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T extend the concept of partial least squares (PLS) into the framework of generalized linear models.
A spectroscopy example in a logistic regression framework illustrates the developments. These
models form a sequence of rank 1 approximations useful for predicting the response variable when
the explanatory information is severely ill-conditioned. Iteratively reweighted PLS algorithms are
presented with various theoretical properties. Connections to principal-component and maximum
likelihood estimation are made, as well as suggestions for rules to choose the proper rank of the

final model.
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1. INTRODUCTION

I focus on modeling an exponential family response
through generalized linear regression (GLR) with p (stan-
dardized) explanatory variables in the matrix Xpyxp, with
rows z¥ such that

9(ws) = Bo +z; 8 = m, (1)
where i = 1,..., N. Details and notation of the generalized

linear model follow 'in Section 2. Despite the popularity
of maximum likelihood (ML) parameter estimation in (1),
the effects of ill-conditioning in training data can be non-
trivial, and approaches are needed for reducing the effects of
these dependencies. Perhaps more important in the area of
chemometrics is that often the number of explanatory vari-
ables far exceeds the number of observations; thus we start
with an ill-posed estimation problem. Frank and Friedman
(1993) provided an excellent overview of regression tools
for (approximately) Normal response data, useful for the
chemometric community. One of these methods is partial
least squares (PLS), due to Wold (1975). PLS was initially
developed for social-science problems having scarce infor-
mation, but more recently it has received a great amount of
attention in the chemometrics literature. Wold, Ruhe, Wold,
and Dunn (1984) provided an alternate construction of PLS.
Later, Helland (1988) provided a nice overview and sum-
mary of PLS. ' _

Response data may be discrete, however—for example,
presence/absence or counts of a phenomenon. For instance,
a researcher may need to predict a discrete or non-Normal
physical or chemical composition of a substance in which
the explanatory variables consist of several (hundred) sig-
nals of (collinear) wavelengths from spectroscopy. Further-
more, one can imagine several other potential datasets using
spectroscopy te model, say, the presence/absence of certain
animal parts in ground meat, presence/absence of preser-
vative in food products, or perhaps to construct a model
used to predict counts of a certain discrete constituent

’

within a product. I propose an iteratively reweighted partial
least squares (IRPLS) estimation technique for GLR. I will
demonstrate that the standard PLS algorithm can be made
to work in a wider GLR sense. IRPLS forms a sequence
of rank 1 approximations useful to predict gamma, bino-
mial, Poisson, or other response variables in the exponential
family. Many biased estimation techniques for GLR’s have
surfaced in the last decade, but nearly all of these efforts ad-
dressed alternatives to ML estimation when the information
matrix is near singular. Often the motivation was to combat

(weighted) collinearity in the more complex GLR setting.-
Apart from producing alternative models through variable |

subset selection (VSS), research efforts in biased estima-
tion include the lasso (Tibshirani 1996), ridge (Le Cessie
and van Houwelingen 1992; Marx, Eilers, and Smith 1992),
and (iteratively reweighted) principal component (Marx and
Smith 1990), among other penalized likelihood approaches.
Both the PLS and the IRPLS algorithms are variants of
the conjugate gradient method of finding generalized in-
verses (Hestenes and Stiefel 1952) that construct noninter-
fering directions to solve a maximum (minimum) of a multi-
dimensional function.

