Chemometrics and Intelligent Laboratory Systems 217 (2021) 104386

journal homepage: www.elsevier.com/locate/chemometrics

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

=
CHEMOMETRICS

Multivariate calibration on heterogeneous samples R

Bin Li?, Brian D. Marx®", Somsubhra Chakraborty °, David C. Weindorf

2 Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, 70803, USA

b Agricultural and Food Engineering Department, IIT Kharagpur, 721302, India

Check for
updates

¢ Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, MI, 48859, USA

ARTICLE INFO ABSTRACT

Keywords:

Multivariate calibration
P-splines

Signal regression
Varying-coefficient model

Data heterogeneity has become a challenging problem in modern data analysis. Classic statistical modeling
methods, which assume the data are independent and identically distributed, often show unsatisfactory perfor-
mance on heterogeneous data. This work is motivated by a multivariate calibration problem from a soil char-
acterization study, where the samples were collected from five different locations. Newly proposed and existing
signal regression models are applied to the multivariate calibration problem, where the models are adapted to

handle such spatially clustered structure. When compared to a variety of other methods, e.g. kernel ridge
regression, random forests, and partial least squares, we find that our newly proposed varying-coefficient signal
regression model is highly competitive, often out-performing the other methods, in terms of external prediction

error.

1. Introduction

In some applications, regressors come in the form of a spectra, such
that they resemble a signal or curve. This form of regressors can be
problematic to “traditional” statistical modeling, in that one is often
faced with an ill-conditioned estimation problem. Our work is motivated
by a recent study in environmental soil science, where hyperspectral
sensors have been widely used for rapid, non-invasive, and cost-effective
natural resource management. In our application, visible near-infrared
diffuse reflectance spectroscopy (VisNIR DRS) is used to predict multi-
ple soil parameters, which we refer to as response variables.

Certain modeling challenges arise, as the distribution of the calibra-
tion samples is not always homogeneous. Such heterogeneity can arise
for a variety of reasons, including clustered sampling from a range of
geographic locations. Both global and local model fitting approaches
often show unsatisfactory prediction performance. The former, which
ignores the data heterogeneity, can be too rigid to model the non-
homogeneous data. The latter, also called clusterwise regression [1], ig-
nores the joint information across different clusters and fits each cluster
separately. Refs. [2,3] proposed the partial least squares (PLS) regression
and principal component regression (PCR) approaches for clusterwise
regression on functional data. The latent mixed effect model [4] is
another possible approach to model heterogeneous data. However, the
EM-type algorithm is typically computationally intensive and requires
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multiple steps to converge. Ref. [5] developed a locally weighted
modeling approach using the perdetermined ordinal group information
to handle the heterogeneous data problem.

In this paper, newly proposed and existing signal regression models
are applied to the multivariate calibration problem, where the models are
adapted to handle such spatially clustered structure. We further compare
these models to other approaches, including: random forests, kernel ridge
regression, partial least squares, and principal component regression.

In the next section, we provide our motivating example that outlines
the data structure and notation. We then move to Section 3, which pro-
vides a survey of various existing and newly proposed penalized signal
regression models. Section 4 furnishes the details of the design parame-
ters and optimal tuning aimed at quality external prediction, whereas
Section 5 fully explores the comparison of the models presented. We
close with a Discussion, elaborating on the reasons why signal regression
models are competitive, while in some cases outperforming some ma-
chine learning approaches.

2. Motivating example

The dataset contains a total of 900 soil samples collected from five
different locations: Seward County (Nebraska, 225 samples), Kern
County (California, 225 samples), Lubbock County (Texas, 225 samples),
Clay County (Minnesota, 75 samples), and the country of France (150
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samples). In France, all 150 composited soil samples were collected in
Milly-la-Forét. Sampling sites were randomly selected across the field
using ArcGIS software. Fig. 1 shows the geographic map of the five
sampling locations, also providing an impression of the vast distances
between the sampling locations. Eight physicochemical properties were
measured for all 900 soil samples. They are: Cation Exchange Capacity
(CEC, mEq/]), Electrical Conductivity (EC, uS/cm), % Total Nitrogen
Level, % Total Carbon Level, % Soil Organic Matter (SOM), % Clay, %
Sand, and % Silt. The additional soil parameter Loss of Ignition (LOI) was
removed from the study, as it was found to be highly collinear with SOM.

