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Abstract

The problem of ill-conditioning in generalized linear regression is
investigated.. Besides collinearity among the explanatory variables, we
define another type of ill-conditioning, namely ML-collinearity, which
has similar detrimental effects on the covariance matrix, e.g. inflation
of some of the estimated standard errors of the regression coefficients.
For either situation there is collinearity among the columns of the ma-
trix of the weighted variables. We present both methods to detect, as
well as practical examples to illustrate, the difference between these
two types of ill-conditioning. Also the a.pphca.blhty of alternative re-
gtessmn methods will be reviewed.
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1 Introduction

In linear regression computational difficulties arise when the explanatory vari-
ables are collinear. "A set of variables are said to be collinear if one or more -
variables in the set can be expressed exactly or nearly as a linear combination
of the others in the set. If the problem is aimed at parameter estimation,
then collinearity will also cause statistical difficulties. We define a fitted re-
gression model to be ill-conditioned if the (estimated) information matrix
is ill-conditioned. The detrimental effects of ill-conditioned information in
generalized linear regression models (GLRs) [16] include inflated variances of
the estimated coefficients and poor prediction in certain regions of the regres-

. sor space. Another effect can be a nonsignificant Wald statistic even when

the regressors are highly predictive. This was first pointed out by Hauck

and Donner [9] for the logistic model. More specifically, they showed that if
|B;] — oo, then its Wald statistic converges to zero. Veeth(21] explored con-
ditions for this to happen for the other members of the family of generalized

- linear models. In GLRs, collinearity among the regressors can also, but may

not be the only source of ill-conditioning problems. We demonstrate that
ill-conditioning problems exist in GLR when the explanatory variables are
not severely collinear. '

_In the logistic regression framework, a number of papers appeared on ill-
conditioning problems, see e.g. {19,20,13]. Others discussed the problem in
the framework of a GLR, see [12,14]. Belsley [4] treated the general nonlinear
model. In all of the above referenced papers the authors point out that it
is not the collinear relations among the explanatory variables matter, but
rather of weighted explanatory variables. Yet, in all these mentioned GLR
examples, the explanatory variables are highly correlated. Hence the previ-
ous research did not investigate the effects of other sources of ill-conditioning
when collinearity is not severe. Mackinnon and Puterman {12} did notice
that : ... it is possible that the GLM might not be collinear at the mazimum
likelthood estimate of B while it is collinear at § . Thus, they recognized
the dependence of the ill-conditioning problems on the particular value of .
However, this was not further investigated in their paper. Related to the ob-
servation made by Mackinnon and Putermian, we illustrate that, in addition
to collinearity, there is another situation where the (estimated) asymptotic
variances of the regression coefficients are inflated.

As the vehicle to illustrate our viewpoint, the logistic regression model
with a binary response will be taken in Section 2. In the presence of ill-
conditioned information, the practitioner can and will resort to an alterna-
tive model, either by simply deleting certain regressors, which is often done
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in medical applications, or by using alternative estimators, e.g. ridge regres-
sion, principal component regression, Stein estimators, etc.. We will indicate
that the first method can lead to much less efficient estimators if the cause
for ill-conditioning of the information matrix is not collinearity among the
explanatory variables. In the third section our arguments will be extended
to GLRs. It will be highlighted that there is a-close connection between
ill-conditioning and that of existence and uniqueness of maximum likelihood
estimators. Methods to detect the two types of ill-conditioning problems
will be treated in Section 4. The use of alternative regression models in the
presence of an ill-conditioned information matrix will be investigated in the

fifth section. Our proposals for a conditioning analysis will be applied to an
example in Section 6.

2 Examples of collinearity in logistic regres-

sion

We first look at the analysis of two constructed data sets and then look at
the pattern of the data. For the analysis we used the SAS PROC LOGISTIC
(18]. - - '

Each of the two data sets (N=25) contain one 0-1 binary response vari-
able and two explanatory variables, z and y. In Table 1, observe that models
based on a single explanatory variable have a significant impact on the re-
sponse. However, jointly their significance is lost when evaluated by the Wald

_ test. This reminds us of problems associated with collinearity in standard

multiple regression. Besides some changes in signs, we basically find the
same result in Table 2. Thus when both explanatory variables are included,
in either example, we find inflated estimated variances and apparently in-
flated regression coefficients. A possible remedy, often employed in medical
applications is to drop one of the regressors. Notice, however, that this will
reduce the correct classification rate from 84% to either 72% or 68% in the
first data set, and from 92% to either 92% or 84% in the second data set

(see Tables 1 and 2). Thus, there is some loss of efficiency observed in the

first data set by deleting one of the regressors, however this loss could be
ascribed to the size of the data set and the roughness of the classification
rate as a performance measure. A more dramatic difference between the two

