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Abstract Although the literature on varying coefficient models (VCMs) is vast, we
believe that there remains room to make these models more widely accessible and
provide a unified and practical implementation for a variety of complex data set-
tings. The adaptive nature and strength of P-spline VCMs allow a full range of
models: from simple to additive structures, from standard to generalized linear mod-
els, from one-dimensional coefficient curves to two-dimensional (or higher) coeffi-
cient surfaces, among others, including bilinear models and signal regression. As P-
spline VCMs are grounded in classical or generalized (penalized) regression, fitting
is swift and desirable diagnostics are available. We will see that in higher dimen-
sions, tractability is only ensured if efficient array regression approaches are imple-
mented. We also motivate our approaches through several examples, most notably
the German deep drill data, to highlight the breadth and utility of our approach.

1 Introduction

The varying coefficient model (VCM) was first introduced by Hastie & Tibshi-
rani (1993). The main idea of the VCM is to allow regression coefficients to vary
smoothly (interact) with another variable, thus generating coefficient curves. Such
coefficient curves can, for example, reflect slow changes in time, depth, or any other
indexing regressor. Hence regression coefficients are no longer necessarily constant.
Typically estimation for the varying coefficients usually requires the backfitting al-
gorithm, i.e. cycling through and updating each smooth term successively, until
convergence. But backfitting also has drawbacks: no information matrix is being
computed, so the computation of standard errors and effective model dimension,
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or efficient leave-one-out (LOOCV) cross-validation is not available. Also conver-
gence can be slow.

We have published an efficient fitting algorithm for VCM, based on P-splines
(Eilers & Marx, 2002), abbreviated as GLASS (Generalized Linear Additive Smooth
Structures). GLASS directly fits all smooths simultaneously of the VCM, without
backfitting. In the linear case it converges in one step, and in the generalized linear
case it needs only a handful of iterations, similar to the iterative weighted regression
for generalized linear models. Standard errors, LOOCV and effective dimension,
and diagnostics are readily available at little extra cost. Further optimization is rela-
tively easy and is based on data-driven techniques.

Our GLASS algorithm only considers coefficients that are smooth curves along
one dimension (although it allows several of those components). However VCMs
can be applied to problems with even richer structure, e.g. coefficients that vary in
two or more dimensions and with other additive components in the model. Such data
can be generated from modern image or spectral instrument, but can arise naturally
from simple tabulations. In principle, using tensor-product P-splines, VCMs can
be extended to higher-dimensions, allowing the estimation of (higher dimensional)
coefficient surfaces. In theory this is allowed, but in practice one often encounters
severe limitations in memory use and computation time. The reason is that large-
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Fig. 1 IBM hard drives: price (Euro) vs. size (GB), at four different months.
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scale multi-dimensional VCMs need a large basis of tensor products of B-splines.
In combination with many observations this can lead to inefficiencies. Consider,
as an example, an image of 500× 500 pixels, to which one likes to fit a VCM,
using a 10 by 10 grid of tensor products of B-splines. The regression basis has 250
thousand rows and 100 columns, or 25 million elements, each taking 200 Mb of
memory. With several VCM components storing just the basis can already take on
Gigabyte of memory. Computation times to compute inner products will be long.
Note that the final system of penalized normal equations is not large with a few
hundreds of coefficients. Recently very efficient algorithms have been published
for smoothing of multidimensional data arrays with P-splines (Currie, Durbán, &
Eilers 2006). They offer improvements of several orders of magnitude in memory
use and computation time. With small adaptations, these algorithms can be used for
multi-dimensional VCM fitting.

We do not attempt to survey all of the VCM developments. Rather, the major
goal of this paper is to provide a unified, accessible, and practical implementation
of VCMs using P-splines; one that is conducive to generalizations and tractable in
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Fig. 2 IBM: Estimated varying slope, combining monthly data. The individual data points repre-
sent the estimated slopes using the data month by month. Note that March and August do not have
estimate slopes since they have missing data or one observation.
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a variety of relatively complex settings, such as two and three-dimensional space-
varying GLM extensions, all while avoiding backfitting.

Warm-up: An Intuitive Example

We first illustrate the basic structure and mechanics of a VCM through a simple
example. Consider the disk data with the triplets (yi,xi, ti), i = 1, . . . ,m, where the
response yi is the price (Euro) of an IBM hard drive, the regressor x i is its size
(GB), and ti is the indexing variable month (ranging from February 1999 through
January 2000). Figure 1 displays the (x,y) scatterplot separately for four selected
months yielding some evidence of a varying (estimated) slope. The VCM combines
the monthly data into one model, allowing the slope coefficient to vary smoothly in
t. Consider modeling the mean response

μ = x(t) f (t),

where f (t) is a smooth slope function. Figure 2 displays the estimated f̂ (t) (with
twice standard error bands) which strongly suggests that the estimated Euro/GB is
decreasing with time. The data points in Figure 2 represent the estimated slopes
using the individual monthly data. Note that we are not simply smoothing the points
on this graph, but rather borrowing strength from all the monthly data to produce a
smooth coefficient curve. Such a VCM approach allows for interpolation of Euro/
GB for months with missing data (e.g. March and August) or for months with only
one observation where slope cannot be estimated. Further we can extrapolate Euro/
GB into future months. The details for estimation follow in the coming sections.