All samples were scanned using a portable PSR 3500 VisNIR spec-
troradiometer (same one for all the samples) with a spectral range of
350-2500 nm. After smoothing and taking first-order derivatives (dif-
ferences), the processed reflectance spectra were resampled from 360 to
2490 nm, by 10 nm, resulting in 214 wavelength channels. Often first
differences are used to remove uninformative vertical shifts among the
spectra. A portion of the dataset was originally used in Ref. [6]; in which
the details of the sample collection, preparation and data measurement
are described. We can use the same spectral regressor information to
separately model each of the eight soil responses; said differently, the
regressors remain the same, while the response variable changes. The left
panel of Fig. 2 is a visual representation of the spectra regressor matrix X,
of dimension m = 900 rows by p = 214 columns, summarizing the
digitized spectra by 10 nm intervals.

The right panel of Fig. 2 will serve as our proxy spatial representation
for traditional longitude and latitude geographical coordinates. Given the
distances between the various locations of the sampled states, com-
pounded by France being on another continent, we choose spatial rep-
resentation using the first two principal components of X (capturing over
70% of the variation) and found separation among the sampling loca-
tions. The ratio of between clusters sum of squares (BSS) and total sum of
squares (TSS) is 80.9% indicating a good separation for the five clusters
and evidence for the consideration for some form of a spatial effect.

3. Penalized signal regression and model variations

In soil science, the applicability of VisNIR DRS-based prediction of
soil properties is dependent on robust calibration models. The regression
goal is to relate a scalar response (y) to the signal regressors (X) yielding a
multivariate calibration model that has quality external (future)
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prediction. We begin with the basic model, which stems from the foun-
dational work found in Refs. [7,8] and can be expressed as

() = p; = / H(V)B)dv, )

where x;(v) is the functional regressor, and S(v) is the coefficient function,
each associated with the continuous index v (wavelength). We see that
through the coefficients, prediction related to the signal regressors varies
with v. We can get an idea of such from Fig. 2 (left panel), which provides
a visual for functional regressors. The notion of a coefficient function
(sometimes referred to as a contrast template) is further displayed ahead
in Fig. 3 (also the left panel). In fact, our example does not have
continuous x;(v) but rather a discrete digitization of the signal onp = 214
evenly spaced channels, resulting in a high-dimensional regression model

214

Hi = injﬂ,* 2)
=

We next summarize our main modeling approaches, which at their
core address regression on signals or spectra. Despite the fact that we
have a m > p, and thus an apparent “full rank” regression setting, the
model y = Xp, for high dimensional f, is compromised. There is severe
collinearity among the columns of X. Additionally, there is also an
important ordering index for the spectra, and it may be sensible to
explore statistical models that utilize this additional structure. The ap-
proaches taken here constrains fB: our choice is a smoothness. We
emphasize that the coefficient vector is being smoothed, not the spectra,
in a way that either assumes the smoothness constraint for the co-
efficients is a reasonable assumption or non-detrimental toward predic-
tion. For a complete overview, refer to Eilers and Marx (2021, Chapter 7).
Ref. [9] also provides an excellent survey of functional regression
approaches.

3.1. Penalized signal regression (PSR)

This model fits a smooth signal regression model onto the soil re-
sponses, using P-splines. The main idea of the Penalized Signal Regres-
sion (PSR) approach [10] is to constrain (smooth) f, while optimizing
tuning for good external prediction performance. The regression model
reexpresses the coefficient vector as f = Ba:

