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We consider generalized linear regression with many highly correlated regressors-for instance,
digitized points of a curve on a spatial or temporal domain. We refer to this setting as signal
regression, which requires severe regularization because the number of regressors is large, often
exceeding the number of observations. We solve collinearity by forcing the coefficient vector to be
smooth on the same domain. Dimension reduction is achieved by projecting the signal coefficient
vector onto a moderate number of B splines. A difference penalty between the B-spline coeffi-
cients further increases smoothness-the P-spline framework of Eilers and Marx. The procedure
is regulated by a penalty parameter chosen using information criteria or cross-validation.
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During the last five years, there has been a surge of
renewed interest in techniques that once were specific to
the chemometric community. Refer to Frank and Fried-
man (1993) for an excellent summary of chemometric es-
timation options, including partial least squares (PLS) and
principal-component regression (PCR), among others. Sim-
ply put, modern technology is routinely generating exper-
imental data that severely challenge standard regression
models, and some chemometric approaches are providing
reasonable data-analytic tools for the statistician. We revisit
the multivariate calibration (MVC) problem, which relates
signal-regressor information to a response variable of in-
terest. From this point forward, we will refer to the MVC
problem as signal regression. Some of the challenges posed
in this framework are nontrivial and include the following:
(a) The response variable of interest may be discrete or have
a nonsymmetric distribution. (b) The number of regressors
(p) may greatly exceed training observations (m); that is,
p » m. (c) The regressors are highly correlated so that even
if m > p we have a very ill-conditioned problem. (d) Spatial
information on the regressors often exists.

Similar challenges arise naturally in a variety of other
applications-for example, log-spectra of digitized se-
quences of spoken syllables to predict phoneme classifi-
cation, gray-scale pixel values from images used to model
character recognition, light-scattering profiles used to un-
derstand features of wafer-etching experiments, and re-
lating DNA histogram information to the presence of
ovarian cancer, among others. All of these applications
have severely ill-conditioned regressor information that can
wreak havoc on classical (generalized linear) regression
techniques. Some researchers have attacked the problem
with se;lection methods, searching for a relatively small set
of optimal regressors (e.g., selecting 20 among hundreds
of wavelengths in a spectra). Despite success with variable
selection for some signal-regressor information, often this

approach can be unsatisfactory and impractical. For exam-ple, 
with smooth spectra, it is difficult to find a clear opti-

mal subset of regressors among the often hundreds of can-
didates. More fundamentally, it is difficult to accept that
any suggested optimum will be sharply defined in a smooth
spectra. Any "optimal" regressor will differ very little from
its neighbor at the next higher or lower wavelength.

In this article, we propose to integrate ideas from Hastie
and Mallows (1993) (H&M) and Eilers and Marx (1996)
(E&M) but to extend estimation and prediction in the
framework of generalized linear regression (GLR). We aim
to present an extremely practical solution for the signal-
regression problem by forcing the regression coefficients
to be smooth. We specifically consider the model g(JL) =
Qo + XmxpQpx 1, where often p » m and X is the severely
ill-conditioned matrix of signal regressors. Denote 9 as the
monotone, twice-differentiable link function, JL as the ex-
pected value of a random variable Y from exponential fam-
ily of distributions, and Qo as the intercept. H&M used the
phrase contrast template for the vector Q, because it con-
trasts important signal information useful for predicting the
response; we will choose the term signal coefficient vectO1:
Some other details of the generalized linear model will fol-
low in Section 3; however, the unfamiliar reader could ref-
erence McCullagh and NeIder (1989) or Fahrmeir and Tutz
(1994).

Like H&M, we attack the dimensionality of the signal
coefficient vector Q by projecting it onto a basis of smooth
functions, B: Qpx1 = Bpxn{3nx1, where n < min(m,p) and
{3 is the vector of basis coefficients. The linear nature of the
B-spline smoother makes it an attractive candidate for B,
but the determination of the optimal number and positions
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nal spectra had a wider range of 1,100 nm to 2,498 nm (in
steps of 2 nm). The channels at the ends, however, were
known to be less reliable for instrumental reasons; hence,
we only use 601 (600) original (differenced) wavelengths
(1,200 nm to 2,400 nm). In an effort to access the predic-
tive ability among the competitor techniques (PSR, PLS,
PCR), we have randomly selected 15 of the 39 observa-
tions for a validation set (observation numbers 1, 2, 3, 7,
15, 17, 19,20, 22, 29, 32, 33, 35, 39,40). The remaining
m = 24 observations were used to train the models. We
wish to relate Y = % fat to X24x600, the (training) differ-
enced spectral regressor information. Consider the model
E(Y) = J.L = ao + Xa = ao + XB{3, assuming an (ap-
proximately) Normal error structure. Clearly standard mul-
tiple regression does not work because the regressors are
severely ill-conditioned. Ridge regression is often not a
practical alternative in this setting because it can require
enormous amounts of memory and unwieldy (iterative) ma-
trix inversions (600 x 600 in the following example).

The predominant approaches to model signal regressors
has been the use of PLS or PCR. PLS was born as a practical
and ill-understood method of estimation (Wold 1975), but
it has gradually obtained a firmer theoretical basis (Helland
1988), leading to much statistical and mathematical discus-
sion. PCR uses the singular value decomposition (SVD).
PLS strongly resembles the SVD and is related to the con-
jugate gradient algorithm, modified for optimal predictive
power with respect to the response variable. Martens and
Nres (1989) and Frank and Friedman (1993) both provided
an excellent overview of PLS and the algorithmic details.

of the knots can be a complex task. We propose to use P
splines (E&M), which is the combination of (a) projecting
a onto a moderate number of equally spaced B splines and
(b) further increasing smoothness by imposing a difference
penalty on adjacent coefficients in the /3 vector. We will
refer to our method as P-spline signal regression or PSR.
The penalty is subtracted in the log-likelihood and conse-
quently increases smoothness of a. With the penalty, the
effective dimension of estimation of the regression model
is reduced from p to less than n. We briefly discuss more
about B splines in Sections 2 and 4.1. Some researchers,
such as Alsberg (1993) and Denham and Brown (1993),
preferred to smooth the signal directly (data compression)
rather than the signal coefficient vector; we will draw con-
nections to these two approaches in Section 3.3. The imple-
mentation of PSR with suggestions to optimize the penalty
meta-parameter follow in Sections 3 and 4, respectively. Il-
lustrative examples are found in Section 5, and a brief sur-
vey of other existing approaches can be found in Section 6.
First, we revisit the standard signal-regression problem.
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1. COMPARING THE PROPOSED PSR TECHNIQUE
TO PLS AND PCR

