 0 for all v; vk∈ R
¼ 0 for all v; vk∉ R;

ð1Þ

r ¼ 1; …; n and s ¼ 1; … ;nk.
Fig. 4 sparsely displays nine (scaled) tensor product B-splines,

which represents only a portion of a full basis. A complete tensor prod-
uct B-splines basis thus has an unknown coefficient matrix, denoted by
Γn�nk ¼ γrs½ � . For given knot grid, a very flexible surface can be
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Fig. 4. Nine scaled cubic B-spline tensor products, with a strong linear row
approximated, e.g. at the discrete digitized coordinates v; vk
� �

. For j =

1, ⋯, p and k ¼ 1; ⋯; pk,

α vj; v
k

k

� �
¼

Xn
r¼1

Xnk

s¼1

Br v j

� �
B
k
s vkk

� �
γrs: ð2Þ

The surface is in fact driven by relatively few parameters (nnk), such
that changing Γ leads to changes in the surface.

4.1. Unfolding Γ and notation

It is computationally efficient to re-express the surface in “unfolded”
notation. Before doing so, some further notation is needed. Denote

the discrete digitized (support) coordinate matrix C ¼ v⊗1pk; 1p⊗vk
� �

of dimensionppk� 2. Let thematrix B andB
k
(with respective dimensions

ppk� n and of ppk� nk) be the univariate B-spline basis matrix evaluated
at each entry of the first and second column of C, respectively. The
unfolded expression at the support coordinates then has the standard
multiple regression form

vec α v; vk
� �� � ¼ Tγ; ð3Þ

where γ = vec(Γ). Define the matrix

T ¼ B□B
k ¼ B⊗10

nk
� �

⊙ 10
n⊗B

k� �
ð4Þ

of dimensionppk� nnk. The symbols⊗ and⊙ denote Kronecker product
and elementwise multiplication of matrices, respectively. In the
applications to follow, the second indexing axis is set to temperature,
i.e. vk ¼ t.

5. First component: varying-coefficients for signal

We first consider modeling rich signal regressors, with coefficients
that are allowed to interact with another covariate. We refer to this
model as varying-coefficient penalized signal regression or VPSR. Recall
our mixture example with y of dimension N × 1 (each component is
measured pk times). Given the signal matrix X = [xij] (i =
1, …, N; j = 1, …, p) and the (unknown) coefficient surface α v; vk

� �
,

the mean of the ith response can be denoted as

μ i ¼
Xp
j¼1

xi jα vj; ti
� �

: ð5Þ

The above expression explicitly shows the varying-coefficient struc-
ture that depends on t. Note that with the setting vk ¼ ti, the coefficient
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penalty (left panel) and a strong linear column penalty (right panel).



115B.D. Marx / Chemometrics and Intelligent Laboratory Systems 143 (2015) 111–121
surface is evaluated only at one specific slice of the covariate. The single
sum over j further highlights the weighting of a one-dimensional signal
by varying coefficients, for given t. Approximating the coefficient
surface by tensor product B-splines, it follows that

μ i ¼
Xp
j¼1

xi j
Xn
r¼1

Xnk

s¼1

Br v j

� �
B
k
s tið Þγrs

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{α v j ;tið Þ

¼
Xp
j¼1

Xn
r¼1

Xnk

s¼1

xi jb jrb
k

isγrs

¼
Xn
r¼1

Xnk

s¼1

Xp
j¼1

xi jb jr

0
@

1
Ab
k

isγrs

¼
Xn
r¼1

Xnk

s¼1

uirb
k

isγrs;

ð6Þ

which again is a tensor product expression, but now using a modified
basis U = XB. Borrowing notation from Eq. (4), we find that Eq. (6)
can be expressed in somewhat simplified matrix notation as μ = Uγ,
where

U ¼ U□B
k ¼ U⊗10

nk
� �

⊙ 10
n⊗B

k� �
; ð7Þ

is of dimensionN � nnk
� �

. An important distinction between Eqs. (4) and
(7) follows: now B is a (p × n) B-spline bases matrix (where rows

represent evaluations at the p digitizations of the signal), whereas B
k

is
a (mpk� nk) B-spline matrix (where rows represent evaluations at the
pk digitizations of the covariate t, each replicated m times). From this
point forward, it is useful to think of U as the effective regressor matrix
for the lower dimensional representation of the smooth coefficient
surface.