2 “Large Scale” VCM, without Backfitting

The German Continental Deep Drill Program (KTB) was an ambitious project with
its aim to study the properties and processes of the upper 10 km of the continental
crust (www.icdp-online.de/sites/ktb/). The actual drill cuttings com-
prise of 68 variables measured at each of 5922 depth points (having a 1 m median
spacing) down to a final depth of 9.1 km.

We primarily motivate varying coefficient models through the characterization of
cataclastic fault zones, and relating the amount of cataclastic rocks (CATR), along
varying depth, to other variables. Our response is mean amount of CATR (which in
previous research has been transformed in either units of natural logarithm (log) or
log-odds (logit) transformed volume percent), and our central explanatory variables
include: Structural water (H2O), graphite (C), Al2O3, Na2O (all in units weight
percent), and Thermal Conductivity (in units Wm−1K−1).
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The KTB statistical models to date only used a subset of depth range. However
we find the P-spline VCM is adaptive enough to incorporate the entire range of
9.1km depth, thereby modelling all data zones simultaneously. The choice of these
regressors comes, in part, from existing successful statistical analyses of the KTB
data, by e.g. Kauermann & Küchenhoff (2003). These authors modelled the mean
and dispersion structure of the amount of cataclastic rocks by focusing on a subset
of drill samples ranging from 1000 to 5000 meters, which led to the identification
of possible depth breakpoints and potential outliers. Further, Winter et al. (2002)
investigated the relationship between the amount of cataclastic rocks to several ge-
ological variables using standard regression methods for two specific cataclastic
zones within two lithologies: gneiss (1738-2380m) and metabasite (4524-4908m).

It is unrealistic to assume constant regression coefficients, along 0−9101m (e.g.
associated with H2O, C, Al2O3, Na2O, and Thermal Conductivity), and a VCM
approach can be a reasonable model choice, thus allowing variables to have depth
dependent flexible influence on the response.

Section 5 will provide the details, but to give an idea of how slope coefficients
can vary positively and negatively along depth, consider Figure 3 that uses a P-
spline VCM. The panels also present twice-standard error bands associated with
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Fig. 3 Using log(CATR) as response, varying intercept and varying slopes for H2O, C, Thermal
Conductivity, Na2O, Al2O3 using cubic (q = 3) P-splines with 40 equally-spaced knots, d = 3.
Optimal tuning parameters chosen by EM. Twice standard bands are provided.
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the varying coefficients. Relative to the zero line we see evidence of reversals or
moderating impacts of regressors on CATR as depth varies, e.g. C appears to have
positive, negative, and a near zero impact on CATR, e.g., at depths of 2300m, 4000m
and greater than 7000m, respectively.

The goodness-of-fit measures associated with P-spline VCM shows promise for
applications to the KTB data. For example, the models of Winter et al. (2002) that
target specific zones, only using a depth range of several hundred meters, reported
R2 values between 0.57– 0.60. Our VCM approach initially show a 12% – 21% im-
provement, while using the entire 9.1 km range over all data zones. A more thorough
presentation of results is given in Section 7.

3 Notation and Snapshot of a Smoothing Tool: B-splines

We will see in the sections that follow that we initially approach smoothness of the
coefficient vector (not the explanatory variables), in two ways: (a) by modelling co-
efficients with a B-splines at predetermined depths (knots), and (b) when the number
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Fig. 4 B-spline bases with knots at specific depths: degrees q = 0,1,2,3.
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and position of knots is assumed not to be known, by using penalized B-splines or
P-splines (Eilers & Marx 1996).

3.1 General knot placement

We start with the building block of a complete B-spline basis. The shape of any one
B-spline function depends on its degree q. For example, a B-spline takes a constant
value (degree q = 0), has the form of a triangular density (degree q = 1), or can even
resemble bell-shaped curves similar to the Gaussian density (e.g. higher degrees
q = 2, 3). A B-spline function has only local support (e.g. in contrast to a Gaussian
density). In fact it is constructed from smoothly joining polynomial segments. The
positions on the indexing axis, t, where the segments come together, are called the
knots. Some general properties of a degree q B-spline include: it consists of q + 1
polynomial pieces of degree q; the derivatives at the joining points are continuous
up to degree q− 1; the B-spline is positive on the domain spanned by q + 2 knots,
and it is zero elsewhere.