One of the goals for this article is to make the threshold
between our work and the current signal-regression litera-
ture as small as possible. To help strive toward this, we now
present a standard linear signal problem in the chemometric
context that compares PSR to PLS regression and to PCR.
In Section 5 we will present more exotic examples that use
both the generalized linear model (GLM) framework and
extremely nonsmooth signals. As we will point out in Sec-
tion 3.3, our PSR approach does not require that the spec-
tra themselves be smooth; smoothness is only required in
the associated regression vector. We first revisit the well-
known chemometric example from Osborne, Fearn, Miller,
and Douglas (1984) that was also used by Stone and Brooks
(1990, ex. 5). This example related spectral information of
biscuit dough to percentage of various constituents-% fat,
% sucrose, % flour (dry weight basis), and % water. Con-
sider near infrared reflectance spectroscopic (NIR) informa-
tion (consisting of hundreds of digitizations of one signal)
that can be used to predict a chemical response variable of
interest. Refer to Figure 1 (top); there are m = 39 curves
and each curve represents p = 601 regressors (1,200 nm to
2,400 nm, in steps of 2 nm). Denote X39X601 as a discrete
representation of the observed signals. As we see from Fig-
ure 1 (top), the spectra have clearly shifted (due to unequal
particle sizes). Differencing the columns of X effectively
removes constants and sudden shifts that are not important
to the regression. Figure 1 (bottom) displays the regressor
information when the columns have been first-differenced.
It is important to note that NIR photometric measurements
can be faster and less costly than a chemical analysis. Pa-
rameter estimation associated with photometric information
can provide predictive equations for chemical constituents
and thus be of economic interest.

Initially there were m = 40 samples; however, on the
advice of the authors, observation number 23 was dis-
carded as an outlier, leaving m = 39. Moreover, the origi-

Figure 1. Biscuit: Top, Each Curve (m = 39) Represents p = 601

NIR Wavelengths; Bottom, the First-differenced NIR Spectra.
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servations with the same P-spline design parameters yields
a very similar result with an optimum dimension of 19.42.

We now attempt to approximate the "optimal" dimension
for each of the three methods. To judge performance of a
model as a predictor of new observations, we use "leave-
one-out" cross-validation, which provides a vector of m pre-
dictions Yi,-i. The evaluation criterion is the cross-validated
(i, -i) standard error of prediction (CVSEP):

1/2

~ )2
Yi,-i 1mCVSEP( i, -i)

It is worth mentioning that the CVSEP( i, -i) for PSR can
be constructed extremely swiftly because "hat" diagonal
information can be used. For PLS or PCR, exact CVSEP
needs to be computed by brute force, and it is considerably
more taxing in computational time (i.e., by fitting m mod-
els at each deletion -i, then recentering, rescaling, and pre-
dicting at each respective i). Our experience shows that, for
m = 100 observations, CVSEP is approximately 20 times
faster for PSR than for PLS. Approximate CVSEP methods
do exist for PLS that are efficient through the eigenvector
decomposition of X to obtain latent variables that can use
standard updating techniques.
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Alternatively, PCR uses a subset of orthogonally rotated
regressors. PLS and PCR both produce a sequence of rank
1 orthogonal constructed variables that are linear combina-
tions of the (autoscaled signal) regressors. A key difference
between these two methods is the mechanism for choosing
the loadings associated with their respective linear combi-
nations. PLS chooses loadings that are based on the strength
of simple linear correlation of the response with each re-
gressor (wavelength), whereas PCR uses eigenvector load-
ings of the information matrix that are independent of the
response.

PLS can be distinguished even further from PCR: Once
PLS constructs a variable, then it is immediately related
to the response. The second PLS-constructed variable has
loadings based on the strength of correlation between the
residual response and residual regressors, both orthogonal
to the first constructed variable. This process continues for
as many components as are desired. The optimal number
of components can be determined by cross-validation, dis-
cussed in Section 4. PLS sometimes is termed criss-cross re-
gression because it sequentially regresses constructed vari-
ables out of the (residual) response, then out of the (residual)
regressors. Mainstream PLS or PCR considers least squares
estimation but can be modified for non-Normal data and
likelihood estimation (Marx and Smith 1990; Marx 1996).
A revealing fact about PLS or PCR is that the order of the
regressors is immaterial; that is, if th~ wavelengths are per-
muted arbitrarily, the PLS or PCR vectors will be permuted
the same way. Our proposed PSR method uses additional
structure, accounting for the indexing information along
the signal, hence the smooth estimate of the coefficient
vector, Ct.

For our PSR approach, we will not explain the choice of
certain design parameters here; Section 4.1 contains some
guidelines for the number and position of knots, degree
of the B spline, order of the penalty, and so forth. PSR
simplifies nicely in the standard setting to (penalized) least
squares. To reduce dimensionality and regularize estima-
tion, we project Ct600xl onto a cubic B-spline matrix B
(here with 23 equally spaced knots). Thus, ct is compactly
summarized by a 23-dimensional coefficient vector {3 vec-
tor. To further increase smoothness of the estimated ct,
a third-order difference penalty was attached to B-spline
coefficients, {3. The optimal penalty or tuning parameter
A = 5e -7 was found by cross-validation (i, -i). We point
out that essentially the same optimal dimension and stan-
dard error of prediction were achieved for the validation set
when using either 23, 28, or 33 equally spaced knots.

Figure 2 (top) provides the estimated P-spline smooth
a600x 1 (with 20.21 effective degrees of freedom) and its
associated twice-standard-error bands. Apart from the in-
tercept, a predicted value of % fat can be determined by
the inner product of a given differenced spectrum and the
vector represented by a solid curve in Figure 2. Based on
the twice-standard error bands, we find some evidence that
the first 100 coefficients (NIR range of 1,200 to 1,400 nm)
are particularly important elements in the signal coefficient
vector useful to predict % fat. Incidentally, using all 39 ob-
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Figure 2. Biscuit: Top, Estimate (with twice standard error bands)
of 600 Dimensional Signal Coefficient Vectors Using First-differenced
Spectra; Bottom, a Comparison of Standard Error of Prediction (i; -i)
by Methods and by (effective) Dimension.
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4 BRIAN D. MARX AND PAUL H. C. EILERS

PLS or PCR. One might ask what would happen if we use
20 dimensions for PLS and PCR to put dimensionality on
equal footing for the three methods. For a dimension of 20,
we now have PLS (.475) and PCR (.468); PSR still main-
tains over an 11% reduction in CVSEP (validation) over
these two methods.

Figure 3 displays the corresponding (unscaled) coeffi-
cients for PLS 20 (top) and PCR 20 (bottom). The graphs
on the right side represent the coefficient difference between
20 and 6 components. The general feature of these graphs
is that the PLS or PCR coefficients are extremely erratic
along the indexing domain. This, of course, is in part be-
cause PLS and PCR do not use any indexing information
that PSR does. Remedies to smooth PLS estimates were
proposed by Goutis and Fearn (1996) and are briefly dis-
cussed in Section 6. Notice also that fewer differences exist
between the PLS 20 and PLS 6 when compared to the dif-
ferences found between PCR 20 and PCR 6. This feature is
consistent with the plot of CVSEP found on the bottom of
Figure 2. We analyze the biscuit data again in Section 5.2.

