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Abstract

We propose a general approach to regression on digitized multidimensional signals
that can pose severe challenges to standard statistical methods. The main contribution
of this work is to build a two-dimensional coefficient surface that allows for interac-
tion across the indexing plane of the regressor array. We aim to use the estimated
coefficient surface for reliable (scalar) prediction. We assume that the coefficients are
smooth along both indices. We present a rather straight-forward and rich extension
of penalized signal regression using penalized B-spline tensor products, where appro-
priate difference penalties are placed on the rows and columns of the tensor product
coefficients. Our methods are grounded in standard penalized regression, thus cross-
validation, effective dimension and other diagnostics are accessible. Further the model
is easily transplanted into the generalized linear model framework. An illustrative ex-
ample motivates our proposed methodology and performance comparisons are made
to other popular methods.

Keywords: Fluorescence; multivariate calibration; P-splines; signal regression;
spectra; tensor product.

1 Introduction

Modern technology and instrumentation routinely delivers rich multidimensional data for
which new statistical tools are needed. In many cases, we cannot use standard least squares
statistical modelling approaches, for example when using the numerous digitizations from
spectra as explanatory variables in a regression setting. The problem is inherently ill-
posed: the number of regressors generated for each experimental unit generally far exceeds
the number of units collected in the study. Paradoxically, it is as if too much information is
the problem source. Figure 1 displays signal regressors (at two different excitation levels)
for each of m = 268 observations, coming from a sugar processing experiment (Bro, 1999).
Actually each “signal” consists of numerous digitizations (p = 571) along the emission
wavelength axis (275 to 560, by 0.5 nm). If such optical regressors are to be related,
e.g. to a chemometric response, then some regularization is needed. Not only is p � m,
but the regressors are highly correlated. Eilers and Marx (1999) provided a practical
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solution for such a one-dimensional signal regression problem by taking into account the
(spatial) indexing axis of the regressors and forcing their estimated coefficients to be
smooth (using P-splines). Among many approaches, partial least squares and principal
component regression, have been successfully used for signal regression, but ignore spatial
information. Eilers and Marx (2003) extended the notion of signal regression to a
two-dimensional smooth surface, essentially adjusting the signal coefficient vectors for
an additional (scattered) covariate, e.g. temperature. The surface could be viewed as
a sequence of smooth signal coefficient vectors that varied smoothly (interacted) with
temperature. Thus the signal coefficient vector corresponded to the slice of the surface at
a given temperature. In this article, we consider more complicated regressors in the form
of multidimensional signals.
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Figure 1: Signal regressors for sugar experiment, at two different excitation levels.

Notice that the left and right panels of Figure 1 presents “signals” at excitation levels
of 340 and 230 nm, respectively, and one could imagine even more, forming a sequence of
several “extremely narrow images”. Thus a natural question to ask is: What if the signal
regressors become fully two-dimensional, and we wish to take into account spatial infor-
mation in both directions? One could view this problem as multivariate calibration with
multidimensional spectra. Other regressor structures could consist of digitized images,
even beyond two-dimensions. We met unique challenges from a fluorescence spectroscopy
experiment: thus motivating the development of new statistical methodologies that we
propose in this article. The data structure is as follows, each observation consists of the
data pair: (yi, Xi), where i = 1, . . . , m. The response yi is scalar. We assume inde-
pendence among the responses, with common variance var(y) = σ2. The two-dimensional
signal consists of (often thousands of) digitized regressors, Xi, arranged in a p× p̆ array.
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The indexing axes, i.e. v and v̆, that define the support coordinates of Xi are usually on
a regular grid, but the only requirement for our method is that the scatter of digitizations
are common for all i. To illustrate an example of Xi, again consider the chemometric
sugar processing experiment of Bro (1999) with m = 268 experimental units. Figure
2 presents 3997 regressors for one of these sugar units, with a corresponding scalar re-
sponses (Ash=20, Color=10). Indeed the number of regressors are rich, over ten times
greater in number than observations. The regressor support is specified as v? (emission)
with p = 571 channels (275 to 560nm, by 0.5nm) and v̆? with p̆ = 7 channels (230, 240,
255, 290, 305, 325, 340nm). In fact this experiment is a practical implementation of fluo-
rescence spectroscopy: typically there are between 5 to 20 excitation and several hundred
emission channels. The excitation channels are chosen so that high energy makes the sub-
stance emit light. As Figure 2 also demonstrates, fluorescence spectra take a parallelogram
shape due to a physical energy constraint between emission and excitation wavelengths.
Originally discovered for fluorine, the spectrum is characteristic of the substance: thus we
use it for modelling purposes in the developments that follow.