A full B-spline basis is a sequence of B-splines functions along t, each shifted
over one knot. Each B-spline is usually indexed by a unique knot, say the leftmost
where the B-spline has support. Additional knots must be placed at the boundaries
so that each B-spline spans the same number of knots. The knot placement may be
general, allowing for unequal spacing. We denote the number of B-splines used in
the regression as K, and at any given value of t there are exactly q+1 non-zero B-
splines, and these values are used to construct the basis matrix B. Given m depths, a
m×K regressor matrix can be constructed. B-spline smoothing is essentially multi-
ple regression. Let bi j = Bj(ti), j = 1, . . . ,K indicates the value of the jth B-spline
function at index ti, and B = [bi j]. The B-spline regressors (and their corresponding
parameters) are anonymous in that they do not really have any scientific interpreta-
tion: rather predicted values are produced through linear combinations of the basis.
We recommend the text by Dierckx (1993) for a nice overview.

Such a basis is well-suited for smoothing of a scatterplot of points (t i,yi), i =
1, . . . ,m. A smooth mean function can be expressed as μ = f (t) = Bα , where B
is a m× (K + q) regressor matrix and α is the unknown B-spline parameters. We
minimize

S = ||y−Bα||2, (1)

with the explicit solution
α̂ = (B′B)−1B′y. (2)

Given α̂ , the estimated point on the curve at any (new) depth t � is ∑K
j=1 Bj(t�)α̂ j .
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3.2 Smoothing the KTB data

For the KTB data, K = 17 specific knots locations (at depths in meters) are chosen
based on prior knowledge of lithologies (Winter et al. 2002), with values: 0, 290,
552, 1183, 1573, 2384, 2718, 3200, 3427, 3537, 5224, 5306, 5554, 5606, 7260,
7800, and 9101 m. The complete B-spline basis (for q = 0, 1, 2, 3) using the above
knots locations is provided in Figure 4. Using the B-spline bases displayed in Fig-
ure 4, Figure 5 displays the estimated smooth mean function for the scatterplot of
log(CATR) as a function of depth, for various bases degree and the specified K = 17
knots.

4 Using B-splines for Varying Coefficient Models

In addition to using smoothing techniques to estimate the mean response, consider
broadening the model to control for another regressor, e.g. x = H 2O, which itself
may also have a varying influence as a function of depth,
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Fig. 5 Scatterplot of log(CATR) vs. depth and smooth estimated mean functions using B-splines
of degree 0, 1, and 2. The “X” symbol indicates knot locations.
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μ(t) = β0(t)+ x(t)β1(t). (3)

This model is a generalization of the simple linear regression model (μ = β 0 +
β1x), where the static intercept and slope coefficients (β0, β1) are now replaced
with coefficients that vary, and thus the regressor has a modified effect, for example
depending on depth.

With B-spline smoothing and predetermined knots (along t), backfitting can be
avoided and a varying coefficient model can be fit directly. This is clearly illustrated
in matrix notation by modelling the mean response in (3),

μ = Bα0 +diag{x(t)}Bα1

= (B|U)(α ′
0,α ′

1)
′ = Qα,

where the matrix diag{x(t)} aligns the regressors with the appropriate slope value
that is also smooth in t, i.e. β1(t) = Bα1. Note that the same B basis, built on the t
axis, is used for both smooth components. This can be done with data having one
natural indexing variable, e.g. as with depth in the KTB data. In general, there can
be a different indexing variable for each varying coefficient, thus requiring differing
B-spline bases for each additive term. We see that the effective regressors are Q =
(B|U), whereU = diag{x(t)}B, which results in essentially a modest sized “multiple
regression” problem. Notice that U boils down to nothing more than a simple row
scaling of B. Straightforward least squares techniques similar to (2) are used to
estimate the unknown B-spline parameters α = (α0, α1)′ associated with the smooth
intercept and slope. We minimize

S = ||y−Qα||2, (4)

with the explicit solution
α̂ = (Q′Q)−1Q′y. (5)

Thus estimated smooth coefficients can be constructed using B α̂ j ( j = 0, 1), and
μ̂ = Hy = Qα̂ , where the “hat” matrix is H = Q(Q′Q)−1Q′.

Additive B-spline VCMs

The generalization to (3) follows for p regressors, each having varying slopes,

μ(t) = β0(t0)+
p

∑
j=1

β j(t j)x j(t j) (6)

In matrix notation,

μ = Bα0 +
p

∑
j=1

diag{x j(t j)}Bjα j
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= (B|U1| . . . | Up)(α ′
0,α

′
1, . . .α ′

p)
′ = Rθ , (7)

where generalizations of (4) and (5) follow naturally using R and θ . Notice that
Bj is used in (6) to allow the differing indexing variables (t j) for each regressor,
j = 1, . . . , p.

For illustration, Figures 6 and 7 display the fixed knot KTB varying coefficients
using B-splines of degree 0 and 3, respectively.