6. P-spline objective for the VPSR coefficient surface

The P-spline approach to estimation of the coefficient surface
requires two basic steps: (a) the n� nk knot pairs, associated with
Eq. (2), are richly chosen to allow the surface more flexibility than it
actually needs, i.e. it is purposely overfit. And the knots within each
axis (v or vk) are equally-spaced. This step coursely enforces our choice
to regularize the ill-posed regression problem. Said differently, smooth-
ness across the two-dimensional coefficient structure is assumed to be
either reasonable or non-detrimental toward future prediction.
(b) Penalties are placed on γ vector, leading to regularized estimation.
Specifically, a separate difference penalty is assigned to each row and
to each column of the array of coefficients in Γ, which ensures that adja-
cent coefficients within the same row (or same column) do not differ
too much from each other. Some further care is taken to assure that
the linkage is broken in the penalty from one row to the next row and
from one column to the next column. Associated with each penalty

are nonnegative tuning parameters λ and λ
k
.

The penalized objective function to be minimized is defined as

QP γð Þ ¼ Residual SSþ Row Penaltyþ Column Penalty

¼
Xm
i¼1

yi−u0
iγ

� �2 þ λ
Xn
r¼1

γr•D
0
dDdγ

0
r• þ λ

kXnk

s¼1

γ0
•sD

0
d
kD

d
kγ•s

¼ jjy−Uγjj2 þ λjjPγjj2 þ λ
kjjPkγjj2;

ð8Þ

where ui
′ is the ith row of U and γr • (γ• s) denotes the rth row (the sth

column) of Γ.
Fortunately, the penalties can be conveniently and compactly

represented, again using Kronecker products and matrix notation: P ¼
D0
dDd

� �
⊗Ink and P

k ¼ In⊗ D 0
d
kDd

k
� �

, where I denotes the identity matrix
and d denotes the order of the difference penalty. Both P and P
k

are

square with dimension nn
k
. The matrices Dd and D

d
k are banded in

structure, each have rows that consist of polynomial contrasts (see

Marx and Eilers [9]), and have dimension (n − d) × n and nk−d
k� �

�
nk, respectively. The coefficients in γ are in vector form, yet P and P

k

are cleverly constructed to align a difference penalty within each row
(column) of the Γ array.

In practice, the order of the penalties (d, d
k
) are usually fixed by the

user. The non-negative tuning parameters essentially allow continuous
control over smoothness, but are chosen in a greedy way to minimize
external prediction error. With only two tuning parameters, we choose
to apply the same penalty weight for each row (column) of coefficients,
however the row and column tuning parameters are independent of
each other. Fig. 4 illustrates strong smoothing in action, i.e. large λ and

λ
k
, using a second order penalty on each row and column. We find

that the limiting behavior for each row and column is linear in this
case, with reversals of slopes possible across rows (or columns).

For given tuning parameters (λ;λ
k
), the VPSR solution for objective

(8) is

γ̂ ¼ U0Uþ λP0P þ λ
k
P′
k
P
k� �−1

U0y: ð9Þ

The system of equations is of modest dimension nn
k
. The effective

“hat” matrix can be of use and is defined as

H ¼ hii0½ � ¼ U U0Uþ λP0P þ λ
k
P
k

′P
k� �−1

U′: ð10Þ

A future (external) predicted value is estimated as ŷnew ¼ u0
newγ̂ ,

where unew′ is constructed as in Eq. (7) using the new digitized signal
regressors and covariate t.

Of course, many other bases and penalty choices exist that lead to
alternative regularizations. In Section 11, we will argue that our choice
is a sensible one, while presenting some advantages relative to other
options.

6.1. Modification for an intercept term

Themodel can also include an intercept term β0 which results in the
modified P-spline solution

β̂0; γ̂
0� �0 ¼ U0

1U1 þ λP0
1P1 þ λ

k
P
k0

1P
k

1Þ
−1

U0
1y;

�

with U1 ¼ 1mpkjU
� �

, P1 = (0|P), and P
k

1 ¼ 0jPk
� �

. The zero vector in P1

and P
k

1 ensures an unpenalized intercept.

