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Principal component estimation for generalized linear regression
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SUMMARY

The generalized linear model (Nelder & Wedderburn, 1972) has become an elegant
and practical option to classical least-squares linear model building. We consider the
specific problem of generalized linear regression utilizing a set of continuous explanatory
variables to model an exponential family response. It is the objective of this paper to
develop and present an asymptotically biased principal component parameter estimation
technique, as an option to traditional maximum likelihood estimation for generalized
linear regression. Both iterative and one-step principal component estimators are
developed, directly compared, and can be particularly useful with the presence of an
ill-conditioned information matrix. The bias, variance and mean squared error of principal
component estimation will be quantified. Generalizations for rules of deletion of com-

ponents will be examined. Lastly, an example employs principal component estlmatlon
for Poisson response data.

Some key words: Generalized linear model; Maximum likelihood estimator; Mean squared error; Principal
component estimator.

1. BACKGROUND OF GENERALIZED LINEAR REGRESSION

Let X*=(x¥,...,x})bea Nxp matrix of continuous regression explanatory vari-
ables. Consider centring and scaling X* so that X'X is in correlation form. Define
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Augment the matrix X with the constant vector of ones. Let Y be a N x1 random
response vector for which each entry in Y follows the same distribution in the exponential
family. Consider a single entry in the response vector, Y;. The probability density function
for Y; can be expressed as

f(y; 6, ¢)=exp [{yb(0)+c(0)}/ q(¢)+d(y, $)],

where b, ¢, d, q are known functions. If b(8) = 6, then denote 6 as the natural parameter.
Let the nuisance parameter ¢ be constant for all Y;.

where
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Given a set of p continuous explanatory variables and a constant, generalized linear
regression utilizes the relationship,

g(pi) =xiB = i, v (2)
satisfying:
(i) mi=E(Y);

(ii) g is a monotone, twice differentiable link function with g~'=h;

(iii) x;is a 1x(p+1) vector of continuous regressors including the constant;

(iv) B is the unknown parameter vector;

(v) the estimation of B does not depend on having an estimate of ¢.

Standard theory of the generalized linear model is given by McCullagh & Nelder
(1989) and Aitkin et al. (1989).

The method of scoring for maximum likelihood estimation can be expressed as

N f—1A anl
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i=1 i )
=(X'I€:—11X)_1X’I€t—-}1y>tk—la : (3)
where the residual & = y,— &;, and y* =y, + &,(3m,/0u:) are evaluated at 3,_, and
K™= diag [{h'(4)}/var (Y))].

Note that in the most general setting, K~ and the working variable $* must be updated
at each iteration step of the parameter estimate, since they are a function of the iterated
Me—1. Further, B is the least-squares estimate for normal data with g(u) = u.

2. GENERALIZING YPRINCIPAL COMPONENT REGRESSION

In a great deal of the literature addressing normal response data and the identity link
function, principal component regression often utilizes explanatory variables that are
standardized so that X'X is proportional to the correlation matrix as given in (1).
Certainly similar derivations to the methods presented in this paper can be made for
uncentred or unscaled explanatory variables. In addition, if by design the explanatory
variables are measured in the same units, then standardization may not be needed. It is
not our purpose to discuss the controversy of alternate standardizations. For generalized
linear regression, define the principal components for each observation as Z = XM,
where the (i, j)th element of Z is the score of the jth principal component for the ith
observation (Jolliffe, 1986, Ch. 8). Define M as the (p+1)x(p+1) matrix whose jth
column is the jth eigenvector of the information matrix, ®. Hence M is an orthogonal
matrix and M'®M =diag (A;) = A, where A; are the eigenvalues of information.