In summary, we see for this example that the proposed
PSR method has some promising features: (a) It is easy
to interpret and compute. (b) It has strong connections to
classical regression. (c) It automatically builds in smooth
structure associated with the coefficient index. (d) It has a
CVSEP that can be computed swiftly. We will see that the
PSR compactly summarizes results, can be easily extended
to non-Normal responses, and can be used with data having

Figure 2 (bottom) displays the CVSEP for % fat (in units
of %) as a function of (effective) dimension and estimation
technique. The x axis of Figure 2 represents effective di-
mensions for PSR and the number of factors used for PLS
or PCR-this allows the presentation of all three methods
on one figure. We caution that an effective dimension for
PSR should not be interchanged with the number of factors.
Effective dimension is explained in more detail in Section 4.
Notice that PLS is outperforming (or nearly equal to) PCR
for dimension 3 to 21. We expect such results because PLS
(PCR) is (not) using the response information as it carves
out orthogonal constructed variables. We see from the PLS
line in Figure 2 that CVSEP( i, -i) is minimized for di-
mension 6 (CVSEP = .427-99.99% of the variation in the
information) and remains near this minimum up to dimen-
sion 22. The optimal dimension for PCR is 11 (CVSEP =
.429) and also remains very near this value up to a dimen-
sion of 22. We find that the proposed PSR approach has an
optimal dimension of near 20; the minimum CVSEP = .307
corresponds to an effective dimension of 20.21. Incidentally
this is over a 28% CVSEP(i, -i) reduction beyond that of
either PLS or PCR, but we refrain from making this com-
parison and rather compare the three "optimal" competitor
methods using the 15-observation validation set.

Using the "optimal" dimension for each method, the stan-
dard error of prediction for the validation set is PSR (.417),
PLS (.515), and PCR (.514); thus, the PSR method has over
an 18% reduction in CVSEP (validation) when compared to
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Figure 3. Biscuit: Top, Estimated PLS 20-Coefficient Vector (left) and Difference Between PLS 20 and PLS 6 Coefficients (right); Bottom,
Estimated PCR 20-Coefficient Vector (left) and Difference Between PCR 20 and PCR 6 Coefficients (right).

TECHNOMETRICS, FEBRUARY 1999, YOLo 41, NO.1



GENERALIZED LINEAR REGRESSION ON SAMPLED SIGNALS AND CURVES 5

nonsmooth signals. In the next sections, we will show how
to combine B splines, discrete penalties, and ideas from
GLM's to construct a relatively all-purpose, fast, and com-
pact method for signal regression.

where Umxn = XB. It is important to keep in mind that the
matrix U = XB has full column rank « m). It is useful
to view dimension reduction through U as the new known
matrix of regressor variables used to estimate the unknown
{J. Of course we do not discard X, but given U, we do not
need X in the estimating equations. This is advantageous
because X can have hundreds of columns, whereas in our
experience we have never found the need to include more
than 40 columns in U. If n is chosen appreciably lower
than m, the problem becomes a well-posed linear regression
problem.

Varying the discrete number of knots to influence the ex-
tent of smoothing can create extra work because it is nec-
essary to recompute the basis in B and hence U = XB. We
avoid such schemes for knot selection. Relying on guide-
lines given by E&M, we choose a relatively generous num-
ber of equally spaced knots (once) that will make Q more
flexible than needed. Further smoothing is achieved through
a difference penalty on the B-spline coefficient vector {J:

n

p = >. L (~~{J)2,
k=d+l

where ~~ indicates the kth difference operator of order d.
The influence of the penalty is based on the magnitude of
the nonnegative regularization parameter: >. = 0 provides
unpenalized estimates, whereas large values of >. (e.g., 104)
yield estimates of {J near the null space of P-that is, a
polynomial of degree d-l. The penalty is added to S( QQ, (J),
giving the following penalized least squares objective func-
tion:

n

S*=S+P=lly-ao-UfJI12+,x. L (~k,B)2.
k=d+l

The penalty can be written in matrix notation using Dd
of dimension (n -d) x n. The banded matrix Dd can be
computed recursively, where Dl has dimension (n -1) x n,
with dii = -1, di,i+l = 1, and all other elements are O. We
express an n -d vector of differences as Dd,B. We have

2. SMOOTHING THE SIGNAL
COEFFICIENT VECTOR

Section 1 showed the basic idea of this article, forcing
the signal coefficient vector to be smooth, and it worked
well on a classic example from the multivariate calibration
literature. In this section we first introduce regression on B
splines to get smooth coefficients, then introduce the dif-
ference penalty for further smoothing. The idea of smooth-
ness is not new: It was introduced by Hastie and Mallows
(1993) in their discussion of Frank and Friedman (1993).
H&M used the equivalent of smoothing splines, leading to
large systems of equations with a size equal to the num-
ber of regressors. See Section 6 for some details. Addition-
ally, H&M suggested that a projection of 0: onto a lower-
dimensional basis of smooth functions might reduce the
equations to a more manageable size, but they did not give
details.

We use B splines to construct a smooth low-dimensional
basis. They are easily computed and have excellent numer-
ical properties. Section 4.1 contains references to the lit-
erature as well as practical guidelines for the design pa-
rameters necessary to construct B -splines. Traditionally
there has been one obstacle to the use of B splines as
a general tool for smoothing-the choice of the number
and placement of the "knots"-that is, the places where
the smooth polynomial segments of the B splines join,
as well as specify their limited support. Too many (few)
knots will overfit (underfit) 0:. Optimization of the knots
is a complicated nonlinear problem, leading to rather in-
volved algorithms; see, for example, Kooperberg, Stone,
and Truong (1995) or Friedman and Silverman (1989).
O'Sullivan (1986) eliminated the knot-placement problem
by combining the penalty for smoothing splines (Reinsch
1967) with a relatively large number of B splines based
on equally spaced knots. Eilers and Marx (1996) simplified
and generalized this idea by introducing a penalty on differ-
ences of the B-spline coefficients. E&M's approach, called
P splines, allows an arbitrary order of the penalty with only
minor changes to existing procedures for regression on B
splines.

The signal-regression problem is to find a practical so-
lution to the minimization of 8(0:0,0:) = Ily -0:0 -Xo:112,
where Ymxl is the response vector and Xmxp is the signal-
regressor matrix. Because the rows of X contain, for exam-
ple, spectra, time series, spatial series, or histograms, gen-
erally p is much larger than m and the problem is ill-posed.
We can only hope to get a sensible result by constraining
0: in some way. Our way is to require it to be smooth. By
virtue that linear combinations of smooth B splines produce
smooth, curves, O:mxl = Bmxn.Bnxl can be a reasonable
means to meet our requirement. We get

Do/3 = /3

Dl/3 = {/3k -/3k-l}, k = 2,..., n,

Dd+l/3 = DIDd/3.

The order of the penalty d determines how many neigh-
boring /3's must hold hands during estimation, further en-
suring smoothness. Our default penalty order is 3. Program-
ming languages like S-PLUS and Matlab have differencing
functions that make the computation of Dd trivial. Now the
penalty can be expressed as

P = A/3T Dr Dd/3.

The minimization of S. leads to the following system of
equations for /3:

(UTU + AD'I Dd){3 = UT y.