7. Defining and implementing a two-dimensional link surface

Although statistical models often offer meaningful scientific
interpretation, they can have difficulties competing with the predictive
ability of a broader class of approaches, e.g., support vector machines,
genetic algorithms, and neural networks, among others. Yet, such
“machine learning” approaches offer very little, if any, interpretability.
There appears to be a general and unsatisfying trade-off between
competitive prediction and scientific interpretability; gains in one
come at a compromise of the other. For all they provide, one possible
deficiency of MVC statistical approaches (including PSR) is that they
are rather narrow in scope, i.e.: their prediction quality is limited to
estimated coefficients that are linear in the signal regressors. To allow
additional model flexibility, we capture the nonlinear features of the
response process through a general (unknown) link function, that itself
can vary across the level of a covariate, yielding a varying-link surface.
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7.1. The second component: varying link function

We consider the extended model of the form

μ ¼ f Uγ; tð Þ; ð11Þ

where f is a two-dimensional function of both the linear predictor
(η = Uγ) and the covariate t. We refer to this model as varying-
coefficient single-index signal regression or VSISR. In fact, due to the
construction of U in Eq. (7), each row ui′ requires the exact level of
the covariate t; thus one can think of the second argument in f (⋅,⋅) as
companion information for the first argument. This is an important
point for calculations of derivatives for the surface f: since η specifies
the level of t, we will find that we only need partial derivatives of f
with respect to η.

As presented in Eq. (11), we have a two-dimensional surface
imbedded within another two-dimensional surface. We have: (i) the
varying-coefficient surface for the signal regressors, which is estimated
with tensor product P-splines coefficients γ, and (ii) now the varying-
link surface, which is again estimated with separate tensor product
P-spline coefficients θ. The objective in Eq. (8) can be extended as

Q⋆
P γ; θð Þ ¼ jjy− f Uγ; tð Þjj2 þ λjjPγjj2 þ λ

kjjPkγjj2 þ λ f jjP f θjj2 þ λ
k

f jjP
k

f θjj2:
ð12Þ

For given tensor B-spline coefficient vectorγ, the linear predictor η is
known and the estimation of function f(η, t) becomes a straight-forward
two-dimensional smoothing problem. We can thus apply the tensor
product approach outlined in Section 4.1, where v = η, vk ¼ t, and the
unfolded tensor matrix T has support on unique values of η and t. The
number of equally-spaced basis functions (nf, n

k
f ), as well as the order

of thepenalties (df ;d
k

f), used to estimate θ can be chosen independently
of γ. With tensor product P-splines, smooth θ leads to smooth f(η, t),

where the λ f ;λ
k

f N0 control roughness.
P-splines are a natural choice for several reasons: (a) such

smoothers are regression based and are easy to use and optimize.
(b) Heavy smoothing along one variable, using a dth order penalty,
leads to polynomial structure of order d-1. Such polynomial structure
could be linear, while allowing interactive effects across another
variable. (c) The partial first derivative of f with respect to one variable

(denoted as f
�

∂ η; tð Þ ¼ ∂ f η;tð Þ
∂η ) can be easily computed (and is needed in

our algorithm).
The derivative of a smooth function that is constructedwith equally-

spaced B-splines has the useful mathematical expression B(q − 1)(Δθ)/b,
where q is the degree, Δ denotes the first difference operator, and
b is the step length on the equally-spaced knots. It stands to reason
that partial derivatives for tensor product B-spline surfaces can be
found: apply the above derivative calculation using adjacent bicubic
functions within each row for all rows (or within each column for all
columns).

For simplicity in notation, denote ϒ V;W; λ f ;λ
k

f

� �
; df ; d

k
f

� �n
;

nf ;n
k

f
� �o

as the operation of fitting a tensor product cubic P-spline

scatter smoother on V ¼ v; vk
� �

(the input variables) and W (the
response) using the penalty tuning parameters (λ f ;λ f ) and difference

orders (df ;d
k

f ) on the nf � nk f knot grid.