5 P-spline Snapshot: Equally-Spaced Knots & Penalization

The B-spline approach in the previous section required knowledge of the location
and number of knots. In general, this information may not be known, and the place-
ment of the proper number of knots is a complex nonlinear optimization problem.
Circumventing these decisions, Eilers & Marx (1996) proposed an alternative P-
spline smoothing approach, which has two steps to achieve smoothness: (i) Use a
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Fig. 6 Using log(CATR) as response, varying intercept and varying slopes for H2O, C, Thermal
Conductivity, Na2O, Al2O3 using B-spline bases of degree 0. Twice standard bands are provided.
Knots locations are indicated by both ticks and circles.
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rich regression basis to purposely overfit the smooth coefficient vector with a modest
number of (equally-spaced) B-splines. (ii) Ensuring further and the proper amount
of smoothness through a difference penalty on adjacent B-spline coefficients. The
main idea is that smoothness is driven by the amplitudes of α , and discouraging
estimates of α that have erratic adjacent (neighboring) behavior can be sensible. A
non-negative tuning parameter regularizes the influence of the penalty, with large
(small) values leading to heavy (light) smoothing. For one smooth term, we now
minimize

S� = ||y−Bα||2 + λ ||Ddα||2. (8)

The matrix D constructs dth order differences of α:

Ddα = Δdα. (9)

The first difference of α , Δ 1α is the vector with elements α j+1 − α j, for j =
1, . . . , K −1. By repeating this computation on Δα , we arrive at higher differences
like Δ 2α = {(α j+2 −α j+1)− (α j+1 −α j)} and Δ 3α . The (n−1)×n matrix D1 is
sparse, with d j, j = −1 and d j, j+1 = 1 and all other elements zero. Examples of D1
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Knots locations are indicated by both ticks and circles.
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and D2 of small dimension look like

D1 =

⎡
⎣−1 1 0 0

0 −1 1 0
0 0 −1 1

⎤
⎦ ; D2 =

[
1 −2 1 0
0 1 −2 1

]
.

Actually, the number of equally-spaced knots does not matter much provided that
enough are chosen to ensure more flexibility than needed: the penalty further
smoothes with continuous control. The solution of (8) is

α̂λ = (B′B+ λD′
dDd)−1B′y, (10)

and the “effective” hat matrix is now given by

Hλ = B(B′B+ λD′
dDd)−1B′. (11)

5.1 P-splines for Additive VCMs

When considering more regressor terms and in a VCM context, the model is as
outlined in (6) with μ(t) = Rθ , but now B is a rich basis using equally-spaced knots.
The P-spline objective function in (8) must be further modified to allow differing
flexibility across the p regressors, i.e. a separate λ is allowed for each term. We now
have

S� = ||y−Rθ ||2 +
p

∑
j=0

λ j||Ddα j||2, (12)

with a solution
θ̂ = (R′R+P)−1R′y,

where the penalty takes on the form P = block diag(λ 0D′
dDd , . . . ,λpD′

dDd). The
block diagonal structure breaks linkage of penalization from one smooth term to
the next one. Note that (12) uses a common penalty order d, but there is nothing
prohibitive from allowing some terms to have different d. Thus

μ̂ = Rθ̂ = Hy,

where H = R(R′R + P)−1R′. Borrowing from Hastie & Tibshirani (1990), the ef-
fective dimension of the fitted smooth P-spline model is approximately trace(H).
By noting the lower dimension and invariance of the trace of cyclical permutated
matrices, effective dimension (ED) can be found efficiently using

ED(λ ) = trace{(R′R+P)−1R′R}. (13)

The effective dimension of each smooth term is the trace of the portion of diagonal
terms of H corresponding to each term.
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5.2 Standard Error Bands

For fixed λ , twice standard error bands can be constructed relatively easily, and
can be used as an approximate inferential tool, for example to identify potentially
important depth windows that may relate each regressor to the response. We have

var(θ̂ ) = (R′R+P)−1R′σ2IR(R′R+P)−1 = σ2(R′R+P)−1R′R(R′R+P)−1.

Thus the covariance matrix associated with the jth smooth component is

Cj = σ2Bj{(R′R+P)−1R′R(R′R+P)−1} jB
′
j,

where {·} j denotes the diagonal block associated with the jth component. The
square root of the diagonal elements of C j are used for error bands, as used in Fig-
ure 3. Setting λ = 0 yields the standard error bands for unpenalized B-splines, as
presented in Figures 6 and 7.

6 Optimally Tuning P-splines

For B-spline models, apriori information is essential: The amount of smoothing
is determined by the size of the B-spline basis and thus implicitly by the number
and position of knots. The smaller the number of knots, the smoother the curve.
For P-spline models where R only contains a few smooth terms, cross-validation
measures or information criteria can be monitored by varying λ in a systematic
way over a grid, and the “optimal” values for the λ vector can be chosen as the
one that minimizes, e.g., LOOCV. Although this prediction oriented approach for
choosing λ is tractable for low dimensions, it can become computationally taxing
and unwieldy, e.g. in our KTB application with six smooth terms. We investigate an
alternative estimation-maximization (E-M) approach based on viewing P-splines as
mixed models, based on the work of Schall (1991), which appears very promising.