Note when A = 0 that these are just the normal equa-
tions for linear regression. The penalty introduces very littleS(o:o,f3) = 1111 -0:0 -XBf3112 = 1111 -0:0 -Uf3112,
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rameter estimates. We see that estimation of fJ is no more
difficult than (generalized) multiple linear regression. Exis-
tence of the ML solution is virtually guaranteed now be-
cause U has full-column rank and the dimension of un-
known parameters has been reduced from p to n.

3.2 Penalizing the Log-likelihood and P Splines

The PSR approach attempts to maximize I in (2), but
subject to the requirement that the estimates of adjacent
{3's do not differ much from each other. The modified log-
likelihood now maximizes

computational effort, and it is not necessary to recompute
UT U and UT y when). is changed. Increasing). makes /3
smoother. An optimum is searched by varying). systemat-
ically and monitoring the prediction error, as measured by
cross-validation. Details are given in Section 4.

3. THE GLR PENALIZED LIKELIHOOD FUNCTION
AND P SPLINES

3.1 A Few Details and Notation of the GLR
Log-likelihood

Consider broadening the framework to generalized linear
signal regression,

1* = l(fJj U, y) -~>"fJT Dr DdfJ, (4)

where the subtrahend consists of the difference penalty (d =
0,1,2,. ..) and the regularization penalty >.. ~ O. The factor
~ is a small trick to get rid of a factor 2 that appears when
differentiating the penalty. A P-spline approach transfers
the decision associated with the number and position of
B-spline knots to optimization of a continuous smoothing
parameter.

Maximization of the penalized log-likelihood in (4) leads
to small modification of the familiar scoring algorithm in
(3),

g(JL) = ao + Xa = ao + XB{3 = ao + U{3 = 11, (1)

where the GLR notation has been defined in the intro-
duction. Again (1) clearly displays H&M's mechanism to
smoothly reduce dimensionality of the signal coefficient
vector. We suggest that the unfamiliar reader refer to Dob-
son (1990), who provided a nice introductory presentation
of how many statistical methods involving a linear predic-
tor can be united through GLM's. GLR's can accommodate
an entire family of response distributions. Common choices
for the link function are the logarithm (for the Poisson dis-
tribution) and the logit (for the binomial distribution). The
parameter estimates (for (3 associated with U) in most cases
now must be iterated using an algorithm that resembles
(iteratively) weighted least squares. In most applications,
rarely does one have to derive die GLR details because
tables exist (e.g., Fahrmeir and Tutz 1994, table 2.1) that
specify the components and link function for common ex-
ponential family members.

Some specifics now follow for the interested reader that
will lead up to the important method of scoring algorithm
in Equation (3). The GLR requires that the response vector,
Ym xl, have independent entries from a distribution in the
exponential family: f(yj (), </J) = exp[{y(} + C((})}/</J + d(y)],
where c and d are known functions and </J is a scale param-
eter. The parameter (}(JL) = g(JL) is the natural parameter or
the canonical link function. Using (1), the dimensionality
of estimation is reduced from m to n + 1 by substituting ()
with ao + U{3 = 11.

GLR estimation maximizes the log-likelihood of {3 in-
stead of minimizing a sum of squares for the standard
signal-regression problem presented in Section 2 (both are
equivalent for Normal responses). The log-likelihood equa-
tion (here </J = 1 without loss of generality) can be expressed
through 11 as

(5)
~ T~ T 1 T~

fJ~,t = (U Yt-lU + ADd Dd)- U Yt-lZt-l

It is useful to view (5) as a penalized form of an iterative
weighted regression of the working vector on U, where V
and z depend on the choice of A. On convergence with
fixed A, we obtain the estimated smooth coefficient vector,
&~ = B,8~. Twice-standard-error bands can be constructed
for &~ by noticing that

var(.B~) = (UTyU + .>.Dr Dd)-l

x UTYU(UTyU + .>.Dr Dd)-l
A T

var(a~) = B var({3~)B . (6)

The preceding variance formulas are only asymptotically
correct if oX is chosen a priori.

3.3 To Smooth the Coefficient Vector or to Smooth the
Signal?

First off, we would like to emphasize that our pro-
posed PSR approach does not require smooth signal regres-
sors. Furthermore, despite some of the equivalencies (stated
later) between smoothing the signal regressors and smooth-
ing the signal coefficients, there is a difference in philosophy
on what determines the optimal amount of smoothing. We
do see from the term XB{3 in (1) that one could conclude
that the signal regressors are being smoothed. We would,
however, like to stress that this does not imply that the sig-
nal regressors must be smooth but rather that the signal re-
gressors might be smoothed first without doing much harm.
We caution that the signal may be rougher than the coef-
ficients and directly smoothing the signal regressors (op-
timally, based on, say, cross-validation) may require more
smoothing than is necessary for an effective GLR. For ex-
ample, the regressors may require 50 (unpenalized) B-spline

N

1(,8; U, y) = L {[Yi1]i + C(1]i)] + d(Yi)}. (2)
i=l

Maximizing (2) yields the method of scoring iterative equa-
tions that simplifies to

A TA 1 TA
.8t = (U Yt-lU)- U Yt-lZt-l, (3)

where V = diag(vii) = diag{[h'(fJi)]2 /var(~)} and h' is the
derivative of the inverse link function. The working vector
has entries Zi = (Yi -{Li)/h'(fJi) + fJi. Convergence of (3)
provides the (unpenalized) maximum likelihood (ML) pa-
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where hii is the ith diagonal element of the hat matrix
H(>") = U(UTU + >..Dr Dd)-lUT. CV is computed almost
as a by-product of the model fit; a good reference is Myers(1990). 

We should point out that recomputing CV for a va-
riety of >.. is actually less work than running a modest-sized
multiple regression because UTU and UT y stay the same
at each run.

For other exponential family models, we propose to min-
imize the information criterion (IC):

IC(>') = deviance(y; ,B~) + 8 dim({3~). (11)

When <5 = 2 and <5 = log(m), we have the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion,
respectively. IC can be viewed as a compromise between
goodness of fit and complexity of the model. Here dim(,8A)
is the effective dimension of ,8A; in general it will be less
than n because the penalty constrains the freedom of ,8.
Following Hastie and Tibshirani (1990), we use the trace of
the "hat" or smoother matrix that follows from convergence
of (3). Denote

dim(.B~) = trace{iI(>.)}, (12)

knots, whereas 20 knots could be sufficient to smooth the
coefficient vector. Smooth signal regressors and a smooth
coefficient vector are not the same. We will see our PSR
approach applied to rather wild log-periodogram signal re-
gressors in Section 5, where all that matters is that the
coefficient vector is smooth. To summarize, (a) we seek
a smooth coefficient vector, (b) the signal regressors do
not have to be smooth, and (c) if the signal regressors are
smooth, then we expect the coefficient vector to be smooth.

We now look at some details of smoothing signal re-
gressors. Consider representing the signal-regressor matrix
X by way of a coefficient matrix C (Alsberg 1993). This
view is most useful when it is reasonable to assume that
each row of X is of the same continuous functional type
but with varying coefficients. In this way it is possible to
represent or compress each discrete representation of the
signal by a vector of coefficients. A guideline consists of
the following: (a) For compatibility, each row of X should
have the same set of basis functions over the same domain.
(b) Each row of X is represented by a set of coefficients
C (the compression). (c) C should be used instead of X
in the GLR.