7.2. The VSISR model fitting algorithm

For fixed estimate of the surface f (i.e. given θ), and given covariate t,
the coefficient vector γ can be estimated using a (first-order) Taylor
series approximation of the function f (about the current estimate, γ0).
Specifically, if γ0 is the current estimate for γ, then the current estimate
of μ = f(Uγ, t) can be approximated by

f Uγ; tð Þ ≈ f Uγ0; tð Þ þ diag f
�

∂ Uγ0; tð Þ
n o

U γ−γ0ð Þ: ð13Þ

Using Eq. (13), with fixed f and given t, we have an approximation
of QP

⋆

Q⋆
P ≈ jjy− f Uγ0; tð Þ−diag f

�

∂ Uγ0; tð Þ
n o

Uðγ−γ0jj2 þ λjjPγjj2 þ λ
kjjPkγjj2

¼ jj y− f Uγ0; tð Þ þ diag f
�

∂ Uγ0; tð Þ
n o

Uγ0

h i
−diag f

�

∂ Uγ0; tð Þ
n o

Uγjj2

þ λjjPγjj2 þ λ
kjjPkγjj2

¼ jjy⋆−U⋆γjj2 þ λjjPγjj2 þ λ
kjjPkγjj2;

ð14Þ

where y⋆ = y − f(Uγ0, t) + diag{ ḟ∂(Uγ0, t)}Uγ0 and U⋆ =
diag{ ḟ∂(Uγ0, t)}U. Note that Eq. (14) implies that given f (or θ), the
optimal γ thatminimizes the right-hand side of Eq. (14) can be obtained
through the varying-coefficient penalized signal regression solution

provided in Eq. (9), VPSR U⋆
; y⋆; λ;λ

k� �
; d; d

k� �
; n;n

k� �n o
. Hence, in

our algorithm, we first initialize the linear predictor (equivalently γ)
using (an identity link) VPSR(U, y) (Step 1). Then, given γ, an estimate
of f (equivalently θ) is obtained (Step 2). The two steps, estimation of
γ and θ, are iterated until convergence. For simplicity of presentation,
the intercept term is suppressed (β0 = 0) in the algorithm.

Algorithm VSISR.

1. Initializations:
• Fix the tuning parameter values ðλ;λk;λ f ;λ

k
f Þ for Steps 1 and 2

• Fix number of knots n;nk;nf ;n
k

f
� �

and penalty orders ðd;dk; df ;d
k

f Þ
• Create U ¼ U□B

k

• Initialize γ̂ ¼ VPSR U; y; λ;λ
k� �

; d;d
k� �

; n;n
k� �n o

• Initialize η̂ ¼ Uγ̂

2. Cycle until convergence of γ̂
• Estimate f̂ η̂; tð Þ and the estimate of the derivative f

�

∂ η̂; tð Þ from

ϒ η; tf g; y; λ f ;λ
k

f

� �
; df ;d

k
f

� �
; nf ;n

k
f

� �n o

• Obtain y⋆ and U⋆

• Update γ̂ ¼ VPSR U
⋆
; y⋆; λ;λ

k� �
; d; d

k� �
; n;nk
� �� �

• Update η̂ ¼ Uγ̂
• Constrain γ̂=jjγ̂jj

3. Prediction: ŷnew ¼ f̂ u0
newγ̂; tnew

� �

end algorithm

As an identifiability constraint, the vector γ is set to have a unit L2
norm, i.e. γcur/||γcur||. To define the convergence criterion, denote
||γ||2 = ∑k = 1

n γk
2. The algorithm terminates when

γcur
k =jjγcurjj� �

− γpre
k =jjγprejj� �

γcur
k =jjγcur jj b �

for k ¼ 1; …; nnk , where γcur (γpre) is the γ vector for the current
(previous) iteration, and � is a prespecified convergence tolerance
(default value is 10−3). We will use the final iteration for some fitting
summaries.



Table 1
VSISR, VPSR, PLS external prediction RMSEP using optimal models.

Response VSISR VPSR PLS

Water 0.0087 0.0129 0.0367
1,2-Ethanediol 0.0094 0.0104 0.0134
3-Amino-1-propanol 0.0146 0.0063 0.0099
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8. Optimization of the penalty tuning parameters

Wesuggest an approach to optimize P-spline tuning parameters that
is consistent with the one found in [3].