First we consider only one smooth term and then propose a generalized algo-
rithm. Using a mixed model with random α , the log-likelihood, l, can be expressed
as

−2l = m logσ +n logτ +
‖y−Bα‖2

σ2 +
‖Dα‖2

τ2 , (14)

where the var(α) = τ 2 is the variance of the random effects and var(ε) = σ 2 is the
variance of the random error. Maximizing (14) results in the system of equations(

B′B+
σ2

τ2 D′D
)

α = B′y,

and hence we can view λ = σ 2/τ2 as a ratio of variances. We also have, under
expectation, that
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E(‖y−Bα̂‖2) ≈ (m−ED)×σ 2

E(‖Dα̂‖2) ≈ ED× τ2, (15)

where ED is the approximate effective dimension of the fit. Using (15), we can get
a current estimate σ̂2 and τ̂2 from fit. An updated fit can be made using updated
σ̂2/τ̂2, until convergence. We propose a generalized estimation-maximization (E-
M) algorithm for the p-dimensional varying coefficient model μ = Rθ :

Algorithm E-M P-spline to optimize λ

1. Initializations:

• Generously choose knots K (use 40 as default).
• Initialize λ , j = 1, . . ., p (use 10−5 as default)
• Choose B-spline basis degree q (cubic as default)
• Choose penalty order d (use 3 as default)
• Construct Penalty P = blockdiag(λ0D′D, . . . ,λpD′D)
• θ̂ = (R′R+P)−1R′y

2. Cycle until Δλ small
3. For j = 0 to p

a. Compute the EDj = trace{H} j ( jth smooth diagonals in H)
b. Estimation (E-step):

i. σ̂ 2 = ‖y−Rθ̂‖2

m−∑p
j=0 ED j

ii. τ̂2
j = ‖Dθ̂‖2

ED j

iii. λ̂ j = σ̂2

τ̂2
j

c. Maximization (M-step):
i. P = blockdiag(λ̂0D′D, . . . λ̂pD′D)

ii. θ̂ = (R′R+P)−1R′y

4. Fit with converged vector λ̂

end algorithm

Cross-validation Prediction Performance

A leave-one-out cross-validation measure can be computed swiftly, only requiring
the diagonal elements of the “hat” matrix, hii, and the residuals y− μ̂ = y−Rθ̂ . Note

yi − μ̂−i = (yi − μ̂i)/(1−hii), (16)

μ̂ = B(B′B)−1B′y = Hy, and μ̂−i is the fitted value for yi that would be obtained
if the model were estimated with yi left out. It follows that hii = r′i(R′R + P)−1ri,
where r′i indicates the ith row of R. Hence the diagonal elements of H and the cross-
validation residuals can be computed with little additional work. We can define
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Table 1 Preliminary goodness-of-fit and cross-validation, by VCM degree.

Method Basis q Penalty d Knots K Eff. Dim LOOCV R2

E-M P-spline 3 3 equally 40 155.8 0.737 0.704
E-M P-spline 0 1 equally 40 206.1 0.755 0.691
B-spline 3 - fixed 17 120 0.773 0.683
B-spline 2 - fixed 17 120 0.765 0.685
B-spline 1 - fixed 17 120 0.779 0.670
B-spline 0 - fixed 17 120 0.800 0.647

LOOCV =

√
1
m

m

∑
i=1

(yi − μ̂−i)2 =

√
1
m

m

∑
i=1

(
yi − μ̂i

1−hii

)2

,

and this result holds in the unpenalized setting by simply setting all λ = 0 in H.

7 More KTB Results

The P-spline approach was fit using K = 40 knots for each of the six smooth com-
ponents and corresponding difference penalties of order d = 3. Summary results are
presented in Table 1, for various approaches. For the case d = 3, the optimal tun-
ing parameters were chosen using the E-M algorithm above, which converged in 69
cycles, and yielded optimal λ = (570,0.038,0.0023,908,1252,6.63), respectively.
Figure 3 presents the corresponding E-M based estimated smooth coefficients. The
convergence criterion was max j{Δλ j/λ j} < 10−8. The overall effective dimension
of the P-spline fit was ED = 155.8. Notice that as λ increases, then ED decreases.
When comparing P-splines (Figure 3) to the B-spline approach with unequally-
spaced K = 17 knots (Figures 6 and 7), we find some general differences. First, the
optimal overall ED is higher with P-splines (155.8), when compared to that of each
B-spline ED (120), since each B-spline term has an ED=20. Further, some of the P-
spline smooth terms need much less ED, e.g. intercept (11.8), Thermal Conductivity
(15.0), and Na2O (14.5), whereas other P-spline terms require considerably more
ED, e.g. H2O (40.6), C (34.4), and Al2O3 (39.6). We find that the general patterns of
negative, positive, and moderate smooth coefficients is preserved from Figures 6 and
7, as a function of depth. However, the P-spline coefficients are smoothed in some
cases, and sharpened in others. This P-spline approach required no prior knowledge
of depth knots, and yields a very competitive model with an R 2 = 0.704– a consid-
erable improvement over previously reported models. The CV value is 0.737, which
is the lowest among models presented. Thus the P-VCM model for the KTB data
experiences both increase in R2 and reduction in CV error.
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8 Extending P-VCM into the Generalized Linear Model

