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Abstract: The motivation of the paper is to present an option to maximum likelihood estimation
when the information matrix is ill-conditioned. The impacts and diagnosis of ill-conditioned
information are revisited. We combine ideas from Good and Smith [4] and Marx and Smith [10] to
develop a class of principal component estimators, for generalized linear regression, defined by a
scaling parameter. The additional parameter allows a spectrum of standardized explanatory
variables which can yield interpolation between correlation and covariance matrices. We show
that choice of the scaling parameter depends on the researcher’s objectives for the model. A unit
scaling parameter produces results of Marx and Smith [10]. If further restrictions of normal
response data and the identity link function are imposed with an unit scaling parameter, we have
traditional principal component multiple regression (Webster et al. [16]). We discuss the appropri-
ateness of principal component regression. An illustrative example using Poisson response data
and the log link function demonstrates the usefulness of the scaling parameter for a generalized
linear regression with severely ill-conditioned information.

Keywords: Quasistandardization, Scaling parameter, Weighted multicollineaﬁty.

1. Introduction

We focus on problems in the generalized linear model (GLM) (Nelder and
Wedderburn, [13]) regression setting with all continuous explanatory variables.
In particular, when variable deletion is not an option, we aim to alleviate many
of the detriments associated with an ill-conditioned information matrix. The
GLM'’s regression parameters are typically estimated via an iterative maximum
likelihood process, but in the presence of ill-conditioned information, Marx and
Smith [10] suggested an asymptotically biased principal component estimator.
The proposed principal component estimator has an additional scaling parame-
ter which can accommodate a spectrum of explanatory variable standardizations.
The choice of the scaling parameter can be made on a variety of statistical
criteria. Section 2 defines the notion of quasistandardized explanatory variables
and Section 3 gives a brief overview of generalized linear regression. Section 4
explains the effects of a near-singular information matrix and is thus a motiva-
tion for principal component analysis. Section 5 develops the continuum of
principal component estimators by incorporating quasistandardization. Section 6
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discusses some implications that a scaling parameter can have on inference. An
illustrative example is provided to demonstrate the usefulness of the continuum
of estimators for a Poisson regression.

2. Quasistandardization of explanatory variables

There is much controversy regarding centering and scaling in regression prob-
lems; we consider a general approach. Let X°=(x{, x3,..., xJ) be a NXp
matrix of continuous regression explanatory variables in their natural units.
Consider centering and scaling X ° similar to that presented in Good and Smith

[4] and Marx [8]. Define

Xoij=q; *(n— 1)-1/2(x?]. —;‘c]‘?), where (1)
-1 N 2
i =(n=1)7" X (xf-%7). )

i=1

Let X, ={x,;}. The parameter « allows a spectrum of scaling. Notice for & = 1
and a =0, we have X_ X, simplifying to the sample correlation and covariance
matrices respectively. Scaling parameter values between zero and one lead to an
interpolation between correlation and covariance matrices. Good and Smith [4]

point out that in practice it may seem unnatural to use parameter values outside
the unit interval.

3. Background and notation for generalized linear regression

Augment the matrix X, with a constant vector of ones. Denote x/; as a row
vector of X,. Let ¥ be a N X1 random response vector. Each entry in Y,
follows the same distribution contained in the exponential family having canoni-
cal link function 6; and dispersion parameter ¢,;. Given the set of p continuous

explanatory variables, generalized linear regression utilizes the relationship,
g(“‘i)a:x:xiﬂa:nai? (3)

satisfying: p; = E(Y)); g is a monotone, twice differentiable link function with
g l=n; x.; is a quasistandardized (p + 1) X 1 row vector of continuous regres-
sor variables, including the constant; B, is the unknown parameter vector; the
estimation of B, does not depend on having an estimate of ¢; and ¢ is constant
for all Y. Standard theory of the generalized linear model can be found in
McCullagh and Nelder [11], Dobson [3], and Aitkin et al. [1].