Fig. 1. Geographical map of where samples are taken in the United States and France.
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Fig. 2. Left: five sample spectra (first derivative) from each location. Right: PCA plot of 900 samples from 5 locations with different symbols and colors, capturing over
70% of the spatial variation and depicting good cluster separation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)
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Fig. 3. For the response EC: PSR coefficient curve (left) and the fitted 2D response surface f,, in PSR-geo.
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where X = {x;;} (i = 1: m; j = 1: p), the (rich) B-spline basis matrix B (of
dimension p x n) is constructed along the index of the spectra (v), and «
represents the B-spline coefficients of length n (usually of lower dimen-
sion than f). According to P-spline protocol, ample and evenly spaced
knots are used. The above expression can be written in matrix repre-
sentation through

u=Xp=XBa="Ua, (€)]
with modest dimensional effective regressors U of dimension m x n.
The penalization presents itself through the minimization of the
following objective:
S(a) = |ly - Ud||* + 2|Da*, )
with the difference matrix D having banded structure such that its rows
consist of polynomial contrasts of order d. Notice that the penalties are
directly on a (the B-spline coefficients) with positive tuning parameter A
regularizing smoothness in @, and thus . See Ref. [11] for more details
about the penalty. The explicit solution for PSR is thus:

a=(UU+D'D)"'UYy, (6)
and the corresponding estimated coefficient vector for the spectra is then
B = Ba. Fig. 3 (left panel) shows the optimal PSR estimate j for the
response EC. Section 4 provides details of optimal tuning based on cross-
validation measures.

3.2. Additive signal and spatial model (PSR-geo)

This model brings in “spatial” effects. First, PSR is applied by
regressing the soil parameters onto the spectra, and then constructing the
residuals. The PC1&2 scores from the signal regressors are computed as
the orthogonal proxy spatial variables. Using the PC1&2 scores as inputs,
we fit a two-dimensional smooth surface, called fg,, on the scattered PSR
residuals with anisotropic penalization of tensor product P-splines. For
details on two-dimensional smoothing, see Eilers and Marx (2021,
Chapter 4). The model has the form

U= Ua+ f,.o(PC1,PC2), @)

where tuning is performed sequentially on each term in the model. For
the response EC, Fig. 3 shows the optimal PSR coefficient curve (left) and
the corresponding optimally fitted two-dimensional response surface on



B. Lietal

the residuals, using tensor product P-splines. This right panel highlights a
desirable feature associated with the PSR-geo model, i.e. the spatial in-
formation of the samples is built into the model through PC1&2. Further
the user can better understand the relative magnitudes for various re-
gions of the PC plane, as well as its interactive features.

3.3. Varying-coefficient penalized signal regression (PSR-VC)

Interactive structure is now allowed through varying-coefficient
penalized signal regression model. The soil responses are each
regressed onto the spectra resulting in a smooth coefficient vector along
v. However we now allow this contrast template to vary over another
measured covariate t, for example the first PC. The next section will bring
in other PCs. In essence a two-dimensional coefficient surface is pro-
duced, and then sliced at a particular level of the covariate t. With some
of the technical details described below, such a varying coefficient PSR
approach is the topic of [12]. The problem is effectively solved by using a
modified tensor product basis constructed with U = XB (for the spectra)

and B (as the B-spline basis for the covariate t). For the ith observation,
with signal x; (j = 1: p) and covariate t;, the varying signal coefficient
construction stems from the following:

ﬂi arr
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The above expression (8) can be written in matrix representation
using Kronecker products. Consider “unfolding” the coefficient surface
and expressing the mean in a standard multiple regression of the form

vec(u) = Ua, ©)

where U = (U ® l;i) o1, ® B ), @ is the nn — vector of tensor co-
efficients, and the notation ®, © denotes Kronecker and element-wise
products, respectively. The dimension of U is m x nn .

The PSR-VC approach takes a penalized least squares approach by

minimizing the following objective:
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Op(@) Residual SS + Row Penalty + Column Penalty

|y — Ual|)* + Ad Pa + 1dPa.

Notice that there are two penalties placed directly on a (tensor product

coefficients) with (anisotropic) tuning parameters: A, 7. The compact
representation of the difference penalties associated with the rows and

(D'D) ® I and P =I,® (5 D ), which
is needed for the model form given in (9). We suppress the notation that
reflects the penalty order, but in practice we usually use second or third
order differences. The explicit PSR-VC solution results as

columns of the tensor basis is P =

a=(UU+IP+1P)'UYy,
which naturally has to be reshaped to construct the two-dimensional
surface.