I revisit a dataset that is an application of near-infrared
reflectance (NIR) spectroscopy used to predict the probabil-
ity that a freesia’s bud will flower. There were 100 sources
yielding N = 100 branch bunches. Within a branch bunch,
several branches (in most cases 20) were collected, then
split into two groups: The first group (usually consisting of
14 branches) was put into a vase and monitored for success-
ful budding, and the other group (usually 6) branches was
used for NIR spectroscopy. For a given source, the total
combined number of buds (m;) in the vase were counted,
i = 1,...,100. For a given bunch, the researcher is in-

© 1996 American Statistical Association
and the American Society for Quality Control
TECHNOMETRICS, NOVEMBER 1996, VOL. 38, NO. 4

374



ITERATIVELY REWEIGHTED PARTIAL LEAST SQUARES ESTIMATION FOR GLR

14 16

1.2

1.0

log(1/R)

0.8

0.4

0.2

T T

1000 1500 2000 2500

Wavelength (nm)

Figure 1. Spectra Readings Over the N = 100 Freesia Sources.

terested in how the spectrum is related to the number of
buds that produce flowers in the vase, y; € {0,...,m;}.
As mentioned, the total number of buds (m;) may vary
from vase to vase, and I assume y; ~ binomial(m;, p;),
with p; unknown. Each bunch has an NIR spectra con-
sisting of 476 log(R™') readings at wavelengths ranging
from 600 nanometers (nm) to 2,500 nm in equal steps of 4
nm. Corresponding to these NIR spectra, there also exists
additional lab information. Figure 1 displays the spectra
log(R™!) readings over the 476 wavelengths, or explana-
tory variables, ranging from 600 nm to 2,500 nm from the
N =100 freesia sources. As mentioned, we wish to use this
spectra information as explanatory information to predict
the binary response of successful flowering (1) or unsuc-
cessful flowering (0) bud. The model of interest is

476

1.pi =Bo+ Y ziif;, (2)
~ b i=1

log

where z;; is the log(R™1) for the jth wavelength of the
ith observation, ¢ = 1,...,100 and j = 1,...,476. The
parameter p; is the probability of success (1) of the ith ob-
servation. The problem is terribly ill posed with N = 100
and p = 476. The first three eigenvalues of the estimated
information matrix are 2.652e11, 7.8489%¢4, and 2.0419e3,
and together they account for at least 99.99999% of the to-

tal variance. Prediction equations and parameter estimation

using IRPLS and PC techniques follow in Section 6. First
I provide the details.

2. BACKGROUND AND NOTATION FOR
GENERALIZED LINEAR REGRESSION

Using a variety of interesting examples, Dobson (1990)
provided an extremely clear introductory presentation of
how many statistical methods involving a linear predic-
tor can be united through generalized linear models. I
start with a, (spectra) matrix of explanatory variables
X* = (3,25, ... ,Tp) of dimension IV x p. Consistent with
chemometrics analyses, we center and scale (autoscale) the
columns of X™*, but with a weighted mean and weighted
sum of squares, respectively. Throughout the remainder of
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this article, I will work with the autoscaled explanatory
variables, denoted by X of dimension N x D, which does
not contain a column vector of ones. The weights are de-
fined as V, and the use of such weights in the standard-
ization will become more apparent as the details and mo-
tivation for the algorithm are explicitly given in Section
3. Again, I denote zT a 1 x p row vector of X. The ma-
trix (1, X) of dimension N x (p+ 1) will be used when an
intercept is included into the regression model. One attrac-
tive and convenient consequence of the preceding standard-
ization scheme is that the estimation of the regression in-
tercept coefficient is uncorrelated with the other explana-
tory variable (spectra) estimated coefficients. In fact, we -
will see that the IRPLS algorithm simply estimates the "
intercept coefficient with the weighted mean of the (iter-
ated and adjusted) dependent variable. If one wishes, such
an intercept term can be made more transparent in the
algorithm by internally autoscaling the (adjusted) depen- -
dent variable at each iteration. Due to the unintuitive na-
ture of the (adjusted) dependent variable and for sake of
comparison to existing GLR principal-component (PC) al-
gorithms, I choose to present a standard GLR model, only
autoscaling the X explanatory variables. It is well known
that there exist simple linear transformations connecting
various equivalent representations, and in all cases the re-
sulting solutions can further be transformed back into the
variables’ natural metric. Assume that the random response
vector, Y1, has independent entries Y; following a dis-
tribution in the exponential family and is expressed as
F(;0,6) = exp[{yb(8) + ¢(6)} + d(y)], where b,c,d are
known functions. This is referred to the canonical form of
the exponential family. Furthermore, b(9) is referred to the
natural parameter of the distribution. In many applications
b(d) = 6; then E(Y) = p = (), providing the crucial
connection between 6 and p. Any nuisance parameter ¢ is
assumed constant over 1.