The main contribution of this article is that, rather than smoothing the signal or im-
age themselves, we only aim for a single smooth regression coefficient surface for reliable
prediction of the response. What is essential to our generalized linear regression approach
is that the coefficient surface is smooth on the signal indexing plane. We make the as-
sumption that such smoothness does not harm prediction. We emphasize that, despite the
fact that the amount of detail in a signal can in principle be very large, the information
necessary for the regression coefficient surface can be comparatively small. This can be
especially true in applications presented, as the dimension of the response vector is very
small relative to the number of regressors (pp̆ � m). Unless strong prior information is
available, this implies smooth coefficients.

We use similar ingredients as Marx and Eilers (1999) and Eilers and Marx (2003),
and provide an extremely practical solution for functional linear models as presented in
Ramsay and Silverman (1997, Chapters 10 and 11). We use the entire two-dimensional
signal as regressors for model building. The overarching coefficient surface weighs each
two-dimensional signal. To regularize, we choose to impose some sensible constraints: ones
that take into account the spatial structure of the regressors, while ensuring smoothness in
the coefficient surface. We take two steps towards smoothness: (a) We purposely overfit
the coefficient surface (not the signal) using two-dimensional tensor product B-splines,
making the surface more flexible than needed. (b) We penalize estimation of the surface
using difference penalties on each of the rows and columns of the tensor product B-spline
coefficients.

The first step provides an initial reduction in parameter estimation through smooth-
ness, as we will see that the tensor product B-splines are driven by relatively few parame-
ters. The overfitting in this step is in the spirit of P -splines (Eilers and Marx, 1996) and
is done to circumvent knot selection schemes. The second step ensures further smooth-
ness, regularizing yet allowing general surfaces. We will see that two tuning parameters
associated with the row and column penalties, respectively, allow for continuous control
over the surface. To provide an idea, Figure 3 displays examples of (coefficient) surfaces
using tensor products B-splines. The upper, left panel displays a surface constructed from
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essentially unpenalized tensor products, whereas the lower, right surface displays the lim-
iting plane resulting from large second order penalties on every row and column of tensor
products. The other two panels have a mixture of a low penalty on one axis and a high
penalty on the other.

We term our approach presented in this article as Multidimensional Penalized Signal
Regression (MPSR) and some of its gains include: (a) The entire signal can be used as
regressors. (b) The number of highly spatially correlated regressors can far exceed the num-
ber of observations. (c) The parameterization (and the effective dimension) of the surface
is dramatically reduced; the system of equations is manageable. (d) The candidate surface
can be very general (non-additive), yet heavy penalization will yield polynomial surfaces.
(e) Since the approach is grounded in standard (penalized) regression, delete-one diagnos-
tics (e.g. cross-validation) are accessible. (f) The approach is easily transplanted to the
generalized linear model (e.g. binary response) framework. (g) Since the two-dimensional
signals and single estimated coefficient surface (and twice standard error surfaces) have a
common indexing plane, potentially important regions can be visually identified.

In the next section, we provide a basic overview of tensor product B-splines. Section 3
presents the motivation and development of the penalty and its implementation to estimate
the smooth coefficient surface. Some penalty modifications are briefly discussed. We aim
for reliable prediction, and in Section 4 we discuss cross-validation measures that can
be used to optimally tune the parameters associated with the penalty. We also discuss
effective dimension of the estimated coefficient surface, estimates of variance, and the
construction of twice standard error surfaces. In Section 5, the proposed methodology is
applied to a sugar process data set and compared to several other popular methods. Our
method is extended to the generalized linear model in Section 6. Computational details
are briefly presented in Section 7. We close with a discussion.

2 Tensor Product B-splines in a Nutshell

This section shows the basic simplicity of tensor products, provides the impetus towards
smooth coefficient surfaces, and defines notation. Eilers and Marx (2003, Section 4)
presented Tensor product B-splines in a nutshell. A more thorough presentation of the
subject can be found in Dierckx (1995, Chapters 1 and 2). Figure 4 displays the essential
building block: a bicubic basis function, which is the tensor product of the two univariate
(cubic) B-splines, say B and B̆ (presented on the margins). Again the axes are v and v̆
(e.g. emission and excitation wavelength), respectively. The tensor product has a zero
(non-zero) value in the corresponding zero (non-zero) univariate B-spline support along
v and v̆. Eilers and Marx (1996, Section 2) encapsulated the details of (univariate)
B-splines, including indexing. We first revisit some specifics of a univariate B-spline basis
focusing only on the v axis.