Using the PSR-VC model for the EC response, Fig. 4 shows the optimal
varying signal coefficient surface (left) and six slices of the smooth co-
efficient vectors at fixed levels of the varying index (PC1). We find that
estimated coefficient curves for the signal vary wildly across t, indicating
a strong interactive spatial effect.

3.4. Two-dimensional varying-coefficient PSR models (PSR-2DVC)

Building on the PSR-VC model, we present a new model that is not
published to date. We fit a varying-coefficient penalized signal regression
model onto the soil responses, but now allow the spectra coefficients to
vary along a two-dimensional surface defined by two covariates t and f.
In our application, these covariates are chosen to be the spatial proxy
variables, PC1&2. Extending (8) to higher dimensions, we have:

a(vj, t uii)

B,(v)B (1

M=~
M:

Hi Xij r)Bq(ii)“qu

1

.
Il

1 s=1

r

q=

Z ir isbiyGtrg.

1 g=1

M:\

(10)

r=1 s

The bracketed formula in (10) clearly shows that the (smooth) signal
coefficient vector varies smoothly with “spatial” coordinates associated
with sample i, i.e. at location (¢ ;,;), and as such is then applied as the
contrast template for its corresponding digitized signal regressors. As
with PSR-VC, the PSR-2DVC expressions can also be written in matrix

20

Coefficient

T T T T
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T
500

Fig. 4. PSR-VC model for response EC: Optimal varying signal coefficient surface (left) and six slices of the smooth coefficient vectors at fixed levels of the varying

index (PC1).
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representation. Now (8) requires higher dimensional tensor expressions
as follows:

U=[Us(1,0L)] o1, B 1)1, 1,eB),

and a is the nn n— vector of tensor coefficients. With this additional
dimension, the tensor representation of penalties becomes

with the explicit PSR-2DVC solution @ = (UU+ AP+ A P +iP)"'Uy.
We will see in Section 5 that this regression model is highly competitive,
even when compared to machine learning approaches aimed toward
quality external prediction.

Using the PSR-2DVC model for the EC response, Fig. 5 shows the
optimal varying signal coefficients in with PC1 and PC2 fixed at zero
through the 4D plot (left) and the corresponding smooth coefficient curve
(right). The smooth spectral coefficient vectors are now allowed to vary
continuously and smoothly along the entire PC1&2 surface. The 4D plot
uses the color to represent the level of the 4th dimension (i.e. the size of
the coefficient). Like both Figs. 3 and 4, the red/green/blue represent the
large/medium/small coefficient size, respectively. Comparing the esti-
mated signal coefficient vector for the two varying-coefficient ap-
proaches, it appears that those from PSR-VC may be generally rougher
than those from PSR-2DVC. This is seen when contrasting the right panels
of Figs. 4 and 5. An explanation may be that the changes across the one-
dimensional index t in the former needs much more flexibility than those
changes allowed in across a more generous two-dimensional indexing

surface (t ,t), in the latter. The lighter smoothness required with a more
restricted index is likely a compensation for the loss of index dimension.

4. Design and optimal tuning

The above modeling approaches require some design parameters,
such as the size of the B-spline basis and the order of the penalty. Since
we are using P-spline models, as mentioned, all of the basis knots are
evenly spaced. Further, for simplicity in presentation above, we have not
included an intercept term in any of the above PSR expressions. In
practice, we find that an intercept term improves the model fit, and we
included it in all of our models. Thus a column of ones has been
augmented to the spectral X matrix, with proper adjustments to the
penalty term to ensure that this associated intercept remains

Coefficient
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unpenalized. See Ref. [13] (Chapter 7) for such details.

Table 1 provides the signal regression design parameters, including
the size of the basis and the order of the difference penalty. In all cases,
we used cubic B-splines and third order penalties. Technically, the spline
degree and penalty order can also be viewed as additional hyper-
parameters, but our choices are commonly used as defaults. A rich
basis was implemented, depending on the model, while trying to keep the
number of columns (of U) low enough for computational feasibility (e.g.
keeping nn n < 3000).