When responses are non-Normal, e.g. binary outcomes or Poisson counts, the P-
spline varying coefficient model extends naturally into the generalized linear model
(GLM) framework,

g(μ(t)) = β0(t0)+
p

∑
j=1

β j(t j)x j(t j) (17)

In matrix notation,

g(μ) = Bα0 +
p

∑
j=1

diag{x j(t j)}Bjα j

= (B|U1| . . . | Up)(α ′
0,α ′

1, . . .α ′
p)

′ = Rθ , (18)

where the subscript j (on both t and B) highlights that differing indexing variables
are allowed for each regressor. The GLM allows a (monotone) link function g(·)
and requires independent observations from any member of the exponential family
of distribution with μ = E(Y ). The specifics of the GLM are well documented and
tabulated, e.g. in Fahrmeir & Tutz (2001, Chapter 2).

The penalized objective function for the GLM is now

l� = l(θ )−
p

∑
j=0

λ j||Ddα j||2, (19)

where l(θ ) is the log-likelihood function, which is a function of θ since μ = h(Rθ ).
The inverse link function is denoted as h(·) (with derivative h ′(·)). We now max-
imize l� and find above that the penalty terms are now subtracted from l(θ ), thus
discouraging roughness of any varying coefficient vector. Fisher’s scoring algorithm
results in the iterative solution

θ̃c+1 = (R′ṼcR+P)−1R′Ṽcz̃c,

where again the penalty takes on the form P = block diag(λ 0D′
dDd , . . . ,λpD′

dDd),
and V = diag{h′(Rθ )/var(y)}, z = (y− μ)/h′(Rθ )+Rθ are the usual GLM diag-
onal weight matrix and “working” dependent variable, respectively, at the current
iteration c. Upon convergence, μ̂ = h(Rθ̂) = h(Ĥy), with Ĥ = R(R′V̂R+P)−1R′V̂ ,
and approximate effective dimension ED ≈ trace{R ′V̂R(R′V̂R+P)−1}.

Polio Example with Poisson Counts

We apply P-VCM models to the discrete count time series data of monthly polio
incidences in the United States (reported to the U.S. Center of Disease Control)
during the years 1970 through 1987. The data are taken from Zeger (1988) and
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further analyzed by Eilers & Marx (2002). The monthly mean count is modeled
with a penalized GLM with a Poisson response and log link function. We choose a
model that allows a varying intercept, as well as varying slopes for the cosine and
sine regressors (each with both annual and semi-annual harmonics),

log(μ(t)) = f0(t)+
2

∑
k=1

{ f1k(t)cos(kωt)+ f2k(t)sin(kωt)}, (20)

where ω = 2π/12 for the index t = 1, . . . , 216. In matrix notation, we have

log(μ) = Bα0 +
2

∑
k=1

{CkBαck +SkBαsk} = Rθ , (21)

where R = (B | C1B | C2B | S1B | S2B) and θ is the corresponding vector of aug-
mented α’s. The C and S are diagonal cosine and sine matrices that repeated cycle
through the months (1 through 12) using the appropriate harmonic. Since the index
is common for all regressors, we conveniently choose to use a common (cubic) basis
B. Figure 8 displays the varying harmonic effects. We used 13 equally-spaced knots
and a second order penalty for each term. Related to the work of Schall (1991),
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Fig. 8 Polio example: the annual and semi-annual varying cosine and sine effects.
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the optimal values of λ are also found using the E-M algorithm found in Section
6 (with small modification): 1. The estimation of the scale parameter is fixed to be
one (step 3.b.i), and 2. Although no backfitting is performed, the maximization step
is now the iterative method of scoring (step 3.c.ii). The estimate effective dimension
is approximately 6.5 for the intercept, and 1.5 for each of the sine and cosine terms.