We choose to divide the domain vmin to vmax into n′ equal intervals, using n′+1 interior
knots. Taking each boundary into consideration, a complete basis needs n′ + 2q + 1 total
knots, where q is the degree of the B-spline. Denote the knots as: ϕ1, . . . , ϕn′+2q+1. The
total number of B-splines on the axis is n = n′ + q. For indexing purposes it is convenient
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Figure 2: Two-dimensional signal regressor for one observation from sugar process data.

to associate each B-spline, Br(v) with exactly one of the (first) r = 1, . . . , n knots. The
general properties of a B-spline of degree q include: (i) it consists of q + 1 polynomial
pieces, each of degree q; (ii) the polynomial pieces join at q inner knots; (iii) the joining
points have continuous derivatives up to degree q−1; (iv) a B-spline of degree q is positive
on a domain spanned by q + 2 knots (zero elsewhere); (iv) except at the boundaries, it
overlaps with 2q polynomial pieces of its neighbors; (v) at a given v, exactly q+1 B-splines
are nonzero. A full basis denoted as B has dimension m × n. Also using equally-spaced
knots ϕ̆, a similar division of the v̆ axis is made to index B̆s(v̆) for s = 1, . . . , n̆, possibly
using a different q̆.

Tensor product B-splines exist in the v× v̆ plane. For our presentation, n (n̆) equally-
spaced indexing knots are placed on v (v̆) to yield a regularly-spaced grid, carving out the
plane into subrectangles. The rth-sth single tensor product Br(v)B̆s(v̆), as presented in
Figure 4, is positive in the rectangular region defined by the knots R = [ϕr, ϕr+q+2] ×
[ϕ̆s, ϕ̆s+q̆+2] or on a support of spanned by (q + 2)× (q̆ + 2) knots. Similar to univariate
B-splines, it is convenient to index each tensor product by one of the n× n̆ knot pairs and

Br(v)B̆s(v̆) > 0 for all v, v̆ ∈ R (1)
= 0 for all v, v̆ /∈ R,

r = 1, . . . , n and s = 1, . . . , n̆. Figure 5 sparsely displays nine tensor product B-splines,
which represents only a portion of a full basis. A graphic of a complete basis would be
difficult to appreciate, as the “hills” strongly overlap. Associated with each “hill” in Figure
5, there is an unknown coefficient. A complete tensor product B-splines basis thus has an
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Figure 3: Examples of surfaces that can be generated from tensor products when con-
straining roughness in two dimensions. Effective dimension (upper, left:74); (upper, right:
34); (lower, left: 23); (lower, right: 5).
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Figure 4: Tensor product of two cubic B-splines.

unknown coefficient matrix, denoted by Γn×n̆ = [γrs]. For given knot grid, a very flexible
surface can be approximated, e.g. at the digitized coordinates. For j = 1, · · · , p and
k = 1, · · · , p̆,

α(v?
j , v̆

?
k) =

n∑
r=1

n̆∑
s=1

Br(v?
j )B̆s(v̆?

k)γrs. (2)

The surface is in fact driven by relatively few parameters (nn̆), changing Γ changes the
surface.

2.1 Unfolding Γ and notation

It is computationally efficient to reexpress the surface in a “unfolded” notation. Before
doing so, some further notation is needed. Denote the support coordinate matrix C =
(v? ⊗ 1p̆, 1p ⊗ v̆?) of dimension pp̆ × 2. Let the matrix B?

1 and B?
2 (with respective

dimensions pp̆×n and of pp̆× n̆) be the univariate B-spline basis matrix evaluated at each
entry of the first and second column of C, respectively. The unfolded expression at the
support coordinates then has the standard multiple regression form

vec{α(v?, v̆?)} = T?γ, (3)

where γ = vec(Γ). Define the matrix

T? = (B?
1 ⊗ 1′n)� (1′n̆ ⊗B?

2) (4)
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Figure 5: Landscape of nine cubic B-spline tensor products, a portion of a full basis

of dimension pp̆× nn̆. The symbols ⊗ and � denote Kronecker product and elementwise
multiplication of matrices, respectively. Penalized estimation of γ and its use with two-
dimensional signal regressors are topics discussed in the next section.

3 Penalized Two-Dimensional Coefficient Surfaces

Given the ith regressor matrix Xi = [xijk] of dimension p × p̆, signal regressor support
matrix C, and coefficient surface α(v, v̆), express the mean

µi =
p∑

j=1

p̆∑
k=1

xijkα(v?
j , v̆

?
k), (5)
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where i = 1, . . . , m; j = 1, . . . , p; k = 1, . . . , p̆. Using tensor product B-splines, (2) can
be substituted into (5) yielding

µi =
p∑

j=1

p̆∑
k=1

xijk

n∑
r=1

n̆∑
s=1

Br(v?
j )B̆s(v̆?

k)γrs = x′iT
?γ, (6)

where x′i = vec(Xi). We aim to find a practical solution to minimize

Q(γ) = |y −XT?γ|2 = |y −Mγ|2,

where X is the m × pp̆ matrix of vectorized signals and M = XT?. The use of tensor
product B-splines does reduce the dimension of estimation, but there are still nn̆ unknown
parameters. For even moderately complex surfaces, ill-posed estimation problems can
arise, as it may be necessary to increase the number on knots on the grid to allow enough
flexibility and/or there may be regions without signal data leading to portions of X? with
zeros.