The effective model dimension, which quantifies the model
complexity, is defined as the trace of the “hat matrix” H, where y = Hy.
Since H is not idempotent, it is not a projection matrix. For example, in
PSR-2DVC model, the effect dimension (ED) can be computed as
ED = trace(H) = trace[U(UU+ AP+ 1 P +AP)'U’]

) = an
trace[(UU+ AP+ A P +4P) UL

The second equation in (11) avoids direct computation of the diagonal
elements of H through cyclic permutation and uses a matrix of lower
dimension. Similar effective dimension calculations can be made for the
other PSR approaches by substituting the U and the penalty term(s) in an
obvious way. Despite the very rich B-spline bases used for each approach,
we find from Fig. 6 that the penalty is indeed working. For most soil
responses, we find ED to be dramatically reduced compared to the model
size. ED roughly rest between 80 and 130 for PSR and PSR-geo (right
panel) and is found to be somewhat larger (roughly between 100 and
200) for the varying coefficient PSR models (left panel).

Since external prediction quality is a primary goal, choosing the
tuning parameters to minimize cross-validation error is a reasonable
choice. For each penalized signal regression approach, the optimal
value(s) of A(s) was (were) found by minimizing the leave-one-out cross-
validation (LOOCV) error on the training set. Let y; be the one observa-
tion to be left out and y_; be the predicted value at the “left out” location,
both used in computation of the LOOCV measure. By repeating this for
each observation in turn, the LOOCV prediction error can be computed as

Table 1
Design parameters for various signal regression models.
Design parameters PSR PSR-geo PSR-VC PSR-2DVC
Basis size 203 203 x 13 203 x 8 53 x8x7
B-spline degree cubic cubic cubic cubic
Penalty order 3 3,3) (3,3) 3,3,3)
Q
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Fig. 5. PSR-2DVC model for response EC: Optimal varying signal coefficient in VCM2D with PC1 and PC2 fixed at zero: 4D plot (left) and the corresponding smooth

coefficient curve (right).
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Fig. 6. Scatter plots of effective dimensions for PSR-VC and PSR-2DVC models (left), and PSR and PSR-geo models (right) against log;(41), the tuning parameter

associated with the spectra, with fitted lines.

1 m N
PELoocv = ZZ i =3 (12)

i=1
For linear fitting models, where y = Hy, one can show that
yi— 3= i=3)/(1—hi),

where h; is the ith diagonal element of “hat” matrix, which is straight-
forward to compute in the standard regression setting. This type of
adjustment from the residual to the “leave-one-out” residual also exactly
holds true for all of our PSR approaches, now using the diagonals of H in
the spirit of (11). We applied the PSR, PSR-geo, PSR-VC and PSR-2DVC
on each of the soil responses. Models are fit on the entire dataset with
the optimal tuning (4s) shown in Table 2, based on minimizing LOOCV
for all models. These choices, along with the design parameters in
Table 1, can be useful for users who wish to implement our models using
this dataset.

Computation and storage is expensive with the Kronecker product
expressions in the varying-coefficient approaches, especially with U'U.
Unfortunately, despite the gridded appearance of the tensor products,
any computational relief offered by array regression techniques [14] are
not possible. This is because the data are pairs of a two-dimensional
surface and a scalar response. The coefficient surface is modeled by
tensor product P-splines and the response is not on a grid. However as
seen in Fig. 6, and as mentioned, the ED values are generally less than

Table 2
Optimal values of tuning parameters (logio scale).

Method PSR PSR-geo PSR-VC (4, 1) PSR-2DVC (4, 1 ,4)
CEC -5.6 0.37,3.2 ~4.0,1.1 x —-6.9,1.2 x 107%, 2.0 x
1073 107
EC -6.2  0.04,-0.41 —6.9,—1.7 x —-8.5,-1.5 x 1072, —2.4
1072 x 1073
Nitrogen —6.9 —0.84,1.6 6.9, 9.5 x ~7.8,—4.4 x 1074, —2.3
10°° x 1074
Carbon -58 —0.70,2.1 -8.3,-7.9 x -8.8,-6.3x 1074 —2.4
1073 x 1073
SOM -5.7  —0.19, —6.4, —6.1 x —4.7,-6.9 x 1074, 1.6 x
—-0.38 107* 1074
Clay -6.3 —0.66,7.5 -5.1, —6.4 ~6.9,7.9 x 10°%, —3.4 x
1071
Sand -6.5 —0.84,057 —6.3,2.2x —7.5,-1.0 x 10°%, 8.7
107 x 1074
silt -6.3 —0.77,0.84 5.6, —6.0 x 6.8, -7.7 x 107%, 1.0
107* x 107°

200 for the vast majority of models, indicating that we perhaps could
have managed just as well with much less rich B-spline basis matrices.
From Fig. 6, we also see an obvious and expected negative association
between 1y, the tuning parameter associated with the spectra, and the
effective dimension.