We treat each row of X as if we want to estimate it
smoothly, minimizing IIXT -BCTI12. Here the columns of
aT are the coefficients associated with each row of X, B is
a B-spline basis, and

aT = (BTB)-lBTXT. (7)

Estimation is straightforward with XT = BaT. It is in-
teresting to view the GLR problem in this light; we now
have

where iI(A) = U(UTVU + ADa Dd)-lUTV provides

f/.\ = fI(A)Z. (13)

The underlying interpretation of iI(>.) is that it transforms
the rough working vector z into the smooth fJ),. In practice,
especially with many observations, it is advantageous to
compute the trace from the cyclical permutation,

trace{H(>')} = trace{(UTVU + >.nI Dd)-lUTVU}, (14)

because of the smaller size of the matrices involved. With
a binomial or Poisson response, the computation of the de-
viance is straightforward. Thus, we see that IC can be com-
puted swiftly. With a Normal response, an estimate of the
variance of Y is needed; it is often computed using the
residuals with a correction for effective degrees of freedom
as

m
@(Y) = L (Yi -fLiA)2j{m -trace[H(>')]}

i=l
(15)

(Hastie and Tibshirani 1990). For most practical purposes,
it is sufficient to solve the problem for several values of >.
and search for the minimum value of CV or IC.

g(Jl) = C{J* = XB(BTB)-1{J* = 11*. (8)

Equation (8) suggests that we must replace U = X B with
U* = U(BT B)-1 in the likelihood function provided in
(2). For unpenalized B-spline coefficients, this results in the
iterative equation

A* TAT T A -1 T A A
(Jt = B Bf3t = B B(U Vt-1U) U Vt-1Zt-1. (9)

Refer to Section 3.1 for notation details. Although the con-
verged estimate of,8* differs from ,8 by a multiple of BT B,
the estimates of fi, are identical to the ones found through
(3) because the span{ B} = span{ B(BT B)-1}. Equivalent
results can be obtained by either projecting the matrix of
signal regressors or the signal coefficient vector onto the
matrix B, but strategies for choosing the optimal smooth-
ing must be clearly defined.

4. OPTIMIZATION OF THE PENALTY

For linear models, we choose to optimize the value of the
meta-parameter ,\ using cross-validation (CV) techniques.
The idea is to leave out one observation, say with index i,
fit the model with the remaining m -1 observations, and
then predict at the regressor variable location for the left-
out observation. Cycling through all the observations, we
arrive at

General Recipe: B Splines (Knots, Degree), Penalty

(Order, Optimization)
Not all readers will be familiar with B splines; the basic

reference is de Boor (1978), and we find Dierckx (1993)
particularly lucid. Algorithms for construction of B splines
are routine in some statistical packages. De Boor (1978)
provided an algorithm to compute B splines for a general
placement of knots. For the interested reader, E&M pre-
sented a section "B-splines in a Nutshell" and also pre-
sented how the B-spline algorithm simplifies nicely for

m m
CV = L (Yi -Yi,-i)2 = L {(Yi -Yi)/(l -hii)}2, (10)

i=l i=l
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haploid cell. For healthy persons we expect a large peak
at 2C and a small peak at 4C. For patients with advanced
ovarian cancer, a considerable fraction of cells can be at
levels other than 2C or 4C. Figure 4 displays a randomly
selected patient's histogram for both Y = 0 and Y = 1.

As pointed out by C&H, these data wreak havoc on
standard binary regression approaches because neighboring
heights of the histogram are highly correlated, and, fur-
thermore, we have many regressors (p = 37) relative to the
number of patients (m = 70). Le Cessie and van Houwelin-
gen proposed a clever solution to this ill-conditioned prob-
lem that transformed the regressors so that a ridge solution
penalizes first-differences in the coefficients. We consider
the logit model

~

37
1 Pi -"\:""' x ' .r.,.
og --L,., '3'"'3'

I-Pi ;=1

equally spaced knots. To compute B splines, three things
are needed-(l) the degree of the spline q, (2) the knots,
and (3) the abscissa where the values of the splines are
needed, indicated by u. Each column in the matrix of sig-
nal regressors Xmxp corresponds to a physical quantity,
like wavelength in an NIR spectrogram or a frequency in
a power spectrum. It is possible to use the original scale
of the instrument (wavelength, frequency), but this is not
necessary. Shifting and scaling of both u and the knots by
the same amount leaves the B splines unchanged. So we
recommend in practice to work with an easy nominal scale
for u, such as Uj = j -.5 for j = 1,... ,p. For n' equally
spaced B-spline (degree q) intervals, then the (n = n' +
q) knots are chosen as ts = spin' for s = -q,...,p + q.
To put u in the context of the original scale (defined as v),
Uj = (Vj -vI)/(v2 -VI) + .5.

1. Choose enough equally spaced B-spline knots (n < m
so U is full rank) to modestly exceed the dimension of
the signal coefficient vector; that is, allow the smoother to
be more flexible than it needs to be. If nothing is known
about this dimension, then start with n = 40 (provided that
m > 40).

2. We use cubic B splines (third degree) as a default. We
find this is suitable for a variety of applications in practice.

3. Our default order for the penalty is 3 and in our ex-
perience rarely needs to exceed 4.

4. Perform a logarithmic grid search on the nonnega-
tive penalty parameter>. and compute CV (for Normal re-
sponses) or IC (for non-Normal responses, such as binomial
or Poisson).

5. The (effective) dimension of the regression is a func-
tion of >. and is computed through the trace of the (effective)
hat matrix.

6. Plot CV or IC as a function of >. or (effective) dimen-
sion. Choose an optimal >. at the minimum, if it exists.

7. If the optimum effective dimension is considerably
less than 40, then if desired the number of B-spline knots
in the first step can be decreased. The value of the optimal
penalty parameter will differ, but the associated deviance
and effective degrees of freedom will be in the same neigh-
borhood depending on the intricacy of the grid search.

where Pi is the probability of 24-month survival and Xij is
the relative-frequency histogram for subject i = 1,...,70.
The intercept term ao is not needed because rows of X sum
to unity. We essentially reproduced the results of C&H with
the special case of a first-order penalty and a penalized cu-
bic B-spline basis. We choose, however, to illustrate our
method with cubic B-spline basis (our default). With these
data, ample flexibility for the signal coefficient vector is
achieved with 10 knots. We should point out that, when us-
ing 20 knots, the deviance and effective degrees of freedom
were nearly reproduced based on this optimal AIC. A third-
order difference penalty (our default) on adjacent coeffi-
cients is used. The optimal ), = .001 based on AIC. Param-
eter estimation converged in three iterations. The resulting
fit is also displayed in Figure 4 with twice-standard-error
bands. There are 4.76 effective degrees of freedom with a
deviance of 80.36 (on 65.24 residual degrees of freedom),
and a 70.0% correct classification. Because healthy persons
have mostly 2C and 4C DNA, the negative coefficients near
these values are expected. Figure 4 additionally displays
the PSR fit for an increased), = .1, which has increased
smoothness resembling a quadratic fit. This illustrates that,
as ), increases, then P splines approach the null space of
the difference penalty, a polynomial of order d -1.