3.1 Implementing the penalty

In the spirit of P -splines, discrete roughness or difference penalties are imposed on γ.
Although we implement penalization on the vector form of coefficients γ, the motivation
and mechanics of penalization is perhaps best seen through the matrix of coefficients Γ.
In fact a separate difference penalty is assigned to each of its rows and each of its columns.
The penalties have structure to effectively break the linkage in the penalty from row to
row or from column to column. The objective function is now modified, using penalties,
to minimize

QP (γ) = Residual SS + Row Penalty + Column Penalty (7)

=
m∑

i=1

(yi − x′iT
?γ)2 + λ1

n∑
r=1

γr•D
′
dDdγ

′
r• + λ2

n̆∑
s=1

γ′•sD
′
d̆
Dd̆γ•s

= |y −Mγ|2 + λ1|P1γ|2 + λ2|P2γ|2.

The penalty has two parts: the first (second) puts a difference penalty on the rows
(columns) of Γ, where γr• (γ•s) denotes the rth row (the sth column) of Γ. The penal-
ties are compactly represented using Kronecker products and matrix notation: P1 =
(D′

dDd) ⊗ In̆ and P2 = In ⊗ (D′
d̆
Dd̆), where I denotes the identity matrix and d denotes

the order of the difference penalty. The dimensions of P1 and P2 are fixed with n̆(n−d)×nn̆
and n(n̆ − d̆) × nn̆, respectively. The order of the penalties (d, d̆) are in principle addi-
tional hyper-parameters, but in practice are usually fixed by the user. Some guidelines
are given below in Section 4.2. The non-negative λs essentially provide continuous control
over smoothness. We see from (7) that there are two separate λs to weigh the penalty, one
associated with rows and one associated with columns of Γ. Yet the influence or weight of
the penalty is the same for each row, the same for each column, but are allowed to differ
from rows to columns. Figure 6 displays a possible scenario resulting from strong row (top
panel) and strong column (bottom panel) penalization using a second order penalty on
each row and column with large λ1 and λ2. Notice that the limiting behavior for each row
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Figure 6: Nine cubic B-spline tensor products, with a strong linear row penalty (upper
panel) and a strong linear column penalty (lower panel)

and column is linear, but reversals of slopes are possible from one row (or column) to the
next.

An example of a first and second order penalty matrix D for small n = n̆ = 3 (for one
row or column of Γ) looks like

D1 =

[
−1 1 0

0 −1 1

]
D2 =

[
−1 2 −1

]
.

Each row (column) of Γ gets such a banded D matrix. Hence the complete column penalty
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has the contrast structure

P1 =

 1 0 0
0 1 0
0 0 1

⊗D1 =



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1


,

whereas the corresponding complete row penalty takes the form

P2 = D1 ⊗

 1 0 0
0 1 0
0 0 1

 =



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1


.

Of course the order of the penalty can vary from P1 to P2.

The explicit P -spline solution for (7) is

γ̂ = (M′M + λ1P
′
1P1 + λ2P

′
2P2)−1M′y. (8)

We see from (8) that the system of equations remains nn̆ even as the resolution of the
two-dimensional signal, pp̆, increase dramatically. The predicted values are ŷ = Mγ̂. The
effective “hat” matrix is

H = [hii′ ] = M(M′M + λ1P
′
1P1 + λ2P

′
2P2)−1M′.

3.2 Modifications for intercept term or additional penalization

The model can be modified to include other factors or covariates, and the objective (7)
could have additional (polynomial) penalties. In the examples to follow, we include an
intercept term α0, and an additional overall ridge penalty λ0|γ|2, λ0 > 0. Thus the
modified P -spline solution becomes

(α̂0, γ̂
′)′ = (M̃′M̃ + λ1P̃

′
1P̃1 + λ2P̃

′
2P̃2 + λ0Ĩ)−1M̃′y,

with M̃ = (1m|M), P̃ = (0|P ), and Ĩ = diag(0, Inn̆). The zero vector in P̃ and Ĩ ensures
an unpenalized intercept.