First, we provide some practical guidelines and default values for
the VSISR design parameters. We only consider bicubic tensor basis
functions ( q ¼ qk ¼ 3 ). As stated, the number of tensor product
B-spline basis functions (for either the coefficient surface or the link
surface) should be generous enough to allow more flexibility than
needed, but at the same time consider computational efficiency; we
suggest keeping both nnk b 1000 and nf n

k
f b 1000. We further suggest

using a second or third penalty order for (d;d
k
; df ;d

k
f ). When searching

for optimal ðλ;λk;λ f ;λ
k

f Þ , we recommend varying each tuning
parameter on a logarithmic (base 10) grid, while monitoring a perfor-
mance criterion. Details on how to optimally regulate the amount of
smoothness for the coefficient and link surfaces follow next.

Reliable external prediction is the primary goal. There are numerous
approaches that “optimize” the four non-negative tuning parameters

λ;λ
k
;λ f ;λ

k
f

� �
. Alternative optimization strategies are certainly possi-

ble. We propose the following scheme (which is also consistent with
other analyses of these same mixture data): the data are split into
three disjoint and exhaustive groups, denoted as the: training set,
validation set, and test set, with m = mtrain + mvalid + mtest. To start,

apply VSISR to the training set and choose “optimal” ðλ;λk;λ f ;λ
k

f Þ to
minimize error on the validation set,

RMSEV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nvalid

XNvalid

i¼1

yi−ŷvið Þ2;

vuut ð15Þ

whereNvalid ¼ pkmvalid is the number of observations in the validation set
across all pk levels of the covariate t, and ŷvi is the predicted response for
the ith subject in the validation set, using the parameter estimates from
the training model.

Given a chosen “optimal” model, evaluation of external predictive
performance can be calculated using the root-mean-square error of
prediction (RMSEP) on the independent test set:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

XNtest

i¼1

yi−ŷið Þ2;

vuut ð16Þ

whereNtest ¼ pkmtest is the number of observations on the test set across
all pk levels of the covariate t, and ŷi is the predicted response for the ith
subject in the external test set, using the parameter estimates from the

combined (training, validation) sets with the “optimal” λ;λ
k
;λ f ;λ

k
f

� �
.

Generally, we perform a full or a clever (four dimensional) linear
grid search, where each tuning parameter element is varied on a loga-
rithm scale. It is true that there are a variety of approaches to potentially
“automatically” select the tuning parameters, but we prefer a grid
search that is driven by external prediction performance, which is the
ultimate objective and utility of the model.

9. VSISR illustration using ternary mixture data

Recall themotivating example presented in Section 2. Fig. 1 depicted
the m = 34 levels the molar concentrations of each mixture
component: water, 1,2-ethanediol, and 3-amino-1-propanol. We only
consider one component at a time, i.e. in turn, each component will be
individually modeled. Note that there are 3 pure, 12 edge, and 19
interior (1 center) mixtures. A more detailed description of the experi-
mental setting can be found in the appendix of [3].
Despite that there are m = 34 unique mixtures, we have a total of
N¼ mpk ¼ 34 � 12 ¼ 408 observations. Under our scenario each mixture
is placed under pk ¼ 12 different temperature conditions (covariate: t):
vk ¼ 30; 35; 37:5; 40; 45; 47:5; 50; 55; 60; 62:5; 65; 70 �Cf g . Opti-
cal information (regressor: x) is also obtained for each mixture–
temperature combination, producing a (first-differenced) spectra at
p = 400 wavelengths: v = {701 to 1100 nm, by 1 nm}. Thus for given
mixture component in units of proportion (response: y), our data triplet
{yi, xi(v), ti} is complete (Section 2.4), for i=1,…,N. The datawere not
preprocessed in any other way.

We focus on an external prediction performance study that directly
compares the proposed VSISRmethod to the standard VPSRmethod [1]
and to partial least squares (PLS). A further goal, and added value
of VSISR, is to exploit and explore the nonlinear effect through the
estimated link surface.