For given a, denote the information matrix &, = X/K,'X_, where

K =diag{kz} = diag{[#'(n,,)]*/ Var(¥;)}. | (4)
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The method of scoring maximum likelihood (ML) can be expressed as
me= xR, (5)

where w,; =[7; + (y; — 4,)(87,/3u,)],. Note that in the most general setting, the
estimate of K,' and w, must be updated at each iteration step until conver-
gence of the parameter estimate since they are a function of the iterated MNor—1-
We often refer to w, as the vector of working variables. Denote B”‘l as the
corresponding uncentered and unscaled parameter estimates of (5).

4. Ill-conditioned information

As presented in Belsley et al. [2] with normal response data and the identity link
function, problems of multicollinearity among the columns of the X° matrix
usually leads to an investigation of the correlation matrix for explanatory
variables. Various options for model building are well documented for the
standard multiple regression setting (Stein [15]; Hoerl and Kennard [S]; Webster
et al. [16]). Schaefer [14] and Mackinnon and Puterman [7] discussed GLM
muliticollinearity. Marx and Smith [10] emphasized that more detrimental to the
generalized linear model, than multicollinearity among the columns of X9, is an
information matrix which is nearly deficient in rank. Such ill-conditioning of
information can result in highly unstable iteration steps in the method of
scoring, inflated sum of maximum likelihood coefficient, ‘poor prediction in
certain regions, and low power for certain tests. Let ® = XYK" 1X° be the
information matrix of the uncentered and unscaled explanatory variables. We
consider @ to be ill-conditioned if it has a small singular value relative to the
largest singular value. Denote y, >y, > :-- >y, as the singular values of
1nformat1on Define the information condition mdlces K;=vo/v; for j=
0, :--,p. Traditionally a k;> 30 signifies ill-conditioning. Notice also that
ill- cond1t10n1ng of &, is the result of nearly linear dependent. columns of

K;'/2X_ and is only equlvalent to multlcolhnearlty among the columns of X,
for K, 722 =cl, ¢ > 0 constant.

S. Continuum of principal component estimation

Marx [9] developed a continuum of principal component estimators for the
classical model having a normal error distribution and the identity link function.
For a general exponential family response variable, denote ’”l _, as the con-
verged ML parameter estimates using the explanatory variables standardized
with @ =1, if it exists. For generalized linear regression, the one-step principal

component estimator developed in Schaefer [14] and Marx and Smith [10] can
be expressed as

Bz = bz 0Bz, = (1- Zmn‘z') g, ©)

=2
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where [ is the identity matrix, & and 9? are the sets of deleted and retained
components, respectively, CD‘ =Y ﬁ/\ m m /\ and m; are the eigenvalues
and eigenvectors, respectlvely, of the max1mum hkehhood information matrix
=(X'K'X),_, using B~
Defme M, P M, = diag{A; } A as the spectral decomposition of informa-
tion with scaling parameter «. Con31der rewriting (3) as

§(). = (xLM,)(MIB,) = 2L, )
A generalization of (6) can be useful for (7) if @, is ill-conditioned. Consider
BT =1~ ,Z gt | BT | (8)

where B’”l is the maximum likelihood estimator using the quaswtandardlzed
data with parameter «. Standard methods to uncenter and unscale ,BPC to BPC
can be taken. Note that if & is the null set, then ﬁpc = B”’l for all a. The
dilemma of which components to delete or retain is still present and a decision
“should be based on standard diagnostics and regression criteria. The reader is
referred to Marx and Smith [10] for an overview of the development and
properties of principal component generalized linear regression. In the above
paper, both iterative and one-step principal component estimators are pre-
sented. The continuum of one-step estimators in (8) approximates the possible
continuum of iterative estimates. However, even with severe ill-conditioned
information, the one-step estimator behaves similarly to the iterative estimator.

We further include the following result which can be applied to the contin-
uum of principal component estimators.

Proposition 1. The unique maximum likelihood estimator for the generalized linear
regression parameters, when it exists, provides the minimum deviance.

Proof. Let ﬁo ‘be any estimator, other than the unique maximum likelihood
estimator ™, of B. The deviance using BO is D(B°) = 2[1(B™>) — I(B°)], where
[ denotes the loglikelihood function and ﬂm‘”‘ represents the saturated model.