4 Optimization of the penalty

We aim for reliable prediction. The P -spline coefficient surface model is driven by the non-
negative penalty regularization parameters (λ1, λ2, λ0), thus we have continuous control
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over smoothness. Cross-validation can be an effective, prediction oriented, approach to
specify the penalty parameters. Since we use penalized least squares, we highlight the
simplicity of delete-one cross-validation. We minimize:

CV(λ1, λ2, λ0) =

√√√√ 1
m

m∑
i=1

(yi − ŷ−i)
2,

where ŷ−i is the predicted value for ith data point using a model trained without the ith
data point. For the model using all m observations, delete-one cross-validation standard
error of prediction can be quickly calculated:

CV(λ1, λ2, λ0) =

√√√√ 1
m

m∑
i=1

(
yi − ŷi

1− hii

)2

, (9)

since both ŷ and the diagonals of H are easily obtained. See Myers (1990) for a nice pre-
sentation of delete-one CV. The optimal (λ1, λ2, λ0) can be found, e.g. using a grid search
to minimize CV. Possibly there are other penalty terms and their corresponding parame-
ters which would lead to a higher dimensional grid search. Other optimization approaches
can be taken, such as 10-fold cross-validation or validation through an independent data
set.

4.1 Effective dimension, estimated variance, standard error surfaces

The effective dimension of the estimated coefficient surface can be approximated by

eff dim(α̂) = trace(H),

(Hastie and Tibshirani, 1990) and the error variance component estimated by

σ̂2 =
|y − ŷ|2

m− trace(H)
,

where m − trace(H) approximates the residual degrees of freedom. Using a permuted
form of H, trace(H) = trace{M′M(M′M + λ1P

′
1P1 + λ2P

′
2P2 + λ0I)−1} is computed

more efficiently. For given λ1 and λ2, the sandwich estimator for the estimated P -spline
coefficients is expressed as:

var(γ̂) ≈ σ̂2(M′M + λ1P
′
1P1 + λ2P

′
2P2 + λ0I)−1M′M(M′M + λ1P

′
1P1 + λ2P

′
2P2 + λ0I)−1.

A translation back to the variance of the estimated coefficient surface, α̂ = T?γ̂, results
in

var(α̂) = T?var(γ̂)T?′
. (10)

Twice standard error surfaces can be constructed using ±2 times the square root of diag-
onals of var(α̂).
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4.2 MPSR recipe

We suggest the following MPSR recipe:

1. Place a generous number of tensor product B-splines on a rectangular grid on the
v × v̆ plane;

2. For computational efficiency attempt to keep nn̆ < 1000;

3. Use row and column penalty order of d = 2 or 3;

4. Measure performance using cross-validation or an information criterion;

5. Vary (λ1, λ2, λ0) on a logarithmic grid;

6. Find minimum or maximum of performance criterion;

7. Report γ̂ as the compact form of the estimated coefficient surface.

5 Example: sugar process data

We analyze the m = 268 observation, pp̆ = 3997 variable, two response variable (Ash
content, Color) sugar fluorescence data set taken from Bro (1999). Sugar was sampled
continuously during 8 hours to make a mean sample representative for one “shift”. Sam-
ples were taken during 3 months of operation in the late autumn from a sugar plant in
Scandinavia. The sugar was sampled directly from the final unit operation of the process.
The data and a detailed description can be found at www.models.kvl.dk.

Figure 2 (from Section 1) presented the structure of the regressors for the first obser-
vation of the sugar fluorescence data set. Recall that the two-dimensional signal consists
of 571 × 7 = 3997 regressors, with support: v? (emission) with p = 571 channels (275 to
560nm, by 0.5nm) and v̆? with p̆ = 7 channels (230, 240, 255, 290, 305, 325, 340nm). In
all analyses to follow the m× pp̆ regressor matrix was mean centered, but not scaled. All
MPSR models presented included an intercept term, and used n = 10 (excitation), n̆ = 25
(emission).

The response (quality parameter) considered is Ash content (determined by conductiv-
ity and given in units of percentage), which measures the amount of inorganic impurities
in the refined sugar. The refined sugar was dissolved in non-buffered water (2.25 g/15 ml)
and the solution was measured in a 10×10mm curvette on a PE LS50B spectrofluorometer.

A prediction performance study for these data was conducted for the MPSR method,
so that the results are directly comparable to the previous study of Eriksson et al.
(2000, Their Table 2). These authors looked at the prediction performance of a variety of
methods, including (combinations of): partial least squares (PLS), orthogonal signal cor-
rection (OSC), multiplicative signal correction (MSC), standard normal variate transform
(SNV), wavelet models (Daubechies-4, Symmlet-8, Coiflet-2; wavelet or discrete packet
transform). All wavelet methods also used PLS and OSC1. Like these authors, we first
sorted the observations in descending order according to the Ash (to suppress the extent of
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autocorrelation among samples). Also, two subsets comprising all the odd-numbered and
all the even-numbered observations were created. Training models were then established
on the odd-numbered observations, followed by performing external predictions for the
even-numbered samples, and visa versa. Thus our reported prediction performance refers
to external prediction.