9 Two-dimensional Varying Coefficient Models

An advantage of the P-spline approach to varying coefficient modeling is its ability
to adapt to a variety of extensions with relatively little complication. We will see
that it is rather straightforward to extend to an additive two-dimensional varying
coefficient model in a generalized linear model setting. Such an approach requires
P-VCM to use a tensor product B-spline basis and to use some care in construct-
ing a sensible penalty scheme for the coefficients of this basis. In this way P-VCM
remains nothing more than a moderately (generalized) penalized regression prob-
lem. Consider the tensor product basis provided in Figure 9. The basis is sparsely
presented to give an impression of its structure; a full basis would have severe over-
lapping “mountains”. Corresponding to each basis, there is an array of coefficients
Θ = [θkl ], k = 1, . . . , K and l = 1, . . . , L (one for each mountain), and these are
the drivers of the two-dimensional varying coefficient surfaces. To avoid the dif-
ficult issue of optimal knot placement, P-VCM again takes two steps: (i) Use a
rich K×L(< 1000) gridded tensor product basis that provides more flexibility than
needed. (ii) Attach difference penalties on each row and on each column of θ with
only one tuning parameter for rows and another one for columns. Figure 10 gives
an idea of strong penalization of the coefficients.

9.1 Mechanics of 2D-VCM through Example

Figure 11 (top panel) displays log death counts resulting from respiratory disease
for U.S. females. The image plot is actually 25,440 cells resulting from the cross-
classification of age by monthly time intervals. Details of the data, as well as a
thorough modeling presentation can be found in Eilers et al. (2008). The lower panel
of Figure 11 display the marginal death count over time, which exhibits a strong and
varying seasonal cyclical behavior. Consider the Poisson regression with a log link
function

log(μat) = vat + fat cos(ωt)+gat sin(ωt) = ηat , (22)

with counts Yat and μat = E(Yat). For simplicity, we suppress any offset term. The
index a = 1, . . . ,A refers to regressor age (44− 96), whereas year and month are
combined to create a variable time, indexed by t = 1, . . . ,T (1−480). Annual cycli-
cal behavior in the counts is modeled using the periodic sine and cosine regressors,
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with period 2π (ω = 2π/12). More harmonics can be added as needed. The two
regressors are only indexed with t since the cyclical behavior is only assumed to be
associated with time. The parameters v, f , g are indexed by both (a, t) and are the
smooth (two-dimensional) varying coefficient surfaces for the intercept and slopes
for the sine and cosine regressors, respectively.

To express each of the intercept, sine, and cosine varying coefficients smoothly,
it is perhaps natural to work with a vectorized form of Θ denoted as θ u = vec(Θu),
u = 0,1,2. A “flattened” tensor product B-spline basis B can be formed of dimension
AT ×KL, such that vec(s) = Bθ0, vec( f ) = Bθ1, and vec(g) = Bθ2. Each row of B
designates one of the AT cell counts, and the columns contain the evaluations of
each of the KL basis at that cell location. In matrix terms, (22) can be reexpressed
as

vec{log(μ)} = Bθ0 +diag [cos(ωt)]Bθ1 +diag [sin(ωt)]Bθ2

= Bθ0 +U1θ1 +U2θ2

= Mθ , (23)

where M = [B|U 1|U2] and θ ′ =(θ ′
0,θ

′
1,θ

′
2) are the augmented bases and tensor prod-

uct coefficients, respectively. The diagonalization of the regressors in ( 23) ensures
that the each level of the regressor is weighted by its proper level of the varying co-
efficient. We now find (23) to be a standard Poisson regression model with effective
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Fig. 9 A sparse portion of a tensor product B-spline basis.
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regressors M of dimension AT ×KL and unknown coefficients θ . The dimension of
estimation is now reduced from initially 3×AT to 3×KL.

9.2 VCMs and Penalties as Arrays

Consider the univariate basis: Let B = [btk] (B̆ = [b̆al]) be the T ×K (A×L) B-spline
basis on the time (age) domain. Denote A , B, and C as the K ×L matrices of the
tensor product coefficients for V = [vta], F = [ fta], and G = [gta] respectively. We
can rewrite (23) as

log(M) = V +CF +SG

= BA B̆′ +CBBB̆′+SBC B̆′, (24)

where M = [μta] and C and S represent the (co)sine diagonal matrices defined in
(23), and again any offset term is suppressed.

Penalties are now applied to both rows and columns of A and B. Denote the
(second order) difference penalty matrices D and D̆ with dimensions (K − 2)×K
and (L−2)×L, respectively. Recall Figure 10 that provides a visualization of strong
row and column penalization.The penalty is defined as P = PA +PB +PC , with the
first term having the form PA = {λ1||DA ||F + λ̆1||A D̆′||F} with the other naturally
following for B and C . We denote || · ||F as the Frobenius norm, or the sum of the
squares of all elements. The first portion of the penalty is equivalently

PA = vec(A )′[λ1(IL ⊗D′D)+ λ̆1(D̆′D̆⊗ IK)]vec(A ),
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Fig. 10 A sparse portion of a strongly penalized tensor product B-spline basis.
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where I is the identity matrix. The tensor product coefficients, A , B and C are
found by maximizing the penalized Poisson log-likelihood function

l�(A ,B) = l(A ,B)− 1
2

P. (25)

Optimization of the tuning parameters (six in this case) can be found using efficient
clever searches, in a greedy way, over the λ space to minimize, e.g. AIC or QIC.
Also an extension to the E-M algorithm is possible. Figure 12 presents optimal
results based on QIC for the respiratory data using 13× 13 equally-spaced tensor
products and a second order penalty on rows and columns for each component.
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and the marginal plot of time trend (bottom)
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9.3 Efficient computation using array regression