5. Comparison of models

This section is devoted to comparative studies applied to the soil data
set when using the PSR, PSR-geo, PSR-VC, and PSR-2DVC models as
described in Section 3. We also make further comparisons to Random
Forests, Kernel Ridge Regression, Partial Least Squares (PLS), and Prin-
cipal Component Regression (PCR). In the study, we randomly split the
dataset into a training (sample size is 720, 80% of the entire dataset) and
a test set (the remaining 180 observations). The models are fit on the
training set and then used for external prediction on test samples for all
eight soil variables.

The prediction results are evaluated using root mean square error
(RMSE) on the test set. The RMSE is defined as follows:

1 me,
mle.ﬂ

Ak 2
o OF =37,

RMSE = (13)

where m*®" is the number of observations on the test set and y;" is the
predicted response for the observation y; in the external test set, using
the parameter estimates from the training set with the optimal A. The
results are based on 50 random splits of the dataset, and models were
separately optimized in each split using LOOCV. To directly compare the
prediction performance, we use the comparative test errors, defined by

dj . Lo

Cij —m, i=1,...,50; j=1,2,3,4,
where dj is a performance measure (i.e. RMSE) over 50 replications for
each of the four methods: PSR, PSR-geo, PSR-VC and PSR-2DVC. This
quantity facilitates individual comparisons by using the test error of the
best method for each dataset to calibrate the difficulty of the problem.

Fig. 7 shows the boxplots of the comparative RMSE among PSR, PSR-
geo, PSR-VC, and PSR-2DVC on each of the eight soil responses. From this
figure, we see that PSR-2DVC models achieve better overall performance
in six of the eight soil responses, when compared to other signal
regression approaches. Even simpler models perform best on soil re-
sponses CEC and EC, i.e. using PSR-geo and PSR-VC, respectively.
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Fig. 7. Boxplots of comparative RMSE for PSR, PSR-geo, PSR-VC and PSR-2DVC based on 50 replications, by soil response.

We next bring in results for four other methods: Random Forests (RF;
[15]); and Kernel Ridge Regression (KRR; [16]), Partial Least Squares
(PLS; [171), and Principal Component Regression (PCR; [18]). PCR is a
classical linear regression method that overcomes the multicollinearity
problem by using linear combinations of the signal regressors as
orthogonal constructed regressors. Like PCR, the PLS approach also
constructs orthogonal latent variables, but with the correlations of the
(deflated) response to the (deflated) wavelength channels as the load-
ings. The choice of RF and KRR as methods can provide some insight of
performance for techniques that are closer in line with machine learning
realm. RF is a popular ensemble tree method that enjoys good predictive
performance with relatively little hyperparameter tuning. The KRR,
which combines ridge regression with “kernel trick,” enables the model
to approximate nonlinear and non-additive functions. Some further de-
tails related to model fitting for these four methods are described in
Section 5.1.

Fig. 8 shows the boxplots of the comparative RMSE among RF, KRR,
PLS, and PSR-2DVC, again on the eight soil response variables with the
results based on 50 random split of the dataset. From Fig. 8, we find that
the PSR-2DVC model remains highly competitive, achieving better
overall performance in five of the eight soil responses, now when also
compared to these other approaches. RF outperforms PSR-2DVC in CEC,
Nitrogen and SOM. However, KRR performs best of all in these same:
CEC, Nitrogen and SOM. Table 3 shows the average test RMSE of each of
the four PSR approaches, as well as RF, KRR, PLS, and PCR on the eight
soil responses, with the best result highlighted in each column. This table
further confirms the above statements, and in general, our newly pro-
posed PSR-2DVC performs extremely competitively when compared to
machine learning methods. In terms of RMSE, the RF, PCR and PLS
methods showed mediocre results for all responses. It is interesting that
PLS and PCR both outperformed the RF for EC, Carbon, and Clay re-
sponses. KRR performs better than RF in seven responses, although the
differences are generally very close. This is probably because the RF
prediction surface is not smooth. Since RF and KRR perform better than
the other linear methods for Nitrogen, we believe the input variables
have some nonlinear effects on Nitrogen.