Table 1. MPSR model summary of external RMSEP for various penalty orders. Cap-
tion:(o) training set (prediction set) used odd (even) numbered observations, (e) training
set (prediction set) used even (odd) numbered observations.

Penalty order RMSEP (o) RMSEP (e) ( λ1, λ2) (o) (λ1, λ2) (e)
d, d̆ = 4 1.84 1.68 (177, 1e7) (10, 5.62e3)
d, d̆ = 3 1.83 1.66 (1.77e3, 1e4) (3.16, 1e4 )
d, d̆ = 3+ridge 1.82 1.62 (1e3, 5.6e3, 177) (1e-4, 5.6e3, 177)
d, d̆ = 2 1.83 1.65 (1e-8, 1e5) (3.16, 1e4)
d, d̆ = 1 1.84 1.68 (177, 3.16e4) (177, 3.16e3)

Table 1 presents the root mean square error of prediction (RMSEP) for the external
prediction set, using optimal MPSR models with several orders of the penalty. Table
2 summarizes comparable RMSEP values for various models used by Eriksson et al.
Effective dimensions of the MPSR estimated coefficient surfaces ranged from (29, 38)
(o) and (45, 52) (e). We find MPSR to be a competitor. For the even (e) training
model/ odd (o) validation, MPSR’s RMSEP is lower than values reported for (PLS, MSC,
SNV), and is within less than 5% of the values reported for all the wavelet methods and
OSC1. The lowest MPSR RMSEP=1.62 corresponds to the model with d = d̆ = 3 and
a ridge penalty, yet all other penalty orders found similar values (approximately within
3%). For the odd (o) training model/ even (e) validation, RMSEP values were higher for
all methods. MPSR’s RMSEP was about 1.83 and still competitive, performing better
than (MSC, SNV), but approximately 7% higher when compared to any wavelet method.
Interestingly, PLS and OSC1 were the best performers with a RMSEP value of 1.66 in this
case. To give an idea of the range of Ash and MPSR performance, Figure 7 displays the
scatterplots of the observed vs. predicted Ash content for both the (o) and (e) optimally
trained MPSR models.

Perhaps a more honest way of reporting external prediction performance is to first
optimize the training model based on CV, e.g. delete-one CV or some other measure –
then given this optimally trained model, measure the external prediction performance. For
the MPSR models, this would translate to first choosing the training (λ1, λ2, λ0) based
on minimizing delete-one (training) CV. For the mentioned wavelet methods, one could
do delete-one (training) CV for all combinations of PLS order, OSC order, coefficient
extraction, and so on. One of the beauties of our MPSR method is that delete-one CV
can be computed extremely swiftly, as outlined in Section 4. Table 3 reports external
RMSEP values for MPSR models with various orders, but first optimizing the λs using
(9).
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Figure 7: Scatterplots of observed vs. predicted Ash content, for both odd and even trained
MPSR (optimal) models with d = d̆ = 3.

Table 2. Summary of RMSEP for several other models (Eriksson et al., 2000) .
Numbers directly comparable to Table 1 above. Caption:(o) training set (prediction set)
used odd (even) numbered observations, (e) training set (prediction set) used even (odd)
numbered observations.

Method RMSEP (o) RMSEP (e) PLS comp. Coeffs
PLS 1.66 1.99 3 -
OCS1 1.66 1.63 2 -
MSC 2.05 2.10 6 -
SNV 2.03 2.07 6 -
OSC1 Dau4 DWT 1.69 1.60 2 189/183
OSC1 Dau4 WPT 1.69 1.60 2 246/228
OSC1 Sym8 DWT 1.69 1.60 2 167/173
OSC1 Sym8 WPT 1.69 1.60 2 197/218
OSC1 Coi2 DWT 1.69 1.60 2 164/170
OSC1 Coi2 WPT 1.69 1.60 2 200/223
Dau4 DWT 1.66 1.99 3 115/116

Table 3. MPSR model summary of external RMSEP for various penalty orders. The
optimal penalty weights are also given and determined by minimizing delete-one CV of the
training set. Caption:(o) training set (prediction set) used odd (even) numbered observa-
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tions, (e) training set (prediction set) used even (odd) numbered observations.