9.1. Optimal tuning for mixture data

Aswith other studies, we divided them=34 observation into three
subsets as follows. The training set consisted ofmtrain=16observations
using the 3 pure, 12 edge, and 1 center mixtures. The remaining 18
interior observations (apart from the center) were divided into a
validation set (to optimize tuningparameters) and a test set (to quantify
quality of external prediction): (i) theywere first sorted on the response
(either onwater or 1,2-ethanediol or 3-amino-1-propanol) in increasing
order. (ii) The validation (test) set was constructed using the mvalid =
9 (mtest = 9) even (odd) rank of observations. Such an approach was
taken in an attempt to have a fair and reasonable range ofmixture levels
for both the estimation of f and the evaluation of external prediction.
Additionally, there is no extrapolation for model optimization or
model testing.

Optimal tuning parameters were determined byminimizing RMSEV
in the trained model. Given these optimal tuning parameters, external
prediction was evaluated on the test data using RMSEP using the
newly trained model that combined both the training and validation
data. We stress that in the determination of every optimal model, all
hyper-parameters (λs or number of PLS components) are optimized
using a validation set which is independent of the external test set.

For VSISR, we performed a combination of four-dimensional clever

and grid searches, where each log λð Þ; log λ
k� �

; log λ f
� �

; log λ
k

f

� �
was

varied from −11 to 3 in fifteen steps, at minimum. Once a region was
identified, a refined search was then further investigated. Specifically
the same search approachwas performed butwith narrower focus, usu-
ally plus or minus a power of ten from the initial optimum, in five steps.
A similar search strategywas taken for VPSR, but only on two tuning pa-

rameters: log λð Þ; log λ
k� �

. For PLS, we varied the number of components

from 1 to 70, by 1. The number of equally-spaced knots were set to n�
nk ¼ 40� 20 (wavelength, temperature) for the coefficient surface and
nf � nk f ¼ 10� 10 (η, temperature). Second order difference penalties

(d ¼ d
k ¼ df ¼ d

k
f ¼ 2) were used. All reported prediction performance

refers to external prediction on the test data.

9.2. External prediction comparison: VSISR, VPSR, PLS

Table 1 presents the root mean square error of prediction (RMSEP)
for the external prediction set, using optimal VSISR, VPSR, and PLS



Table 2
Optimal tuning parameters for VSISR, VPSR, and PLS models.

VSISR VPSR PLS

Response λ; λð ⌣
; λ f ; λ⌣ f Þ λ; λð ⌣Þ Components

Water (2 10−1, 3 10−9, 5 10−3, 104) (2 10−10, 6 10−3) 8
1,2-Ethanediol (2, 2 10−10, 2 10−1, 10) (2 10−10, 4 10−1) 58
3-Amino-1-propanol (10−3, 10−11a, 0.1, 10) (10−11a, 10) 50

a Light (boundary) smoothing required.
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models. Table 2 provides the optimal tuning parameters for each
method and mixture response.

For responses water and 1,2-ethanediol, we find an impressive
improvement in external prediction for VSISR when compared to either
VPSR or PLS. RMSEP reductions ranged from 33% to 77% (for water) and
from 10% to 30% (for ethanediol). For VSISR, the external RMSEP values
were in fact both less than 0.001, which when multiplied by 100 gives
units of percentmixture (in terms of standard error). The tuningparam-
eters were chosen based on minimizing RMSEV values, which achieved
values of 0.0089, 0.0146, 0.0324 forwater and 0.0091, 0.0132, 0.0287 for
1,2-ethanediol, for VSISR, VPSR and PLS, respectively.

For the response 3-amino-1-propanol, the standard VPSR performed
best of all three methods (with RMSEP of 0.0063), suggesting that an
identity link was sufficient. VPSR had a 37% reduction in RMSEP when
compared to PLS. However, for this component, PLS did out-perform
VSISR. VSISR and VPSR required light smoothing for one axis of the
estimated two-dimensional coefficient, i.e. along wavelength and
temperature, respectively. For tuning, the optimal RMSEV values were
0.0094, 0.0067, 0.0170 for VSISR, VPSR and PLS, respectively.