In constructing the joint distribution for the Y;, we find
as many 0; to estimate as there are observations. Given the
set of p explanatory variables, GLR uses the relationship

9(us) = Bo +zIB=mi, (3)

satisfying (2) 1; = E(Y;); (b) g is a monotone, twice differ-
entiable link function with a unique inverse, & := g~1; (c)
z7 is a px 1 row vector of autoscaled explanatory variables;
(d) B is the p x 1 unknown parameter vector and f is the

~unknown intercept; (e) the estimation of 8 or By does not

depend on having knowledge of any nuisance parameter,
¢. When g(u;) = 6; = 7;, we have the canonical link. In
cases in which p < N, (3) can reduce the dimensionality
of estimation. For a thorough overview and standard the-
ory of the generalized linear model, refer to McCullagh and
Nelder (1989). ' -

Referring to the relationship in (3), the log-likelihood
equation can be expressed, using the canonical link, as

N

B0, 8; X) = > {lyims + c(ms)] + d(ws)}. @

i=1 ’
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The ML estimation of the parameters is typically based
on maximizing (4) through the method-of-scoring iterative
equations, which simplifies to

i = Boj—11+ X(XTVer X)) XTViai,,  (5)

where, if convergence is attained, the estimated informa-

tion matrix & = XTVX,V = diag(%:;) = diag[{'(7:)}?/

var(Y;)), 97 = 7 + el/h’(nz) and & = y; — [;. As men-
tioned, the scalar intercept 5 is the weighted mean of the
adjusted dependent vector §* using the weights in V' and is
uncorrelated with the estimation of 8. Here the estimates of
V and y* must be updated at each iteration step until con-
vergence because they are a function of the iterated 7;_;.

3. IRPLS ESTIMATION FOR GENERALIZED
LINEAR REGRESSION

Much like (iteratively reweighted) principal-component
(IRPC) estimation in GLR, IRPLS estimation also produces
a sequence of constructed or latent variables that are lin-
ear combinations of the autoscaled explanatory variables
and are useful to predict the response variable of interest.
In addition, both the IRPC and IRPLS constructed vari-
ables form an orthogonal sequence in a weighted metric. In
Section 4, IRPC will be revisited, and specific algorithmic
differences between these two techniques will be revealed,
and then Section 5 will provide suggestions for choosing the
optimal number of constructed variables to be used in the
final model. One key difference between IRPC and IRPLS
is the mechanism for choosing the loadings associated with
the linear combination constructed variables. IRPC uses the
eigenvector loadings associated with components of the in-
formation matrix that have a large variance, whereas IRPLS
chooses loadings based on the strength of linear correlation
of an explanatory variable with Lhe (adjusted) dependent
variable.

Perhaps what distinguishes IRPLS even further from
IRPC estimation is that, once IRPLS constructs the first
latent variable, it is immediately related to the (adjusted)
dependent variable. Furthermore, the second latent variable
is constructed, through residuals, in a subspace that is or-
thogonal to this first latent variable. Specifically, we work
with the residuals after regressing out the first latent vari-
able from both the (adjusted) dependent variable and then
from the matrix of explanatory variables. The loadings for
the second latent variable now depend on the strength of
linear correlation between this residual (adjusted) depen-
dent variable and the residual explanatory variables. This
process continues for as many components as are needed
in the model. (IR)PLS regression is sometimes referred to
as criss-cross regression because it sequentially regresses
latent variables from the (adjusted) dependent variable and
then from the (residual) explanatory variable matrix. Critics
of the PLS éstimation approach point out its highly nonlin-
ear features and claim it as more of an algorithm than a
linear model. Helland (1988), however, elegantly removed
much of this algorithmic armor and showed equivalence
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between various PLS algorithms. These equivalencies also
hold for IRPLS. _