- data sets is observed when looking at the scatterplots of the two regressors

together with the group information (Figures 1 and 2). In the first data
set the regressors are uncorrelated (r=0.006), but more importantly the two
groups are almost separated by a bisecting line. In the second data set, a
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Table 1: Artificial data set 1: regression coefficients of regressors z and
y in logistic regression model predicting the binary response variable with
each-explanatory variable separately (UNIV) and then predicting with both
variables jointly (MULT). : :

data set 1
type model coeff SE(coeff) P(Wald) %corr
UNIV  x 102 04l 001 72%
UNIV y 0.99 - 0.40 0.01  68%
X -5.02 4.17 0.23
MULT 84%
y 5.12 4.30 0.23

Table 2:  Artificial data set 2: regression coefficients of regressors = and

. ¥.in logistic regression model predicting the binary response variable with
* each explanatory variable separately (UNIV) and then predlctmg with both

variables jointly (MULT)

, data set 2
type model coeff SE(coeff) P(Wald) %corr
UNIV x 0. 46 0.20 0.02 92% »
UNIV y 045 0.9 0.02  84%
X 2.75 2.90 0 34.
MULT 92%
y 2.97 284 042

: high correlation exists among the regressors (r—O 999). For either of the two

examples, SAS does not warn the user of the possible problems associated
with ill-conditioned information. »

In the first example, the data configuration approaches (quasi)-complete
separation as described by Albert and Anderson [2], see also [17]. It is known
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Figure 1: Artificial data set 1: scatterplot of Tegressors together with group
information. Example of ML-collinearity.

-that for exact (qua51 )complete separation the ML estimate of at least one

of the regression coeficients is infinite. A completely different picture is seen
in the second data set where collinearity among the regressors is the cause

“of concern. We present two completely different natures of 111 conditioned

information.

We define the asymptotic covariance matrix of the estimators, (X'vxH—,
where X is the design matrix, V = diag(v;) with v; = p(z;)(1 — p(z;)) and
p(z:) = probability of success in the logistic model for the ith observation
with covariate vector z;. The Fisher information matrix W = X'VX is
singular if $ = V32X is less than full column rank, with V3 the square oot
matrix of the positive semi-definite n x n matrix V. But for every set of
finite true regression coefficients the matrix V is positive definite so that
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‘Figure 2: Artificial data set 2: scatterplot of regressors together with group
information. Example of multicollinearity. B

W can only be singular if X is not of full column rank. However, it is
the estimated, and not the exact covariance matrix, which is reported as a
result of a maximization program, given by (X'VX )=1, with p(z;) replaced
by its MLE. It is known that if the data has a (quasi)-completely separated
configuration, then at least one of the MLEs of the regression coefficient
vector is infinite. Consequently, some of the diagonal elements of V become
.exactly equal to zero resulting in a singular W = X'V X matrix.

It will next be shown for the logistic regression framework that exact
collinearity among the regressors and nonexistence of the MLEs are the
only causes for a singular estimated information matrix, W. However, ill-
conditioning of a nonsingular estimated information matrix occurs either
when the regressors are strongly collinear or when the diagnostic groups ap-
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proach (quasi) -complete separation. Both ill-conditioning situations result in

inflated variances of the estimated regression coefficients and reflect strong
collinearity in § = V3 X, yet are fundamentally different,.

As in any regression model, logistic regression argues conditionally on
the regressors. In experimental settings where the regressors are collinear,
the true unknown variances will be inflated. On the other hand, while in
experimental settings with near separation of the groups, the true unknown
variance may or may not be inflated, it is the estimate of the true variance
which suffers from inflation. This important and subtle distinction will be

- extended to the class of generalized linear regressions in the next section

3 Collinearity in generalized linear regres-
sion.

3.1 Definitions and notation

Let X = (z0y21,T2,...,%,) be a N x (p + 1) matrix of regressors with the
first column a vector of ones. Let Y be a N x 1| random response vector
for which each entry in Y follows the same distribution in the exponential
family. It is assumed that each entry of the response vector, ¥; corresponds

toal x (p+1) vector 2’ = (zq,...,z,). The probability density for Y; is
assumed to be

fy:8,9) = ezpl{y6 + <(O)}/a($) + v, 8)), (1)

~ where ¢, d, g are known functions. Let the nuisance parameter ¢ be consta.nt

for all ¥;.

Given a constant and a set of p explanatory variables, a generalized linear
regression model utilizes the relationship,

9(pi) = =i = ns, : @)
satisfying (i) p: = E(Y:); (ii) ¢ is a link function with ¢~ = h and is twice
differentiable in the interior of {tmin, fimez] = I, C R; (iii). B is an unknown

parameter vector and is an element of the parameter space, P; (iv) the
estimation of B does not depend on having an estimate of ¢.