Since XB =XMM'B, define o = M'B. Hence (2) can be rewritten as

ni= Z;Cl, (4)

where z; is a row vector of the Z matrix. An orthogonally transformed full principal
component model is given in (4). The reduced pr1nc1pal component model can also be
useful and is defined as

pE——
ni,s - Zi,sasa

where zi; is a subset row vector of Z, a (p+1) X s subset matrix of Z. The subset vector
a, is associated with high information.
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3. ADVANTAGES OF PRINCIPAL COMPONENT REGRESSION

In the least-squares multiple regression framework for normal data with identity link
function, the options for model building are well documented. Multicollinearity usually
leads to an investigation of X'X. Variable deletion, Stein (1960) estimation, .ridge
regression (Hoerl & Kennard, 1970), and principal component regression (Webster, Gunst
& Mason, 1974) are all tractable alternatives depending on the researcher’s interests.
However, more detrimental to the generalized linear model than multicollinearity among
the columns of X is multicollinearity among the columns of W= K ~*X. Multicollinearity
among the columns of W leads to ill-conditioning of the information matrix. Not1ce that
multicollinearity among columns of X and W are equivalent if and only if K *= cI, for
a constant ¢>0.

Define an ill-conditioned information matrix as one which has a small eigenvalue
relative to the largest eigenvalue (Hartree, 1952, Ch, 8; Belsley, Kuh & Welsch, 1980).
Let Ag,..., A, be the e1genvalues of information in decreasing order. Define a condition
index CI (/\max/ Aj ), for j=0,..., p. Notice that information can be expressed as

P
®=) Amm)
j=0
Hence at each iteration step of the method of scoring maximum likelihood
P @~ A A N‘ o) A 'a i
—Biy= z At Y, xkqi'e 20 _ (5)

where the right-hand side of (5) is evaluated at t—1. An iteration step can be highly
unstable in the presence of multicollinearity among the columns of W. The deletion of
a proper subset of principal components can help stabilize coefficients.

In addition, utilizing asymptotic properties, we have:

(i) as A;>0,

p

Z var (B;) = tr (&) - co;

(ii) for predictions outside the mainstream of the columns of W when combined W1th
a small A;,

9kko 2 ‘
var(i (= (22) § a7t ©
Mo/ j=0
(iii) for the test

Hy: B=Bc, H,:B=BF,
define the test statistic,
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where C and F denote the current and full model respectively such that C < F.
Hence x*=>0 if (& ,F) A;~>0 for some j.
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One procedure to alleviate the above detriments is to delete the terms in the sum

corresponding to small A;. In doing so, an iterative principal component estimator can
be defined of the form

Apc _ Ap s-—1~_1~ ~ 1 N r—14 677
B ts ﬂ —1,s +Z )\j mjm_}(z ku e (7)
=0 i=1 Omi) i1’
where /\ and m; correspond to the eigenvalues and eigenvectors of the converged
maximum hkehhood estimate of information ® = X'K'X, if they exist. Define &,

—h(%;,). Note that A,..., A, are usually the r=p+1—s very small elgenvalues
Alternatlvely, (7) can be expressed in terms of a**

ar=ar, +A_l(§ Z; E‘é 817)
t,s t—1,s s =, i,s 8#«, .
=AJ'Z. Ky, (8)

where z;, are the columns of Z| and yf“= 1), ,+ &, d7;/du; evaluated at iteration ¢t —1
until specified convergence. Naturally, the principal components estimators can be
constructed upon convergence of @2° as

B = Ma%. (9)

Using the full set of components, ﬁ‘;‘" = ,é as in (3).

4. JUSTIFICATION FOR MAXIMUM LIKELIHOOD ESTIMATE IN
PRINCIPAL COMPONENT ESTIMATORS
A justification for using maximum likelihood IZ as an estimate of K, in principal
component estimation follows from using a variance argument. Consider a first- order
Taylor series expansion of an estimate of a diagonal element in K, denoted by k.
Let var (Y) = t(n). The subscript i is suppressed in (10)-(12). We have

L W@)P 2R R () — (R ()P ()
i) T )y (1 =m). (10)

Therefore

var (15“)Jzt(n)h"(n)h{(t?zzv)}ih @R § ; A (11)

from equations (10), (3) and (4). Thus

var (k™) = C*(n) i ;. (12)

The quantity C*(n) is a constant. The variance given in (12) will not be as affected for
observations in the original data set as for new observations outside the mainstream of
collinearity in W. In general, ongmal data_ cannot deviate much in the z; direction
corresponding to relatively small A;; hence K~ will estimate K™ relatlvely we]l
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5. GENERALIZATION OF SCHAEFER’S LOGISTIC ESTIMATOR

Schaefer (1986) presented a principal component estimator for logistic regression with
r=1. Thelogistic pr1n01pal component estimator is a one-step adjustment to the maximum
likelihood estimator. Let /3 denote the maximum likelihood estimator upon convergence
of method of scoring, if it exists. In experimental situations where the maximum likelihood
parameter estimates are highly unstable and do not converge, then it is perverse to apply
a one-step principal component estimator. In such a setting, perhaps the iterative principal
component approach can be used as a resort to obtain converged parameter estimates.