The beauty of (IR)PLS is that only two (iterated) matrix
multiplications are needed for.each desired‘rank estimate,
and moreover the (iterated) moment matrix calculations are
not needed. Thus (IR)PLS can be an alternative estimation
method when other techniques are prohibited by large ma-
trix inversion or diagonalization. IRPLS borrows features
of both the PLS algorithm and the GLR method-of-scoring’
algorithm. In addition to iterating the observation weights
and the adjusted dependent vector, the IRPLS algorithm
also simultaneously iterates the latent variables, their load-
ings, along with their relationship to the response variable,
until specified convergence. As mentioned, the explanatory
variable space is carved out into orthogonal latent variables,
in a weighted metric. The analog to the dependent variable
in the PLS algorithm is the iterated adjusted dependent vec-
tor in the IRPLS algorithm. An important feature of IRPLS
is that the following two decompositions, of the data ma-
trix and of the adjusted dependent vector, are carried out

. together:
K .
EoE.X=thp?+EK (6)
j=1
and
K .
fo=y'= qut;’ + fk, (7)
j=1

where the ¢; are N-vector latent variables, p; are the load-
ings, and Eg is a residual matrix. When K = R = column
rank(®), we have Er = 0. The g¢; are scalar coefficients,
and fx is an N vector of residuals. The uniqueness of the
t;’s and p;’s comes from imposing conditions of orthogo-
nality.

I now provide one form of the IRPLS algorithm for GLR.
It may be useful to reference the clear presentation of the .
PLS algorithm of Martens and Nees (1989). I present my
algorithm in four parts:

1. Line 1 of the following algorithm provides one sug-
gestion for the initializations of the algorithm. It should
be clear that E, is the autoscaled X (spectra) matrix and
that fo is the usual method of scoring the adjusted depen-
dent variable, which must be iterated. The initial values
for this adjusted dependent are usually based on a suitably
transformed version of the observed y, denoted as w(y).
Care must be taken, however, to avoid infinite values of the
transformed version. For example, ¥p(y) = In(y + .5) and
¥8(y) = (y + .5)/2 work well for Poisson and Bernoulli
responses, respectively.

2. Lines 2(a)-2(b) of the algorithm iterate and construct
the latent variables.

3. The method-of-scoring portion of the algorithm is
given in lines 2(c)-2(f).

4. Once the estimated latent variables are constructed

and converged, an appropriate GLR is performed in lines
3-4. :
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Algorithm IRPLS.
1. Initialize By — X;fo — v@);V — {W[v@)]}?/
var(Y) '
2. Iterate until A7) small
(a) Fork=1to R
i wk — (fk 1VEk 1Ek Ika 1)0 SEE: lvfk 1
#(umt length) orthog. loadings
i, £ — Ei_ 1Wg “#latent variables such that
V1/2 orthogonal
ifi, £ — scale{fk, center = wt.mean(fx, wt = V),
scale = SS(fx)}
iv. g « coefficient Isfit (f_; on £, wt =
mtercept)
V. fo e feo1 — T . i X
Vi. Pr « coefficients Isfit (Fx_; on ¢, wt =V, no
intercept)
vii. By « residuals Isfit (E’k-1 on ty, wt = V, no
intereept)
(b) end For
(0) 7 wtmean (fo, wt =V)+ 2 Gids
(d) V e {1(#)}?/var(Y)
(&) fo = 7+ diag{1/h’(7%:) }{y — h(7)}
(f) By ~ scale{X, center = wt. mean(X, wt =
scale = SS(X)}
3. Choose s 3 |lf8+1|[ small, s < R
4. glm(y ~ &y -+ £;)