Our next example is one of phoneme classification de-
scribed by Hastie, Buja, and Tibshirani (1995) and illus-
trates that the signal regressors do not have to be smooth
to use our method. The data were log-periodograms of 32
ms time series of continuous speech. The database contains
two speech frames of each phoneme from each speaker.
The speech frames were represented by 512 samples at a
16-kHz sampling rate. Land and Friedman (1996) selected
160 speakers randomly from the 437 male subjects and only
took the first 150 frequencies from each subject. The re-
sponse variable is the phoneme ao (as in water, Y = 1) and
aa (as in dark, Y = 0). The model of interest is

5.

IllUSTRATIVE EXAMPLES

5.1 GLR Examples

Our first GLR example revisits data from Le Cessie and
van Houwelingen (1992) (C&H) that explored the relation-
ship between DNA content in ovarian cancer cells and the
probability of surviving 24 months. There were 81 patients,
but 11 patients' survival information was missing com-
pletely. Thus the analysis was restricted to those 70 patients
whose survival (Y = 0; 28 patients) or death (Y = 1; 42
patients) status was available after two years. For each pa-
tient, the regressor information was the amount of DNA (in
about 50 to 250) cancer cells, summarized by a (37-class)
relative-frequency histogram. The readings ranged from DC
to 8C, with lC corresponding to the amount of DNA in a

150
= (to + LXij(tj,

j=1
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where Pi is the probability of aa and Xij is the log-
periodogram for subject i = 1,...,160. They investigated
a variety of estimation techniques--cubic spline, variable
fusion, ridge, and PLS; we consider PSR. Data also exist
for distinguishing between aa and iy (as in she), but these
are fairly easy to distinguish. We use L&F's aa-ao data.
Figure 5 provides typical and extremely nonsmooth log-
periodograms of the subjects.

Using a cubic (our default) P spline (13 knots were suf-
ficient) and a third-order penalty (our default), the optimal
value of ). = 10. See Figure 5 for the AIC plot. The de-
viance is 105.8 (on 151.1 residual degrees of freedom); the
percent correct classification is 84.37%. There are 8.9 ef-
fective degrees of freedom. Figure 5 also displays the es-
timated coefficient vector with twice-standard-error bands.
Notice that these bands suggest that there appears to be lit-
tle information beyond (approximately) the 75th frequency.
On the bottom right, we provide a plot of the aa -aD re-
sponse versus fj to illustrate the separation provided by the
PSR coefficient vector. We should point out that the itera-
tively reweighted partial least squares method proposed by
Marx (1996) does not converge for these data.

form well compared to PCR and PLS. The latter is well
established in chemometric theory and practice, so if we
wish to challenge it, then one dataset is not enough. In ad-
dition to the % fat response, we also consider modeling
the other biscuit ingredients (% flour, % sucrose, % water)
using Nffi spectra information. Moreover, we explore two
other standard linear signal datasets (gasoline and wheat).
Philip Hopke maintains an FTP site where he collects in-
teresting data for chemometric applications. Both the gas
and wheat datasets are publicly available from anonymous

ftp://sun.mcs.clarkson.edu/pub/hopkepk/data/kalivas.
First we consider relating Nffi spectral information of
m = 60 gasoline samples to their Y = octane number.
Figure 6 provides the gasoline NIR spectra (original and
first-differenced), which range from 900 nm to 1,700 nm
(in 2 nm intervals). Thus the discrete representation of the
observed signals is in X6Ox401. Notice that, unlike in the
biscuit example, this spectra is not entirely smooth and has
somewhat sharp spikes near 1,200 nm and also at 1,400
nm, especially when differenced. We use the differenced
spectra. Recall (Sec. 3.3) that the PSR approach does not
require that the spectra itself be smooth; smoothness is only
required in the associated regression vector.

The second additional standard example uses NIR spectra
of m = 100 wheat samples measured from 1,100 nm to
2,500 nm (in intervals of 2 nm) to predict responses of
protein content and moisture content. The wheat spectra are

5.2 Further Comparisons of PSR to PLS in the
Standard Setting

In Section 1 we illustrated PSR on a classic signal-
regression example, and our method was shown to per-
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ful attempts to introduce smoothness ideas into the signal-
regression problem. None of them have directly addressed
the GLM framework to our knowledge. Here we give a
brief survey, using the following notation: X is an m x P
matrix of observed signals, one for each dependent-variable
observation Yi (where m can be greater than p). Our presen-
tation of these other methods is ordered such that we are
moving from ideas of penalized regression (most similar to
P splines) to smoothing the signal regressors (more dissim-
ilar to P splines). Regularization is needed in any case to
remove the singularity of the problem.

Le Cessie and van Houwelingen (1992) (C&H) estimated
probabilities of binary outcomes; the rows of X are mod-
erately sized histograms (37 cells) of DNA fragments. If
Pi = Pr(Yi = I), they used the GLM provided in (16).
When estimating a by the standard GLM iterative algo-
rithm, ill-conditioned systems of equations are found. To
remedy this, the following penalized log-likelihood func-
tion was used with success:

smooth as seen in Figure 7; again we use first-differenced
spectra.

In an effort to again compare our PSR to other meth-
ods, we decided to randomly split the observations into two
groups: Two-thirds of the observations are used for training
and the other one-third as a validation set. For ease of repro-
ducibility, we chose every third observation (i.e., numbers
3, 6, 9, ...) as the validation set. We found that PLS was the
only serious competitor to PSR; furthermore, PCR becomes
impractical as the number of channels becomes large. Table
1 summarizes the optimal values of cross-validated standard
errors (CYSEP) in three settings-(l) with all data, (2) with
the two-thirds training data, (3) predicting the one-third val-
idation set with the optimally trained model.

Notice that PSR is performing better than PLS in terms
of CVSEP in all cases when using all the data. Based on
these prediction results (cols. 2 and 3 of Table 1), however,
there is no reason to prefer PSR over PLS or vice versa. We
do find that PSR is a strong competitor to PLS when vali-
dating trained (optimal) models (outperforming for biscuit-
fat, gasoline-octane, and wheat-protein). We note that we
also repeated this exercise using the original (undifferenced)
spectra. Based on CVSEP (one-third validation set), PSR
was still a competitor to PLS, again outperforming for
three of the seven responses (in this case for biscuit-water,
gasoline-octane, and wheat-moisture).

The optimal value of A was found by cross-validation. It is
interesting to note that our P-spline approach is exactly
equivalent to the C&H approach if we use zero-degree
B splines with 37 equally spaced knots and a first-order
penalty.