Hence AD = D(B™) — D(B°) = 2[1(8°) — I(™)] < 0, by definition of ML esti-
mation. O

6. Surgical principal component estimation

Along with the continuum of principal component estimators, there exists a
corresponding continuum.of eigenstructures for the quasistandardized informa-
tion matrix. In certain experimental settings, there may be several windows of
scaling « such that the deviance and other regression criteria are acceptable to
the researcher. In such cases, the researcher may be tempted to choose among
various « to yield coefficients of desired sign or magnitude. Further, perhaps
the researcher has a preference toward dependence (independence) of scale and
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chooses « in the proximity of zero (one). Moreover, if for example a« =1 seems
to work best, then it may be reasonable to experiment with a scaling parameter
value near but greater than unity. One could argue that we are, in one way or
another, optimizing over the range of «; perhaps we should lose a degree of
freedom for various inferences.

The implications of this window of estimators can be controversial. Consider,
for an extreme example, that we wish to choose an « such that when the
component associated with the smallest eigenvalue is deleted, the corresponding
standardized eigenvector has the kth entry near, but less than unity. By (6), the
kth entry of B gC’f will be shrunk nearly to zero, whereas the remaining p entries
of B2°" will be relatively close to the maximum likelihood estimation. We refer
to this situation as surgical shrinkage. Future work will be devoted to data

configurations that yield an ill-conditioned information matrix with a surgical
eigenstructure.

7. Illustrative example

Myers ([12], Example 7.10) presents data which consists of N = 44 observations
on mines in the coal fields of the Appalachian region of western Virginia.
Effects of p=4 continuous explanatory variables were analyzed for roles
contributing to the number of injuries or fractures that occur in the upper seams
of these mines. We consider, as Myers did, a generalized linear regression
assuming a Poisson response and the natural log link function. The square root

and identity links were also observed and dismissed based on deviance. The
regression model of interest is

log A; = Bg + By Xy; + By Xy + B3 X + By X, %)

where A; is the expected number of upper seam injuries or fractures in the ith
coal mine area, X;; is the corresponding inner burden thickness (the shortest
distance, in feet, between seam floor and lower seam), X,; is the percent
extraction of the lower previously mined seam, X5, is the lower seam height
(feet), and X,; is the length of time that the mine has been open (years).

The maximum likelihood model for (9) is adequate for prediction based on
analysis of deviance and will yield parameter estimates for all explanatory
variables of interest. However, the condition indices of the information matrix
are 1.000, 3.505, 11.665, 32.998 and 2093.331, respectively, indicating severe
ill-conditioning and justifying an optional estimation technique. Using (8), one-
step principal component estimates (for various acceptable @) are provided
along with maximum likelihood estimates in Table 1. All methods converged in
13 iterations. Standard approaches have been taken to uncenter and unscale the
parameter estimates. Table 2 displays the corresponding uncentered and un-
scaled asymptotic standard errors.

Figure 1 demonstrates that acceptable principal component models, based on
deviance, depends on the choice of scaling parameter and the number of
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Table 1

Maximum likelihood, ML, and principal component, PC, parameter estimation for coal mine
example. Link, log; error, Poisson; N=44, p+1=35.

ML a=0 a=0.10 a=025
PC(-1) PC(-2) PC(-1) PC(-2) PC(-1) PC(-2)
Dev. 37.8560 40.4904 49.0182 37.8765 43.5432 42.2857 42.2858

ﬁo —3.5931 -4.8236 —5.5316 -3.6967 —4.6770 —-2.3025 —2.3368
ﬁl —0.0014 —0.0017 —0.0022 —0.0014 —0.0019 —-0.0013 —0.0013
ﬁz 0.0623 0.0773 0.0838 0.0636 0.0741 0.0458 0.0462
é3 —0.0021 —0.0017 —0.0037 —0.0020 —0.0034 —0.0033 —0.0033
ﬁ 4 —0.0308 —0.0438 0.0010 —0.0323 —0.0014 —-0.0050 —0.0045
Table 2

Estimated asymptotic standard errors for coal mine example.