I now focus on the second portion, or lines 2(a)-2(b),
of this aloo rithm, while moving from step k — 1 to step
k,k=1,...,R = column rank(®). As seen from line 2(a)i,
the adjusted dependent vector residuals, fe_; (in step k—1),
are partially regressed on the explanatory variable resid-
uals, Ey_;. This partial regression consists of computing
the weighted covariance and using this vector to construct
latent variables [line 2(a)ii]. Next, the adjusted dependent
vector residuals (in step k — 1) are regressed on the cur-
rent latent variable (in step k) [line 2(a)iv]. The result of
this fitted value is then subtracted from the residuals (in
step k — 1) to form the next sequence of adjusted depen-
dent vector residuals (step k) [line 2(a)v]. The explanatory
variables residuals (in step k) are formed by subtracting
from the residuals Ej_; its (weighted) projection on the
estimated kth latent variable [line 2(a)vii]. An alternative,
but equivalent IRPLS algorithm can be extended from the
work of Martens (1985) and is providcd in the Appendix

hAasgAnal

V, no

-

V)y

are now found by multlple regression. Arguments for the
equivalence of the two algorithms can be borrowed from
Helland (1988, theorem 2.1) by treating the iterated ad-
justed dependent vector as the current dependent variable,
in a weighted metric.

In addmon to orthogonal loading vectors wg, I mentioned
that the vectors V124, (k = 1,2, ...) build up an orthog-
onal basis of the matrix of explanatory variables X = .
The matrix By is the projection of X = Ej orthogonal to
V124, Perhaps this is best seen through the following re-
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cursive formulation:
- k

tiTV
= I-=2—1X, @®
H ( tiTVti> ®)

i=1

since {7V, = 0 for i + /. Note that & in step 2(a)ii of
the algorithm is a gradient step, 91/83. This is particularly
enlightening because it draws a connection between IRPLS
and the conjugate gradient algorithm applied to the GLR

-normal equations, X7 {y — h(n)} = 0. A similar recursive

formula to (8) exists for the adjusted dependent vector §* =

Jo; that is, )
R k P Ve . o
fe=11{1- 757 " ©

i=1

Recursive relationships additionally exist for the GLR-
weight vectors (see Helland 1988, eq. 3.3). Given converged
estimates of w,V, and the converged adjusted dependent

vector y*PLS (based on k < R components), I have

wk+1—{I OWi(WEFW,) " WEYXT VPSS, (10)

where Wy = (@i]|-- - ||@x) is the matrix of the first s or-
thogonal loading vectors from step 2(a)i of the algorithm
and Xy, is the autoscaled matrix of explanatory variables.
The key to (10) is to notice that

Wrt1 = cEL Vi

I

cXT{I - PS(k)}V{I Ps(ey }ieTHS

cX Tf/{f — Py YorE™s,

where we define S(k) = span(fy,...,%) = span(Xy, ...,
X) and Ps(x) as the projection operator onto the space
spanned by S(k). The scalar c gives unit length. -

These recursive formulations, in conjunction with the
span equivalence stated previously, allow us to reexpress
the IRPLS algorithm as an analog of the familiar method-
of-scoring algorithm; that is, for k = S,

FEES = Bol + XW,(WTSW,) " TWIXTy5: LS, (11)

Notice the resemblance of (11) to (5). Equ1va1ent1y, on con-
vergence

BELS = W, (WT&W,) W IX TV ;7L
= Wy(BTWT) g, (12)
where P = (Pall:--1Ips) and G, = (d1,. --,és)T are both

given in the IRPLS algorithm. Gwen a future or new obser-
vation z37, | pred1ct1on could be obtained by standardizing
z:T  into zl ., then constructing fpew = Bo + mnew:@PLS
and using finew = A(7inew). The last equivalence in (12) is
due to the relationship provided by Helland (1988, sec. 3.3),

= (t1]| -+ ||£s) = XW,(B,W,)~". I shall now expand on
thls connection.