Hastie and Mallows (1993) proposed a smooth regression
vector for the least squares problem. They interpreted the
coefficients as samples from a continuous function, £¥j =

6. A BRIEF SURVEY OF OTHER
CURRENT APPROACHES

Beyond PLS and PCR, there have been several success-
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a(tj), and minimized

2
m

Lcubic(a) = L
i=l

P

Yi -Lxi(tj)a(tj)
j=1

+)., J (a"(t))2 dt. (19)

where ao is the intercept term. The addendum in (20) en-
sures that neighboring coefficients do not differ too much
from each other. Two penalties P were considered-(l)
zero-order fusion of estimated coefficients resulting in a
piecewise constant solution, liffiy-+oo E~:i laj -aj+ll'Y,
and (2) first-order fusion penalizing the sum of absolute-
values first-differences of the coefficients, E~:i laj-aj+ll.
They have extended these approaches to accommodate bi-
nary data.

The previous approaches explicitly demanded smooth-
ness of the vector a. An alternative approach (Brown and
Makeliiinen 1992) exploited ideas from Bayesian estimation
with a special prior for the spectra. They imposed an auto-
regressive structure to model their smoothness. This led to a
system of augmented normal equations of size p x p. As we

Table 1. Results of the Comparison PLS and PSR, for Cross-validation
With all Data, for Cross-validation on a Training Set of

Two-thirds of the Data, and for Predicting the Other
Third of the Data With the Trained Model

The penalty is borrowed from the seminal work of Reinsch
(1967). The equations that resulted were of order p x p. As
we have stressed, H&M recognized this and proposed to
reduce the dimensionality of the signal coefficient vector
using an (unspecified) basis B of smooth functions with di-
mension p x n, such that a = B{3, where n < min(m,p).
Thus, E(YIX) = XB{3, and solutions for a can be obtained
by regressing Y on U = XB. Our P-spline approach pro-
vides a simple basis, combined with a continuously variable
penalty.

Land and Friedman (1996) have also done some interest-
ing work in the area of regression, complementing Frank
and Friedman (1993). They proposed a variable fusion
method that also can be viewed as a penalized least squares
problem. L&F considered minimization of

2
m

Lfusion(a) = L
i=l

P

Yi -aO -Lxi(tj)a(tj)

j=l

+>'P({laj-aj+ll,j=l,...,p-l}), (20)
NOTE The numbers are RMS values of the differences between predicted and actual values

(CYSEP) Differences of the spectra were used

TECHNOMETRICS, FEBRUARY 1999, VOL. 41, NO.1
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saw in Section 3.3, Alsberg (1993) projected the rows of X
on a low-dimensional (B-spline) basis of smooth functions.
In this way each row is compressed into a much smaller
number of coefficients, making the problem amenable to
standard linear regression. Alsberg's approach amounted to
finding the m x n matrix C such that

LA = Ittl -C/3112, (21)

where /3 has only n elements. No penalty was used. A sim-
ilar approach was used by Denham and Brown (1993), al-
though they modeled spectra from known chemical com-
positions instead of the reverse problem presented here.
Alsberg also provided a thorough overview of manipulat-
ing spectra as functions in traditional multivariate meth-
ods, including PLS and principal-component analysis. As
mentioned previously, (generalized) PLS does not take into
account the spatial nature of the regressor index.

Alternatively, Goutis and Fearn (1996) recognized that
the loadings of the PLS constructed variables (when plotted
against the wavelength index) should resemble the smooth
wavelength regressor information. They suggested using a
Reinsch roughness penalty on the loadings while still pre-
serving orthogonality of PLS components. This approach
does achieve smoothness but adds another layer of work
to an already highly nonlinear algorithm. Moreover, the
smoothness penalty parameters must be optimized for each
component.

Each of the approaches described previously goes a long
way in solving the problem of signal regression, but each
also has its shortcomings. Le Cessie and van Houwelingen's
(1992) method is very general, but it leads to a large sys-
tem of equations. Hastie and Mallows (1993) showed how to
reduce dimensionality in principle but did not give details.
Land and Friedman (1996) also had to confront large sys-
tems and further had the computational problem associated
with the £1 norm in the penalty. Alsberg (1993) as well
as Denham and Brown (1993), reduced the dimension of
the problem right from the start by exploiting the smooth-
ness of the spectra but did not specify a smooth regression
curve. Goutis and Fearn (1996) modified the PLS algorithm
to ensure smoothness of each orthogonal component. Most
authors gave little advice on choosing the dimension of the
projection basis or optimizing the penalty.

7. DISCUSSION AND FUTURE RESEARCH

We believe that the results presented go far beyond the
presentation of a new estimator in the standard setting. We
present a rather simple model that easily accommodates
the GLM framework with severely ill-conditioned regres-
sors. The dimension of the model is dramatically and in-
tuitively reduced, and estimation is not only fast but so is
cross-validation. Our examples (not contrived) demonstrate
competition to PLS/PCR with cross-validation. In many
examples, smooth regression vectors make more sense (at
least to us) than the extremely erratic coefficients associated
with PLS/pcR. All in all, we think that our method stands
the test quite gracefully.

We have investigated the merits of a simple idea in signal
regression: Force the vector of regression coefficients to be
smooth. The idea itself is not new, but a practical implemen-
tation was lacking in the literature. We use B splines to get
a large initial reduction of the dimension of the regression
model. To avoid the difficult search for optimal positions
of the knots, we choose them to be equally spaced but use
a difference penalty on the coefficients of the B splines.
This is the P-spline signal-regression approach, blending
the ease of B splines with continuous control over smooth-
ness,

Because we stay very near to classical regression model-
ing, the arsenal of well-established outlier-detection meth-
ods and influence diagnostics is accessible. Furthermore, it
is not a problem to fit non-Normal data by transplanting
the framework of GLM's. B-spline calculations are fast.
Because of the reduced dimensionality, exact computation
of cross-validation measures for least squares adds little to
the computational costs, even for large datasets, For non-
Normal data, a good estimate of the effective model dimen-
sion, necessary for the use of the AIC, is obtained with little
extra work.

At the heart of the signal-regression problem is ill-
conditioned data, often with more regressors than obser-
vations. Constraining of the coefficients can help. The con-
straint for PCR is the projection of the regressors onto a
lower-dimensional subspace, as it is for PLS, which addi-
tionally takes into account the response vector. Simply put,
in any case you cannot expect to get hundreds and hun-
dreds of meaningful estimated coefficients from dozens of
observations. In PCR and PLS, the estimated coefficients
suggest much relevant detail, but they are combinations of
a low number of rough basis vectors. If one were to inter-
pret the meaning of these details, then it would be in part
dubious, For PLS and PCR, rough spectra lead to rough co-
efficients, having peaks or troughs where the spectra show
peaks or troughs, suggesting meaningful detail where it is
only spurious.

Alternatively, the P-spline signal-regression approach
finds a smooth vector that does not allow any more detail
than the data permit. PSR takes another route by constrain-
ing the regression vector itself: It is forced to be smooth.
We wish to stress again that nonsmooth spectra do not im-
ply nonsmooth regression coefficients. We do not claim that
our smoothness penalty is the final answer, but it is sensible.
It is only one type of penalty.