9.3. Comments on findings

Associated with each mixture component, Figs. 5, 6, and 7 each
provides image plots for the varying-coefficient surface (upper), the
varying-link surface (lower). In practice, temperature t is measured.
One can think of slicing these two surfaces (on left) at various t to get
the signal coefficients (for the linear predictor) and the link function
(to bend themean), respectively. The right panels display various slices
of each surface. The three figures have some similarities, e.g. each of the
upper, right panels clearly demonstrates how the signal coefficients
vary, rather dramatically, across temperature. We note that, for each

mixture component, light smoothing (small λ
k
in Table 2) was required
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Fig. 5.Water component: optimal varying signal coefficient surface (top panels); optimal
for VSISR coefficient surfaces in the temperature direction, indicating a
strongly varying signal coefficient vector. Further, each link surface
(lower, left panels) displays some torsion suggesting a varying link
across temperature. The slices of the link surfaces (lower, right panels)
suggest a different insight for each component: (a) for water, a clear
nonlinearity is present, but there is some suggestion that a common
(non-varying) link would be sufficient; (b) for Ethanol, again we find
a clear nonlinearity link (inverted relative to the water link), with
the apparent need for a varying-link; (c) for Isopropanol, we observe
that a simple identity link may be sufficient, which is consistent with
the fact that VPSR (identity link) performed strongly in RMSEP. The
dashed line in the lower, right panels displays the identity link for
reference.

We could additionally vary the order of the penalty and evaluate
RMSEV and RMSEP, e.g. changing second order to a first or third order.
In this way, penalty order would be an additional hyper-parameter.
Nonetheless, the above results make a reasonably strong case for
VSISR, and we do not explore this further.

9.4. Further prediction performance comparison: VSISR, VPSR, PLS

For eachmixture component, we additionally compared the external
prediction performance of VSISR, VPSR, and PLS against each other
through RMSEP. To investigate how sensitive each method is to the
choice of the data splitting, fifty (50) random independent splits were
made for each method and component combination, such that again
there were: training (16), validation (9) and testing (9) observations
(using all temperatures). Fig. 8 displays the results, which further sup-
ports and is consistent with the findings in Table 1, as well as provides
evidence that VSISR can achieve highly competitive external prediction
performance when compared to VPSR or PLS, especially for Water. For
1,2-ethanediol, VSISR and VPSR appear to be equally competitive,
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Fig. 6. 1,2-Ethanediol component: optimal varying signal coefficient surface (top panels); optimal varying link surface (bottom panels). Dashed line displays identity link as reference.
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while outperforming PLS. While VPSR generally outperformed both
VSISR and PLS for 3-amino-1-propanol.

For each random split, the tuning parameters for each method were
optimized using RMSEVwith respect to its validation set. As previously,
the 18 non-training data were ranked with the evens (odds) used for
validation (test) set. For VSISR and VPSR, the number of knots and
order of the penalty were set as above, and a greedy search was per-

formed on λ;λ
k
;λ f

� �
, from −11 to 2 (in steps of 1) on a logarithmic

scale, to optimize these tuning parameters. Note that λ
k

f was the most
insensitive and was thus pre-set to 10. For PLS, a search for the optimal
number of components again ranged from 1 to 70.

10. Alternative view of data structure: 2D data pair (y, X)

As pointed out in Section 2.3, one goal of this paper is to clearly
delineate between two competing data structures, specifically
distinguishing between the VSISR/VPSR approaches and their image
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Fig. 7. 3-Amino-1-propanol component: optimal varying signal coefficient surface (top panels); o
regressor analogues. Marx, Eilers and Li [3,7] viewed the regressors as
fully two-dimensional, along the lines of the image in Fig. 3. They
termed their methods as MSISR and MPSR, respectively, which led to
the multivariate calibration with “multi-dimensional” signals. The
two-dimensional signal consists of (often thousands of) digitized
regressors, arranged in a p� pk array, which can be generally viewed
as an image. A common smooth coefficient surface is estimated that
creates a linear predictor. Rather than a slice, the entire coefficient
surface is used to predict the response. For the mixture data, each
image regressor has dimension (400 × 12). In its unfolded form X has
dimension (34 × 4800). The indexing axes, i.e. v and vk, that define the
support coordinates of the image regressors are usually on a regular
grid, but the only requirement for our method is that the scatter of
digitizations are common across observations.