4. CONNECTING IRPLS TO
PRINCIPAL-COMPONENT ESTIMATION

An interesting connection exists between ML, PC, and
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IRPLS for GLR parameter estimation. Putting these vari-
ous algorithms in a similar form provides a useful standard
of comparison. First, it will be useful to define GLR princi-
pal components for each observation, Z = X M, where the
(4,7)th element of Z is the score of the jth principal com-
ponent for the ith observation. Define M as the p x p matrix
whose jth column is the jth eigenvector of the information
matrix (without the intercept), ® = XTVX. Hence, M is an
orthogonal matrix and MTOM = diag()\;) = A, where ),
are the corresponding eigenvalues of . In many chemomet-
rics applications, ® can be semi-positive definite. Denote Q
as the number of iterations until convergence. The method
-of scoring ML algorithms in (5) can be reexpressed as

Q P
=" LBl + XY Xt XTVg b

t=1 j=1

(13)
t

which is undefined in the presence of zero eigenvalues.
Again f is the iterated weighted mean of the GLR-adjusted
dependent vector, and V' is the usual updated GLR weight
matrix. A truncated ML based on the full set of nonnull
components can be defined

: Q R ’
=3 Bl + X > X amIx TV

t=1 j=1

(14)
t

Based on these R components, it will be useful to define
the matrices ) rand M r corresponding to the diagonal ma-
trix of nonnull eigenvalues and the associated matrix of
eigenvectors, respectively, of the converged truncated ML
estimate of the information matrix, if they exist. Marx and
Smith (1990) provided an argument using Taylor series ap-
proximations that V estimates V relatively well because
var(V;;) is not affected for training data covariate patterns.
This argument carries over to the truncated ML estimate.

One of several strategies to reduce the effects of ill-
conditioned information is to further delete, in sequence,
terms in the sum corresponding to the r = R — s small-
est nonnull >\ Deletion rules in this GLR PC estimation
context were also presented by Marx and Smith (1990). A
candidate strategy, taking the response into consideration,
is to delete components if ]cx]/\ 12 | exceeds a critical value
of a ¢ distribution on N — R — 1 df, where & = MEG™R.
Using results of the converged truncated ML solution—for
example, 5, and &—the PC estimation technique, based on
s < R components, can be expressed as

0 h
70 = imux}jx TVZ@;}:C}, (15)
t=1

=1
where 77~ is again the adjusted dependent vector but this
time updated using only s terms in Ty Gi—1y- If all R terms
are used in PC estimation, then truncated ML est1mat10n is
achieved.
Interestingly enough, IRPLS estimation can also be less
taxing if 1nformat10n is borrowed from the converged trun-

cated ML solution. Based on results given in (11) with s

*PC 3
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latent variables, one candidate IRPLS iterative scheme can
be expressed as

L

SPLS _

7" Bol + XW, Z $7'% 7}‘WTXTV Z j:ELS

(16)

where similar to PC estimation, §*PLS is the adjusted de-
pendent vector using s < R latent variables in #FS and
again W, = (@, - - *|lws). The 4; and the qﬁ] correspond to
the eigenvectors and eigenvalues of Ws W, respectively.

5. CHOOSING MODEL RANK
In chemometric applications requiring the identity link
and approximately Normal errors, the choice of the meta

- parameter K is commonly made through ordinary cross-
validation (CV) (Stone 1974),

:CV_ - B .
K= =ar oél}énRZ@z A% - (07)

=1

where 7k \; is the estimate of the linear predictor using the
training sample without the ith observation. In the GLR
framework, the square residual is replaced with the ith ob-
servation deviance, and an analog of CV can be constructed
using first-order approximations. It is often convenient to

- work with Akaike’s mformatlon criterion (AIC), in which
I now choose K based on

AIC _ . . . . _
KAIC — arg OsxrljggR{dewance(q;\) + 2dim(6, 8; K)}.