Of course, one can imagine that, for some datasets, it
would be best if the regression coefficient vector had some
non smooth behavior (kinks, jumps, or narrow peaks). Our
present experience has shown no indication for need of such
modifications, We expect that it would be rather difficult
to detect the need for local nonsmoothness because of the
underdetermined estimation problem. As noted, constraints
of some type are needed to find any solution at all, and
technically almost any constraint can produce a model with
some predictive ability. The data by itself has little power
to steer results.

In Section 6, we compared our approach to several ap-
plications of smooth regression in the literature. Two dif-
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ferent interpretations are in use: One (H&M), like ours,
imposes smoothness on the regression coefficients, but the
other (Alsberg) emphasizes prior smoothing of signals (or
orthogonal components derived from them). We think that
the former interpretation is the more fruitful one: The sig-
nals do not have to be smooth for smooth regression coef-
ficients. When signals are being smoothed, the temptation
exists to replace the raw signals with the fit of smoothed
signals as a figure of merit. This leads us in the wrong di-
rection: It is the predictive value for the dependent variable
that is often of most interest. There is some similarity with
the basics of PCR and PLS: The former uses only X to
construct regressors, but the latter takes both X and y into
account. If prior smoothing is occupied with only X, the
results will be less than optimal.

Many interesting subjects call for further research in this
area. Obviously many more datasets have to be analyzed
to compare performance of PSR to PLS and PCR. It re-
mains to be seen whether or not the smooth coefficients
of PSR methods have advantages over PLS in calibration
transfer problems-for example, robustness of prediction
against shifting, scaling, and warping of the spectra. Future
work can consider settings with responses having multiple
signals or other smooth additive components or perhaps
varying coefficients, combining this research with that of
Marx and Eilers (1998). A further step would be to intro-
duce ideas from robust regression, like bounded influence
functions or £1 estimation.

Software for signal regression with P splines can be ob-
tained from the authors.

ACKNOWLEDGMENTS

We thank Fearn, Hastie, Hopke, Land, Ie Cessie, and
van Houwelingen for the use of their data. We also are
indebted to editor Max D. Morris, the anonymous asso-
ciate editor, and three anonymous referees for their thor-
ough and constructive comments leading to a significantly
improved article.

[Received May 1997. Revised August 1998.]

Clarendon Press.
Dobson, A. J. (1990), An Introduction to Generalized Linear Models, Lon-

don: Chapman and Hall.
Eilers, P. H. C., and Marx, B. D. (1996), "Flexible Smoothing Using B-

Splines and Penalized Likelihood" (with comments and rejoinder), Sta-
tistical Science, 11,89-121.

Fahrmeir, L., and Tutz, G. (1994), Multivariate Statistical Modeling Based
on Generalized Linear Models, Berlin: Springer-Verlag.

Frank, I. E., and Friedman, J. H. (1993), "A Statistical View of Some
Chemometric Regression Tools," Technometrics, 35, 109-148.

Friedman, J. H., and Silverman, B. W. (1989), "Flexible Parsimonious
Smoothing and Additive Modeling" (with discussion), Technometrics,
31, 3-39.

Goutis, C., and Fearn, T. (1996), "Partial Least Squares on Smooth Fac-
tors," Journal of the American Statistical Association, 91, 627-632.

Hastie, T., Buja, A., and Tibshirani, R. (1995), "Penalized Discriminant
Analysis," The Annals of Statistics, 23, 73-102.

Hastie, T., and Mallows, C. (1993), Discussion of "A Statistical View of
Some Chemometrics Regression Tools," by I. E. Frank and J. H. Fried-
man, Technometrics, 35, 140-143.

Hastie, T., and Tibshirani, R. (1990), Generalized Additive Models, Lon-
don: Chapman and Hall.

Helland, I. S. (1988), "On the Structure of Partial Least Squares Regres-
sion," Communications in Statistics, Part B-Simulation and Computa-
tion, 17,581-607.

Kooperberg, C., Stone, C. J., and Truong, Y. K. (1995), "Hazard Regres-
sion," Journal of the American Statistical Association, 90, 78-94.

Land, S. R., and Friedman, J. H. (1996), "Variable Fusion: A New Method
of Adaptive Signal Regression," Technical Report 114, Stanford Uni-
versity, Dept. of Statistics.

Ie Cessie, S., and van Houwelingen, J. C. (1992), "Ridge Estimators in
Logistic Regression," Applied Statistics, 41, 191-201.

Martens, H., and Nres, T. (1989), Multivariate Calibration, New York:
Wiley.

Marx, B. D. (1996), "Iteratively Reweighted Partial Least Squares Estima-
tion for Generalized Linear Regression," Technometrics, 38, 374--381.

Marx, B. D., and Eilers, P. H. C. (1998), "Direct Generalized Additive
Modeling With Penalized Likelihood," Computational Statistics and
Data Analysis, 28, 193-209.

Marx, B. D., and Smith, E. P. (1990), "Principal Component Estimation
for Generalized Linear Regression," Biometrika, 77, 23-31.

McCullagh, P., and NeIder, J. A. (1989), Generalized Linear Models (2nd
ed.), London: Chapman and Hall.

Myers, R. H. (1990), Classical and Modem Regression With Applications
(2nd ed.), Boston: PWS-Kent.

Osborne, B. G., Fearn, T., Miller, A. R., and Douglas, S. (1984), "Appli-
cation of Near Infrared Reflectance Spectroscopy to the Compositional
Analysis of Biscuits and Biscuit Dough," Journal of Scientific Food Agri-
culture, 35, 99-105.

O'Sullivan, F. (1986), "A Statistical Perspective on Ill-Posed Problems"
(with discussion), Statistical Science, I, 505-527.

Reinsch, C. (1967), "Smoothing by Spline Functions," Numerische Math-
ematik, 10, 177-183.

Stone, M., and Brooks, R. J. (1990), "Continuum Regression: Cross-
Validated Sequentially Constructed Prediction Embracing Ordinary
Least Squares, Partial Least Squares and Principal Components Regres-
sion," Journal of the Royal Statistical Society, Ser. B, 52,237-269.

Wold, H. (1975), "Soft Modeling by Latent Variables: The Nonlinear It-
erative Partial Least Squares Approach," in Perspectives in Probability
and Statistics, Papers in Honour of M.S. Bartlett, ed. J. Gani, London:
Academic Press, pp. 117-142.

REFERENCES

Alsberg, B. K. (1993), "Representation of Spectra by Continuous Func-
tions," Journal ofChemometrics, 7,177-193.

Brown, P. J., and Makeliiinen, T. (1992), "Regression, Sequenced Mea-
surements and Coherent Calibration," in Bayesian Statistics 4, eds.
J. M. Bernardo et al., Oxford, U.K.: Clarendon Press, pp. 97-108.

de Boor, C. (1978), A Practical Guide to Splines, New York: Springer-
Verlag.

Denham, M. C., and Brown, P. J. (1993), "Calibration With Many Vari-
ables," Applied Statistics, 42, 515-528.

Dierckx, P. (1993). Curve and Suiface Fitting With Splines, Oxford, U.K.:

TECHNOMETRICS, FEBRUARY 1999, YOLo 41, NO.1