ML a=0 a=0.10 .~ a=025

PC(-1) PCO(-2) PC(-1) PC(-2) PC(-1) PC(-2)
SE(B,) 1.0257 07337 0.6976 07293  0.6051 0.7910  0.4165
SE(,)  0.0008  0.0008 0.0008  0.0008  0.0008  0.0008 0.0008
SE(,) 00123  0.0086 0.0084 00084  0.0072  0.0089 0.0044

SE (ﬁ;) 0.0051  0.0051 0.0050 0.0051 0.0050 0.0050 0.0050
SE(B,) 00163  0.0144 0.0003 0.0128 0.0003 0.0097 0.0005

deleted components. The principal component model minus one dimension
(PC(—1)) has acceptable deviance for scaling parameter in the neighborhood of
0 <a < 0.6, whereas the minus two dimension model (PC(—2)) has a narrower
acceptable range, 0 <« < 0.4. Figure 1 also illustrates that if we are willing to
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70 - —~—
//
8604 s
5 Critical 0.05 /S
= -
3804 vl
Ny //PC minus 1
40} =
Maximum likelihood
0.0 01 02 03 04 0.5 06 0.7 0.8 09 1.0 11 12

Alpha
Fig. 1. Deviance for coal mine example.
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Fig. 2. Sum of coefficient variance for coal mine example

extrapolate, then the PC(—1) model again becomes acceptable, based on
deviance, for « values near but greater than unity. Notice that, despite the
ill-conditioned ML model, the traditional PC models, with « =1, would be
deemed unacceptable based on deviance. The maximum likelihood model will
always achieve a lower deviance than the principal component models, but for «
values near 0.1, the PC(—1) model achieves a deviance nearly equivalent to the
ML model. Recall Proposition 1 in Section 5. Further; we are also guaranteed
ordering in deviance among the iterative PC(—1) and PC(—2) models. How-
ever, notice in Figure 1 that the deviance for PC(—=1) is greater than the
deviance for PC(—2) at « values near 0.96. This anomaly is due to the fact the
one-step estimators from (8) only approximate the iterative ones and does not
reflect an error in programming.

Moreover, Flgure 2 clearly shows the reduction in sum of asymptotic coeffi-
cient variance in both the PC(—1) and PC(—2) models, for all «, when
compared to the ML model. For any given «, there is a guaranteed consistent
decreasing order for the asymptotic sum of coefficient variance in ML, PC(—1),
and PC(—2) techniques, respectively. Since the true coefficients are unknown,
the author admits that we cannot accurately evaluate the asymptotic coefficient
bias associated with the principal component models. Future research will be
devoted to this area. However, we do see from this example that the optimal
choice of a depends on the researcher’s criterion for model selection.

The PC(—1) model with a=0.1 appears to be one of many reasonable
candidates since it nearly achieves the deviance of the ML model, yet has
approximately half of the sum of coefficient variance of the ML model, and is
less biased than the corresponding PC(—2) model. Notice that the model
suggests that the mean number of injuries or fractures decreases with increased
inner burden thickness, lower seam height or number of years the mine has
been opened, whereas the mean injuries increase with increased percent extrac-
tion. This choice also yields coefficients very similar, in sign and magnitude (with

decreased standard errors and deviance), to Myers’ ([12], Page 338) ML model
choice containing X;, X,, and X,.
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8. Discussion

One consequence of using principal component estimation in the framework of
the GLM is the asymptotically biased nature of the parameter estimates.
However, we attain asymptotic decreases in the sum of variances of parameter
estimates and prediction variances. If the error distribution is normal, the link
function is the identity with unity scaling parameter, then the above results are
completely consistent with Webster et al. [16]. There is some controversy
regarding principal component estimation. Some researcher’s argue that in
experimental settings where a researcher is not constrained to a theoretical
model, then perhaps variable selection is adequate.

Given an ill-conditioned information matrix and variable deletion is not an
option, the continuum of principal component techniques can be useful for
parameter estimation as an alternative to maximum likelihood. One contention
is that the quasistandardized principal component techniques yield linear combi-
nations of explanatory variables in an unintuitive metric. In fact, Jolliffe ([6]
Chapter 8) suggested that the information matrix should be proportional to the
correlation matrix. However, this unintuitive metric is akin to transformations.
In the end, we backtransform to the original coordinates and, in some cases,
have a more stable regression than maximum likelihood. Note that if all the
explanatory variables are in the same units, then one could argue for a
covariance, correlation or quasistandardized approach. The author suggests that

the quasistandardized principal component procedure should be used for ex-
ploratory purposes.
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