(18)

One potential problem with using AIC, however, is that it is
unclear how to assign dimension to (18). I have constructed
the latent variables; therefore, it may be improper to simply
use the number of linear parameters in (3). I can also choose
the meta parameter s based on the estimation criterion

Frx : APLS
K* = arslgls?R trace{MSE(3; -°)} (19)
or the prediction criterion
' frax _ : TAPLS 20)
K* = arg 1§m51£RMSE(c B %) (20)

for all nonnull ¢ of proper dimension. Note that the vari-
ance component in (19) can be expressed asymptotically,
P 1var(ﬁpl‘s) = trace{(WI ®W,)~*WIW,}. Frank and
Friedman uyya) pomtea to several other model-selection
criteria. Generalized cross-validation (GCV), Bayesian in-
formation (Schwartz’s) criterion, and Mallow’s Cp statistic,
among others, could all be useful for (IR)PLS model selec-
tion. AIC, GCV, and Cp are all equal to the first order.

6. AN ILLUSTRATIVE EXAMPLE

Recall the freesia NIR spectra data introduced in Sec-
tion 1. I now wish to use this spectra explanatory infor-
mation to calibrate the probability of a successful flower-
ing bud for a given branch source. I have assumed that



ITERATIVELY REWEIGHTED PART!AL LEAST SQUARES ESTIMATION FOR GLR

the number of successful flowering buds in a given vase,
yi ~ binomial(my, p;), p; is unknown, i = 1, ... ,100. I ex-
plore IRPLS estimation in a logistic regression setting. I
hope that this proposed example will be useful in demon-
strating the mechanics of IRPLS analysis in the GLR frame-
work while modeling a response that is not necessarily from
a symmetric or continuous distribution. The s = 1,2, 3 com-
ponent models were used for both IRPLS and IRPC esti-
mation with the model provided in (2). All of these tech-
niques converged rather quickly, between six or eight it-
erations. It is reasonable to compute the percent correct
classification of the training data where estimated proba-
bilities greater (less) than .5 are classified as a 1 (0). The
IRPLS (s = 1,2,3) techniques had roughly the same per-
formance with 73.51%, 74.37%, and 73.68% correct classi-
fication, respectively. All three IRPC techniques converged
with 73.51% correct classification. Ideally CV should be
performed; however, as mentioned, this can be computa-
tionally taxing, especially with the PC approach because
the eigenstructure has to be iteratively and repetitively re-
constructed. It should be pointed out that generalizations to
ridge estimation can also be explored in this GLR setting.
Ridge estimation can require large amounts of memory,
however; in this case a 476 x 476 matrix must be iteratively
inverted. Again the beauty of IRPLS is that it produces a
sequence of rank 1 approximations useful for prediction,
avoiding potentially unwieldy matrix inversions or singular
value decompositions. '
Despite the fact that IRPLS and PC estimation produce
roughly the same percent correct classification, they pro-
duce quite different vectors of parameter estimates. Figure
2 displays the IRPLS as well as the IRPC estimated coef-
ficients associated with each of the 476 explanatory vari-
able wavelengths. All of these coefficient plots correspond
to the autoscaled X matrix, using weights associated with
the estimated diagonal elements of V. Recall that IRPLS-
estimated coefficients are chosen to maximize the correla-
tion between the explanatory wavelength information and
the GLR-adjusted dependent variable in a weighted metric.
Accordingly, the result of such maximization can yield a
nonsystematic pattern of parameter estimation. Note, how-
ever, that there appears to be less information in the spec-
trum beyond 1,500 nm. On the other hand, IRPC estimation
is seeking coefficients associated with linear combinations
of the wavelength information that maximizes variance in
the weighted explanatory wavelength space. Unlike IRPLS,