5.1. R software and details for model fitting

All of the code for these models is available from the authors, who
used the R packages JoPS (CRAN) and JoPSplus (psplines.bitbuck-
et.io). Within these packages, there are built-in functions psSignal for
PSR, psVCSignal for PSR-VC, and ps2DVCSignal for PSR-2DVC. The
PSR-geo model used a combination of psSignal (signal regression) and
ps2DNormal (bivariate smoothing for scattered data) functions. The
ucminf function in ucminf R package is used to search the optimal
values of 1s, which minimize the LOOCV error, in all of the various
penalized signal regression models.

Random forest was run by using the randomForest package with
the default setting in R. The kernel ridge regression used krr function in
listdtr R package. The plsr and pcr functions in pls package were
used to fit PLS and PCR models. Note, for RF, the spectra channels and
also the PC1&2 are the input variables. The first eight PCs, which ex-
plains over 97.5% of the total variance, are used as the inputs for KRR.
The spectra channels are the input variables for both PLS and PCR.

The optimal tuning parameters in KRR were also chosen to minimize
exact LOOCV error, which is further used to select the optimal number of
components in the PLS and PCR models (up to 100 components). For PLS
(PCR), we found the optimal number of components ranges between 15
and 30 (60 and 100) components. The reason the optimal number of
components in PCR is much larger than the one in PLS is that PCR uses
unsupervised features (i.e. PCs are generated without using the response
information) in the models.

6. Discussion

At its core, the idea that we present is a relatively simple one, in that
we regularize the high dimension regression problem by constraining the
p vector to be smooth. In some cases, we further allow this vector to vary
smoothly across spatial proxy variables or by boosting prediction through
smoothing spatially patterns in the residuals. In our opinion, it is
refreshing to find that signal regression statistical models have a
competitive nature and outperform some of the ensemble or machine
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Fig. 8. Boxplots of comparative RMSE for Random Forests, Kernel Ridge Regression, Partial Least Squares, and PSR-2DVC based on 50 replications, by soil response.
Table 3
Average RMSE for the test sets on eight soil responses.
RMSE CEC EC Nitrogen Carbon SOM Clay Sand Silt
PSR 3.512 271.397 0.201 0.186 0.411 3.329 6.403 5.660
PSR-geo 3.454 269.400 0.188 0.180 0.406 3.280 6.297 5.473
PSR-VC 3.467 252.500 0.157 0.178 0.403 3.392 6.124 5.223
PSR-2DVC 3.559 273.352 0.139 0.165 0.398 3.134 5.417 4.955
RF 3.469 292.723 0.110 0.219 0.397 3.552 6.462 5.377
KRR 3.398 298.135 0.107 0.198 0.389 3.242 5.737 5.082
PLS 3.580 278.649 0.207 0.190 0.413 3.351 6.591 5.837
PCR 3.588 277.647 0.207 0.191 0.414 3.358 6.709 5.912

learning approaches, like random forests and kernel ridge regression.
Other machine learning approaches, like the Neural network (NN), pre-
sent little salvation for signal structures. This is because, at its heart, the
NN is an over-parameterized scheme, which results in a single layer NN
with hundreds (or even thousands) of weights. Some preprocessing for
NN can be done using, e.g., principal components, but our experience is
that it is sensitive to initial values of weights and unstable, and also
optimal tuning is difficult.