Penalty order RMSEP (o) RMSEP (e) ( λ1, λ2) (o) (λ1, λ2) (e)
d, d̆ = 4 1.98 1.75 (1e6, 1.77e4) (1e-7, 1e7)
d, d̆ = 3 1.92 1.78 (1e7, 5.62e5) (1e7, 562)
d, d̆ = 3+ridge 1.84 1.99 (1e-7, 5.6e4, 1e4) (3.2e5, 1e-8, 3.2e5)
d, d̆ = 2 1.92 2.02 (5.62e4, 5.62e4) (1.77e5, 5.62e6)
d, d̆ = 1 1.88 1.98 (5.62e3 , 5.62e4) (1.78e4, 1e6)

A nice feature of MPSR is that the spatial information of the regressors is built into
the model. Thus one can actually see the relative magnitudes for various regions of the
coefficient indexing plane. Figure 8 displays one of the optimal coefficient surface for even
training (d = d̆ = 3) and the response Ash. One can clearly see its interactive features.
This MPSR model used 250 cubic tensor products, with n = 25 along emission and
n̆ = 10 along excitation, and the optimal penalty parameters were λ1 = 3.16 and λ2 = 104

(d = d̆ = 3), reducing the effective dimension of the estimated surface to approximately
48.1. If desired, approximate twice-standard error surfaces can also be constructed using
(10). As a tool to help identify important regions of the image for prediction, the optimal
surface can be scaled by inverse standard error to provide a t-like surface, as presented in
Figure 9.

6 Extensions to the generalized linear model

Since the coefficient surface model is grounded in (penalized) least squares regression
techniques, the methodology can be easily transplanted into the generalized linear model
(GLM). A penalized scoring algorithm is used, e.g. with binomial or Poisson responses.
The mean response is now modelled using through a (monotone) inverse link function h,

µ = h(XT?γ) = h(Mγ) = η.

The objective is now to maximize log-likelihood function, l(γ), subject to penalization

l?(γ) = l(γ)− λ1|P1γ|2 − λ2|P2γ|2.

This results in the iterative solution

γ̂t+1 = (M′ŴtM + λ1P
′
1P1 + λ2P

′
2P2)−1M′Ŵtẑt,

where the weight matrix W = diag{h′(η)}/var(Y ), and the working vector is z = (y −
µ)/h(η) + η. All of the specifics of the GLM can be found in McCullagh and Nelder
(1989).

In choosing optimal penalty parameters for GLMs, it is often easier to minimize an
information criterion (e.g. Aikaike’s AIC) than it is to use cross validation measures. For
example, we could seek an optimal (λ1, λ2) by minimizing

AIC = deviance(y; γ̂) + 2trace(H),
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Figure 8: Optimal estimated coefficient surface (e) for sugar data with eff dim=48.1 and
d = d̆ = 3.

a simple function of goodness-of-fit and effective dimension. Upon convergence

trace(H) = trace{M′ŴM(M′ŴM + λ1P
′
1P1 + λ2P

′
2P2)−1}.

Other criteria can also be used. For example, in logistic regression maximizing the percent
correct classification of a validation data set can be a useful approach to determine optimal
penalty parameters. Similar to the presentation in Section 3.2, penalties or an intercept
term can also be added in this generalized MPSR setting.
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Figure 9: Surface of t-like statistics, i.e. the above optimal estimated coefficient, divided
by its standard error.

7 Computational details and software

For computational purposes, an explicit solution for (7) can be found efficiently through
data augmentation, i.e. γ̂ = (M′

+M+)−1M′
+y+, where

M+ =


M√

λ1(Dd ⊗ In̆)√
λ2(In ⊗Dd√

λ0Inn̆)

 and y+ =


y
0
0
0

 .

Additional column augmentation can be made to incorporate an intercept term and addi-
tional row augmentation could implement another penalty. S-PLUS functions are available
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at www.stat.lsu.edu/bmarx which use this data augmentation as outlined above. Among
other arguments, these functions allow for GLM fitting and twice standard error surfaces
in plotting. The two-dimensional signals can be input as stacks of matrices or unfolded in
vector form.

8 Discussion

We considered the ill-posed regression problem with a scalar response and rich regressors in
the form of a multidimensional signal. Rather than performing variable selection or using
the signal at one excitation or additive signal regression, we use the entire two-dimensional
signal as regressors while taking advantage of its indexing information. What is essential
to our approach is that the coefficient surface (not the signal regressors) can be assumed
to be smooth without doing much harm to prediction. Our approach proposed a generous
number of (penalized) tensor product B-splines to estimate a smooth coefficient surface
for the regressors. This was the first step towards reducing the dimension of parameter
estimation. Two penalties, one on the rows and one on the columns, ensured further
smoothness. The amount of regularization was determined by prediction oriented criteria.