The array algorithm can be found in Currie et al. (2006). Without loss of generality,
using only the first term in (24), the normal equations can be expresses as

(B̆⊗B)′W (B̆⊗B)α̂ = Qα̂ = (B̆⊗B)′Wy, (26)

where W is a diagonal weight matrix and y = vec(Y ). With the dimension of B̆⊗B
is AT ×KL, and can require much of memory space. Also, but perhaps less obvious,
the multiplications and sums that lead to the elements of Q are rather fine-grained
and waste an enormous amount of processing time. The problem is compounded
when considering all terms in (24). Both problems are eliminated with by rearrang-
ing the computations.
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Let R = B�B indicate the row-wise tensor product of B with itself. Hence R has
T rows and K2 columns and each row of R is the tensor product of the corresponding
row of B with itself. One can show that the elements of

G = (B�B)′W (B̆�B̆)

have a one-to-one correspondence to the elements of Q. Of course they are arranged
differently, because Q has dimensions KL×KL and G dimensions K 2 ×L2. How-
ever, it is easy to rearrange the elements of G to get Q. Three steps are needed: 1)
re-dimension G to a four-dimensional K ×K ×L×L array; 2) permute the second
and third dimension; 3) re-dimension to a KL×KL matrix.

A similar, but simpler computation finds the right side of (26) by computing and
rearranging B′(W ·Y )B̆, where W ·Y indicates the element-wise product of W and
Y . In a generalized additive model or varying-coefficient model with multiple tensor
product bases, weighted inner products of the different bases have to be computed
using the same scheme as outlined above. Array regression offers very efficient
computation with increases in fitting speed (of far more than 10-fold in most cases)
when compared to the following unfolded representation. Typically array regression
is used when the data are on a regular grid, however it is possible to include a mix
of array and other standard regressors.

10 Discussion Toward More Complex VCMs

The adaptive nature and strength of P-splines allows extensions to even more com-
plex models. We have already seen such evidence in this paper by moving from
simple to additive P-VCMs, from standard to generalized settings, and from one-
dimensional coefficient curves to two-dimensional coefficient surfaces. P-VCMs
can also be extended into bilinear models, as presented in Marx et al. (2010). In
all cases, P-VCMs further remain grounded in classical or generalized (penalized)
regression, allowing swift fitting and desirable diagnostics, e.g. LOOCV.

P-VCMs can be broadened into higher dimensions, e.g. to have three-dimensional
varying coefficient surfaces, and with several additive components. Heim et al.
(2007) have successfully applied these models to brain imaging applications. Such
a model is primarily achieved by broadening the tensor product basis from two to
three dimensions and projecting the smooth three-dimensional coefficients onto this
lower dimensional space. An additional penalty is needed for the third dimension or
layer. In this setting, array regression is of utmost importance due to the formidable
dimension of the unfolded design matrix and the number of computations to obtain,
e.g., the information matrix. There is nothing prohibitive in P-VCM to consider even
higher, e.g. four, dimensional VCM surfaces.

The P-VCM approach also lends itself nicely to high dimensional regression
commonly present in chemometric applications, often referred to the multivariate
calibration problem. In this setting, the scalar response has digitized “signal” re-
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gressors, ones that are ordered and actually ensemble a curve. Marx & Eilers (1999)
used P-splines to estimate smooth coefficient curves, but tensor product P-VCMs
can allow these smooth coefficient curves to vary over another dimensions. Figure
13 provides an example of how smooth high dimensional coefficient curves can
vary over a third variable, temperature. Eilers & Marx (2003) show how to con-
struct such special varying coefficient surfaces, while drawing connections to lower
dimensional ribbon models and additive models.

There are various details that will need further investigation. Although it is not
always easy to make complete and thorough comparisons across a wide range of
other methods under exhaustive settings, it would be interesting to compare the
P-VCM approach to Bayesian counterparts (Lang & Brezger 2004), mixed model
counterparts (Ruppert, Wand & Carroll 2003) and structural regression approaches
(Fahrmeir et al. 2004). Further, we only dampen any effects of serial correlation
in data through the use of a varying intercept in the model. In fairness, a more
formal investigation of any possible auto-regressive (AR) error structure should be
made, e.g. addressing deep drill depth varying covariance similarly to Kauermann
& Küchenhoff (2003), corr(y i,yi+1) = ρ(t̃)|ti−ti+1|, where ρ is a smooth function in
depth and t̃ = (ti + ti+1)/2. Additionally, although we extended E-M algorithm of
Schall (1991) to optimize tuning parameters in the standard and generalized settings,
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the theory of this approach could be more formally grounded, and the stability of
the algorithm should be investigated.
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