Table 3 displays the various modeling components for both the
varying and multidimensional approaches.

One may ask to make a performance comparison between the
varying methods and the multidimensional method. If we look at
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Fig. 8. Boxplot of comparative test errors for VSISR, VPSR, and PLS, based on 50 random
splits of the data.
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Table 1 of [3], we find that the RMSEP external prediction for MSISR/
MPSR suffers when compared to that of VSISR/VPSR, for the same data
and splitting. Specifically, with MSISR/MPSR, we had RMSEP in the
approximate range of 0.02 to 0.03, which is about 200% to 300% greater
than VSISR/VPSR. PLS in the multidimensional setting performed even
worse. Admittedly, the numbers stated above are not “directly compa-
rable” to VSISR/VPSR in that the MSISR/MPSR approaches used a third
order (not second order) penalties, and the MSISR approach only used
a one-dimensional link function. Regarding comparability, perhaps the
most salient point is that the number of observations differs by a factor
of pk, across data structures. Yet the message is relatively clear that
VSISR/VPSR are models of choice for these data. Moreover, Section 2.2
provided a strong argument that the more natural data structure is
the measured signal with companion covariate.

In either data structure case, the number of regressors far exceeds
thenumber of observations and thus an ill-conditioned regression prob-
lem is posed. If that were not enough, the signal regressors are typically
severely collinear, causing yet another level of difficulties to classical
modeling approaches. Ironically, more precise information in the data
leads to restrictions in the model: parameter estimation requires some
form of regularization, and our choice is smoothness. As an added
note: each of the varying or multidimensional approaches additionally
takes advantage of the ordered or array structure among the regressors.
Further each of these approaches welcomes increased precision on the
Table 3
Model specifics comparing varying signal model to 2D image model.

VPSR/VSISR MPSR/MSISR

μi ∑p
j¼1xi jα vj; ti

� �
∑p

j¼1∑
p
k¼1

⌣
xi jkα vj; tk

� �
Data (y, X, t) (y, X)
Length (y) mp⌣ m

Regressor type signal image
Dimension X mp

⌣� p m� pp
⌣

Dimension B p × n pp
⌣� n

Dimension B⌣ mp⌣� n⌣ pp⌣� n⌣

η XBð Þ□B⌣γ X B□Bð ⌣Þγ
signals, covariate, or images, as the system of equations remains of
dimension nnk (or nf n

k
f ).

11. Discussion

We have referred to the combination of VPSR and SISR as varying
single-index signal regression or VSISR. Indeed, varying-coefficient
models have come a long way from the seminal work of Hastie and
Tibshirani [10]. The VSISR model is roughly related to “projection
pursuit” [11], with additional smoothness constraints, while a rich
two-dimensional “missing link” function is estimated in the spirit of
Cox [12] and Muggeo and Ferrara [13]. The basic appeal of VSISR
includes the following:

• Its simplicity, with doubly-varying coefficient and link surfaces.
• The indexing associated with the surfaces can identify potentially
“important” regions.

• The nonlinear structure is targeted, providing potential process
insight.

• Each smooth surface can have a very general (non-additive) structure.
• We have highly competitive external prediction ability.
• There is no “black box” algorithm.
• No data preprocessing: the entire signals are used with companion
covariates.

• Unlike many competitors, VSISR takes advantage of the ordered
structure in the signal.

• Heavy penalization defaults to polynomial structure.
• The regularization manages the severe ill-conditioned model (and
collinear data).

• As signal precision increases, the system of equations remains nnk.

Future research for VSISR could include:

• Models that constrain the sum of mixture concentrations to be one.
• Model extensions that also allow other (smooth) covariates or factors,
similar to the work found in [14].

• An exploration of how the link function affects prediction stability
during calibration transfer, i.e. investigating the robustness of
prediction quality as an additional covariate changes, e.g. temperature
[15].

• Take a generalized linear model approach to VSISR, e.g. binary classi-
fication or Poisson counts [7] (Section 6) and [16].
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