the maximiz, aqen~ia

the maximization associated with IRPC estimation is inde-

pendent of the adjusted dependent (apart from the estimated

weights). The key difference between the IRPLS and PC
estimation techniques stems from differences in spectral
decomposition provided in (15) and (16). The lower por-
tion of Figure 2 displays IRPC estimation. IRPC (s =1)
estimation results in roughly constant influence of the 476
wavelength$ on prediction of probability of successful flow-
ering, whereas IRPC (s = 3) has a rough decaying cyclical
influence, greatest near 650 nm. Figure 3 is a plot of the
binomial variance associated with each of the 100 obser-
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Using s = 1, 2, 3 Component Models: Top Panel: ,IRPLS (s = 1);
- —, /IRPLS (5 = 2); —, IRPLS (s = 3): Bottom Panel: ,
IRPC (s = 1); — -, IRPC (s = 2); —, IRPC (s = 3).

vations for each of the estimation techniques. This figure

“helps confirm the stability of estimation at the original data-

point locations.

7. DISCUSSION AND SOME AREAS
OF FUTURE RESEARCH

We have extended the concept of PLS estimation into
the generalized linear model framework. Using the identity
link function with Normal (0,02I) errors reduces to the
work of Wold et al. (1984). As in most estimation prob-
lems, several alternative approaches exist, and rarely is any
one a clear choice under all experimental conditions. PLS
estimation has been criticized for being highly nonlinear
and algorithmic in nature; IRPLS does not circumvent this
feature. As seen in previous sections, however, IRPLS does
have elegant properties and theoretical underpinnings to the



380

30
1

IRPLS Binomial Variance
20
1

errr

9_ -
i
o]
o
(3]
8
3]
&
>
E
§ ]
£
m
2
=
8 pu
1 T 1 i T
0 20 40 60 80 100

Observation Number
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(s =2); —, IRPLS (s = 3): Bottom Panel: , IRPC (s =
1);— —, IRPC (s = 2); —, IRPC (s = 3).

conjugate gradient algorithm. Furthermore, it is not
uncommon in spectroscopy or chemometric examples that

ML solutions do not exist, and IRPLS can be computation-

ally more efficient than PC or ridge approaches. Further
research is needed to compare these estimation techniques

under a variety of settings. Currently, research is surfac- -

ing that produces alternatives to PLS through fitting piece-
wise constants, adaptively, through penalized least squares
(Land and Friedman 1994). Penalized likelihood extensions
of adaptive schemes in the GLR setting appear promising
but also are highly nonlinear and computationally intensive.
Last, I have only considered GLR problems with the con-
ditional distribution of the response variable, given the ma-
trix of explanatory variables. In an effort to get a meaning-
ful population interpretation, Helland (1990) and Nzes and
Helland (1993) extended the standard PLS algorithm to ac-
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commodate a joint covariance structure of the explanatory
variables and the response. Futuré research could examine
this population approach together with the ‘wider IRPLS

algorithm presented in this article. ‘
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APPENDIX: ALTERNATIVE IRPLS ALGORITHM -

L Initialize B§ — X;f§ — o)V « (Mp))?/
var(Y) . '

2. Tterate until A%* small

() Fork=1to R
i. @} — BT, Vf;_, #orthogonal vector loadings
ii. & — E;_ @} /||| #latent variables
il ] scale{f, center = wt. mean(}, wt = ),
scale = SS(i)}
Ty =@l A
V. G «— coefficients Isfit (f§ on T}, wt = V, no
intercept) ’
Vi fi e f5 - Tra
vii. Ef — EBp_, —trorT
(b) end For R X )
(c) 7* « wt.mean (fg, wt = V) + T2y
(@ V o {1 (5)}2/var(Y)
(€) fg 4" + diag{1/h'(%:)Hy — h(7*)}
(f) E§ « scale{X, center = wt.mean(X, wt =
scale = SS(X)}
3. Choose s 3 ||£2,,] small, s < R
4. glm(y ~ £ ---£%)

V)y

[Received February 1995. Revised January 1996.]
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