We emphasize that the goal is not to smooth the image themselves, which might need
a (very) large number of tensor products. We only aim at smooth (multi-dimensional)
regression coefficients. The amount of detail in the images can in principle be very large,
while the information for a regression model is comparatively small, only the relatively
small dimension of the response vector y. The effective dimension of the coefficient surface
(hyper-volume) has to be (much) smaller than the number of observations. Unless strong
prior information is available, this implies smooth coefficients. We realize that smoothness
of the coefficients surface is a only one type of constraint, but we find it an extremely
practical one. The two-dimensional signal regressors need not be smooth to impose such a
constraint; see the points of Marx and Eilers (1999, Section 3.3) with one-dimensional
signal regressors.

We summarize several strengths to our approach: a) The number of regressors pp̆ can
far exceed the number of observations m. (b) The estimated coefficient surface can be
very general (non-additive or polynomial), yet with often modest effective dimension. (c)
Since the approach is grounded in standard (penalized) regression, the approach is easily
transplanted to the generalized linear model. (d) Customized designer penalization is
possible.

We stress that our MPSR approach, is not only a competitor, but has some clear
advantages (relative to PLS, OSC, MSC, SNV, wavelet methods, or combinations thereof).
Unlike other methods, MPSR takes full advantage of the natural spatial information of
the signals. MPSR is simple to use: it uses the entire (“raw”) signal and works “right out
of the box” without needing PLS/ OSC preprocessing, padding, or extraction of wavelet
coefficients. The method is intuitive in that you can actually see what is going relative
to the spatial indexing plane, i.e. how the coefficient surface is used to contrast the two-
dimensional signals for prediction. Further twice standard error surfaces serve to help
identify potentially important signal regions. Moreover by virtue of easy computations of
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delete-one CV for MPSR, optimizing the training model can easily be done– allowing then
for a fair assessment of an external validation. Calculations are fast, especially with these
models that used for example a modest n = 10, n̆ = 25.

We emphasize that, as presented, tensor products of B-splines are very well suited to
multidimensional signal or image regression. Kernel smoothers or local likelihood can-
not be used, because they have no parameters to characterize the coefficient surface. In
principle thin-plate splines (TPS) could be used, but they have the problem of too many
parameters. The fluorescence data matrix has 7 times 571 elements. The number of knots
of the TPS would be the same, leading to very large systems of equations. A way out could
be to use thin-plate regression splines (Wood, 2003). Wood proposes to approximate a
TPS by a limited number of basis functions. Instead of taking such a detour, it seems
more effective to start directly with simple basis functions. We also note our approach
proposes a more general penalization, as both variants of TPS impose an isotropic penalty,
which means that the amount of smoothing is the same for both dimensions.

In our application, the physical background of the measurements dictated the excita-
tion and emission axes of fluorescence, and it was natural to allow different amounts of
smoothing. When working with real images, the axes might be relatively arbitrary, only
determined by the orientation of the imaging instrument. Then it might be natural to
have an isotropic penalty, forcing both penalty parameters to be equal. Unfortunately,
isotropic doe not imply rotation invariant: rotation of the axes might lead to different
estimates of the coefficient surface. We note that it is possible to extend the penalties
with mixed differences. Presently we use penalties that either work exclusively on the
rows (columns) of the matrix of coefficients of tensor products. A mixed penalty would
work on both rows and columns.

Another attraction of tensor products of B-splines is the straightforward extension to
three or more dimensions. (Eilers, Currie and Durbàn, 2004). The same holds for the
discrete roughness penalties (of any order). In contrast, ”thin-(hyper)-volume regression”
splines with non-isotropic roughness penalties look very challenging.

Although we did not pursue the issue of scattered data, our model can be extended to
less-regular observation schemes. The sugar spectra all had the same domain, a rectangle
with a missing corner. We can envision applications in which the X data are scattered,
with a different scattering pattern for each observation. An example would be estimation
of averages or totals from scattered spatial samples.

A penalty is especially important in cases where the signals have sharp boundaries with
zero regions, like in these excitation/emission energy constraints. Without the penalty,
there is yet another layer of ill-conditioning due to the zeros in the unsupported “triangle”.
In fact the penalty remedies the problem and effectively extrapolates the unsupported re-
gion. Further, we found that our proposed methodology does not just attempt to fulfill
minimum regularization requirements, rather it can easily accommodate a natural and
dramatic growth in the numbers of regressors, for example as future spectroscopy instru-
mentation improves resolution. In short, the system of equations remains nn̆, even as pp̆
becomes very large.

The methods developed can be used beyond fluorescence spectra; they can also be used
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for medical/grey-scale, or other images. The mathematics allow for higher dimensions, e.g.
images in time. Future research could also model image regressors while controlling for
other (smooth) covariates, factors, signals, or varying coefficient terms, along the lines of
Eilers and Marx (2002).
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