Define the Moore-Penrose generalized inverse

~ s—1 -
(X'KT'X): =Y Xj '),
j=0
In following an approach similar to that of Schaefer’s, a one-step principal component
estimator can be expressed as
b= (X'K'X)IX'K'X5. (13)

Notice that if the iterative principal component technique, given in (7)-(9), uses starting
values of zero, then we can rewrite the iterative scheme as follows

A T s=1 . - an
Br=% (L5 3 xfria, 22) (1)
t=1 \j=0 i=1 opi/ ¢
where T denotes the iteration of convergence, Furthermore, (13) and (14) are identical
»except that the maximum likelihood estimate ,B in (13) utilizes the residual &; rather than
é;s. However, based on the variance result in (6), the residual is well behaved for the
original data even with multicollinearity in W. Given a principal component estimator
in (13) or (14), standard approaches can be taken to obtain uncentred and unscaled
estimated principal component regression coefficients.

6. PROPERTIES OF PRINCIPAL COMPONENT ESTIMATORS
Consider expressing the principal component generalized linear regression as follows

g(u)= (zszr)(Zj),

where

As O
Z, Z.Z,
(@zyzz)-(y )
and s+r=p+1. Note that M = (M,M,) are the full set of eigenvectors of information. .

Hence an asymptotic reduction of variance in the principal component estimates can be
expressed as

.var (B7°) =var (b") =var (B)-M.A'M". (15)

For an ill-conditioned information matrix, var ( é’s"’) or var (b%°) can be greatly reduced
by deletion of principal components associated with small eigenvalues. The estimated
asymptotic covariance matrix for the centred and scaled principal component estimates,
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A‘S’”, is M,AT'M.. Using (1), the corresponding uncentred and unscaled estimated
standard errors can be expressed as

SE(B¥)=g*'se (%) (j=1,...,p),

. A p A
s (B3 = {var (B3 + 3 (a5 var (B5)

1

+2 3 Y gF'gF wERE cov (BT, BUY) —2 Z g} '%F cov (B, BP } .

i<j j+0
Furthermore, the asymptotic bias associated with b%° can be quantiﬁed as
E(b*)=8-M,a,,

which is minimal if «,=0. Hence an asymptotic mean squared error criterion for b%° is
written as

tr {MsE (b2°)} = Z Z miuAg + Z (i akmjk>2.

j=0a=0
Asymptotic arguments yield an approximate distribution for b%°,
| b~ N(My,, MAT'M),

neglecting the stochastic nature in which components are deleted.

7. DELETION OF PRINCIPAL COMPONENTS

For normal response data with the identity link function, there is an assortment of
rules for deleting the proper principal components, if any at all. Development of rules
of deletion in the framework of the generalized linear model will parallel standard
principal component regression results. Jolliffe (1986, Ch. 8) provides an excellent
summary. The full set of components & ~ N(a, A™"). Consider the test Hy: Ca =0, where
C isa ¢ X (p+1) matrix of constants. The corresponding test statistic can be constructed
@'C'(CA™'C")7'Cé ~ x?. Hence the test statistic criterion for a single component sim-
plifies to @7A; ~ x3. The above tests statistics are compared to the appropriate percentage
point of the asymptotic chi-squared distribution. In practice A; is usually unknown;
therefore, the test statistic

tf = ah; (16)

can be applied to test a single component using a ¢ distribution on N —p —1 degrees of
freedom.