Although statistical models may offer some meaningful scientific
interpretation or insight into high dimensional regression, they often
have difficulties competing with the predictive ability of a broader class
of machine learning approaches. Here, we rather find that such “machine
learning” approaches, not only offer very little interpretability, but often
poorer prediction. Traditionally, there perhaps exists a general and
unsatisfying trade-off between competitive prediction and scientific
interpretability; gains in one appear to come at a compromise of the
other. We hope that our various smoothing approaches can possibly
provide a step forward toward a promising dual role of a model: (i) one of
regularization, and in some cases interpretability, and (ii) another of
leveraging prediction quality through low-dimensional adjustments to
the model structure itself, here through tensor varying coefficient or
other structure.

Partial Least Squares (Principal Component Regression) is not really
competitive in terms of RMSE, producing supervised (unsupervised)
linear combinations that likely yield signal coefficients that are too rough
to steer competitive prediction. In terms of RMSE, it may be surprising

that the newly proposed PSR-2DVC model is outperforming Random
Forests in seven of the eight soil variables (apart from Nitrogen). In fact,
even the most basic global PSR approach out performs the RF for the
responses: EC, Carbon, Clay, and Sand (refer to Table 3). We believe that
there may be three reasons for these findings:

1. The Random Forest estimator is not smooth. For situations where the
underlying function is smooth, then RF may be suboptimal to estimate
the underlying function.

2. In the RF ensemble, each tree uses only a few wavelengths to predict
the response. Therefore, RF does not fully use the autocorrelated data
structure in prediction, and as mentioned, variable selection is likely
not to have a sharp optimal choice.

3. Due to the high-dimensional nature, penalization (i.e. regularization)
is the key to avoid over-fitting. Although the RF uses averages to
reduce variance, each tree is fully grown without pruning. Therefore,
RFs can easily over-fit the data.

Note that there does exist some P-spline methodology for automati-
cally choosing the tuning parameters when such models are framed as
mixed-models or in a Bayesian context. To our knowledge, no such
tuning approaches have been extended to the penalized signal regression
type models presented in this paper. As we are not necessarily driven for
“pleasing” smoothness, the choice of tuning rather greedily minimizes
external prediction error. Should such automated tuning be developed, it
would be interesting to thoroughly investigate just how such a choice for



B. Lietal

tuning fairs in terms of external RMSE. Separately, if one wishes to
implement further nonlinear structure into the penalized signal re-
gressions approaches, then single-index approaches can be taken, e.g.
fuw) = Xp, with f(-) denoting an unknown but explicit link function.
Ref. [19] presents such modifications for PSR, while [20] extends such
single-index models to PSR-VC. Further research could explore whether
such additional nonlinear structure further improves prediction at the
expense of having more tuning parameters.

Regularized optimization, which plays an important role in both
statistical and machine learning problems, can often be described as:

P(2) = argmin L(Y, X) + 1 (5), a4

where L(Y, X)) is a non-negative loss function, J() is a non-negative
penalty, and 1 is the non-negative tuning parameter. Many popular
methods fall into this category, such as: ridge regression [21], lasso [22],
support vector machine [23] and elastic net [24]. It is known that many
of these problems have a Bayesian interpretation, such that the loss
function is interpreted as the negative log-likelihood, the penalty term is
the negative log-prior density, and the regularized solution corresponds
to the global maxima of the posterior distribution. Therefore, using
different penalty terms corresponds to imposing different prior knowl-
edge and/or assumptions on the estimated parameters and models.
Ref. [25] proposed a generalized L; norm penalty framework which can
be applied to PCA, PLS, canonical correlation analysis, and multivariate
analysis of variance type of models. The generalized L; penalty enforces
certain structural properties, such as sparsity, e.g. sparsity on pairwise
differences between adjacent coefficients. One example of applying
generalized L, penalty in PLS is to use the fused lasso penalty [26] to
estimate the coefficients. The fused lasso contains both the lasso and
fusion penalties. The former encourages sparsity in the coefficients, while
the latter leads to interval selection, where the coefficients within each
interval have the similar values. Instead of assuming sparsity on the co-
efficients and intervals, penalized signal regression (PSR) assumes or
constrains smoothness on the coefficients vector. Unlike PSR, which has
an explicit solution (and can be solved easily), the solution for the
generalized L; penalty problems can be found by routines for inequality
constrained quadratic programming and iterative procedures.
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