Jolliffe develops several strategles for the selection of principal component standard
multiple regression. One such strategy is to simply delete all the components associated
with small eigenvalues below a specified cut-off, perhaps 0-01. A different approach from
deleting small eigenvalues is one which incorporates the ¢ test given in (16). Hence a
procedure could be used which deletes components based on their contribution to the
regression via a t test. However, Jolliffe warns, for standard principal component
regression, that usually more components will be retained than are really necessary if
components are deleted in succession until a significant t-statistic is reached.
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Hill, Fomby & Johnson (1977) consider a more sophisticated approach to deletion of
components which we can extend into the generalized linear model. A weak criterion is
one where the objective is to get b%° close to B. That is b%° is preferred over B if

tr {MsE (b%)}<tr {msE (B)}. (17)
Notice that (17) is equivalent to

(5,5 7o) {5 (£ o) 0

A stronger criterion from (17) (Hill et al., 1977) is more oriented toward prediction rather
than estimation of the coefficients. The requirement, which is more difficult to apply in
practice, is now MSE (¢'b%°) < MSE (¢’ B ), for all nonnull ¢ of proper dimension.

8. ILLUSTRATIVE EXAMPLE

Beauchamp & Gehrs (1978) present data from an extensive study on the population
of Diaptomus Clavipes, a Zooplankton. Effects of independent variables including water
temperature, adult density and female size were analysed for roles regulating the popula-
tions. A weighted least-squares approach was taken by Beauchamp & Gehrs fitting a full
second-order model with the identity link function. In this paper, a generalized linear
model is used assuming a Poisson response and the natural log link function. The square
root link and identity link were also observed and dismissed based on deviance.

Perhaps if Beauchamp & Gehrs (1977) took a generalized linear regression approach

rather than a weighted least-squares approach, then the following model would have
been chosen:

IOg Ai = Bot B1 X1+ B X5 + B3 X5, (18)

where A; is the expected average number of eggs on ith sampling date; X ; is the average
water temperate over a four weak period prior to ith date, X,; is the log of the adult
density on ith sampling date, and Xj; is the female size observed on ith sampling date.

The model in (18) is adequate for prediction based on analysis of deviance and will
yield parameter estimates of the explanatory variables of interest. Principal component
estimates are provided along with the maximum likelihood estimates in Table 1. Standard
approaches have been taken to uncentre and unscale the parameter estimates. The
estimates are quite stable in sign and magnitude across techniques. Table 1 also confirms
that the residuals &; and é,,, in (13) and (14), are behaving similarly. The iterative and
one-step principal component estimates are identical, except for a slight difference in
the intercept. All methods in this example converged in 6 iterations. The corresponding

Table 1. Maximum likelihood, ML, and principal component parameter, PC,
estimation for model (18). Link, log; error, Poisson; N =25, p+1=4

Iterative One-step
ML pc (—1) - pPC (-2) pC(-1) pPC (-2)
Dev. 22-9913 23-0117 23-0138 23-0117 23-0138
Eo 0-9588 0-7264 0-7517 0-7266 0-7517
ﬁl —0-0225 -0-0210 —0-0209 -0-0210 —0-0209
éz —-0-1217 —0-1241 . —0-1265 -0-1241 —0-1265

Bs 0-0261 0-0282 0-0280 0-0282 0-0280
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Table 2. Estimated asymptotié standard errors for model (18)

CI ML pC (—1) PC (—2)
1-0000 SE (B:o) 1-7522 0-6523 0-3373
14-1439 SE ([il) 0-0110 0-0036 0-0030
136-8008 SE (B;) 0-0594 0-0569 0-0181
4029-7880 SE (B3) 0-0164 0-0067 0-0040

CI, condition indices.

uncentred and unscaled estimated asymptotic standard errors are given in Table 2 which
also provides condition indices, demonstrating that model (18) has ill-conditioned infor-
mation. This example provides a considerable reduction in asymptotic standard errors

for the principal component techniques. An asymptotic reduction is guaranteed, with
deletion of components, by (15).

9. DISCUSSION

The iterative pr1nc1pa1 component estimator given in (7)-(9) and the one- step adjust-
ment estimator given in (13) are completely consistent with Webster et al. (1974) and
Jolliffe (1986). In the special case of normal data and the identity link function, we have

Y=XB+€~N(M,0 ), Br=br=M(Z.z)"Zy

As in the classical linear regression model, principal component estimation for generalized
linear regression is not always the best choice for model building. Given specific theoretical
models oriented toward parameter estimation, principal component estimation can yield
desirable variance properties with minimal bias. In models aimed toward prediction,
perhaps wary variable deletion to reduce the multicollinearity among the columns of W
can satisfy the researcher’s needs.
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