The parameter space can be dénoted as P =) P, where

P={fe R | g (zlB) € L,).
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Define int(P;) as the interior of P; and cl(P;) as the closure of P; in RPH!.
Since P; is convex, we have int(P) = ), int(F;) and cl(P) = (N cl(P;). Thus
B belongs to the boundary of P, ie. § € O(cl(P)), iff B € cl(P;) for all i and
there exists at least one i for which 8 ¢ int(F;). In other words, 8 belongs
to the boundary of P iff 3i such that 97 HZB) = Lmin OF fimax- '

For Poisson and logistic regression models with the natural link function
P; equals the (p+1)-dimensional Euclidean space. - Then, # belongs to the
boundary of P if it is a vector "at infinity”. corresponding with gmix = 0 A
OI fimez = o0 for Poisson models and to Kmin = 0 OT fimaz = 1 for logistic
regression models. If the identity link is used in Poisson models, then the
P={fe R |0 < 1B < oo}, each are cones (without their origins).
Therefore P is the intersection of n cones. The origin corresponds to {8 €
RP*+! | 218 = 0}. This follows since if 8 € P;, then 68 € P, V6 > 0.
- Standard theory of generalized linear models can be found in McCullagh

and Nelder [15] and Aitkin, Anderson, Francis and Hinde (1]. The scoring
~ algorithm to estimate the unknown parameters is given by

Bi=(X"Veer X) X Vha 25, (3)

- where Z;_; has elements ¥ = 74; + €i(0n:/Ou;) evaluated in f,_,, as is also

the residual é; = y; — f; and V;_, = diag({#'(7:}*/var(Y;)}s—1. The diagonal
~elements of V' are equal to - '

| | gn(2)/{g'(2:)a(4)},

where g is the link function used, g~ the natural link function, q(¢~5) the
estimate of g(#). For g = g,, the %; are inversely proportional to g, (;). The

~ information matrix can be estimated by the actual or the expected Hessian

matrix evaluated at the MLE. Here we take as estimate the expected Hessian

matrix given by W = X’ VX. The asymptotic covariance matrix of J is then
estimated by W~1, if it exists. -

3.2 Causes of ill-conditioned information -

In the lemma below we investigate what can be concluded from the data if
the information matrix W is singular.

_ Lemma 1 When X'VX is singular, then either X is not of full rank or
B € 8(cl(P)), or both.

Proof

If XVXis singular and rank(V) = n, then trivia,lly‘ X caﬁnot be of full
column rank. Thus when X is full column rank, the only other situation to
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have a singular X'VX is when rank(V)< n. Since V is diagonal, rank(V)<
n implies that least one ¢; = 0 = In(:)/{9'(f1:)%q(4)}. However gis a
monotone and twice differentiable function in the interior of I,. Thus f; =
Hmin OT fimaz for at least one ¢ and B ¢ a(cl(P)). O

Thus, ‘whenever the estimated covariance matrix is singular, it is ei-
ther because of exact linear dependence among the explanatory variables
ns, there
is an exact linear dependence in the constructed variables defined by the
columns of § = V3X. Further in the case when the MLE does not exist,
XVX = X"V‘X‘, where X* and V* are the submatrices corresponding to
those elements in X and V, respectively, for which 9; # 0. Then, since W is
singular, necessarily X cannot be of full rank, so that there are exact linear
dependencies among the columns of X", i.e. restricting the sample space to
those cases which do not have an extreme fi;. The conditions for the converse
to hold, i.e. if 8 belongs to the boundary of the parameter space then W
is singular, depend on the chosen link function and the boundary a(cl(P)).
We now illustrate that for the logistic regression model there is equivalence,
but not for all GLRs.

Given full column rank X , then the MLE of B does not exist for the
logistic regression model iff 3, such that z;B0 2 0 for all observations of the
first. diagnostic class and zifo <0 for the remaining observa.tionﬁs, ie. if the
groups lie opposite a particular hyperplare. -In such a setting, (3 lies on the
boundary of the parameter space implying that 3 has an infinite component.
Thus if 8 € d(cl(P)), then ; # 0 if and only if z/f = 0, since only the

. elements with o; # 0 contribute to W. However, the regressors of these

observations must satisfy a collinear relationship specified by the coefficients

* of the MLE. The converse is proved.

In the binomial model with a non-natural link function, e.g. probit and
complementary log-log link, the converse can only hold true if v; = 0 when
B € d(cl(P))). However § can belong to the boundary of the parameter
space, without singular W, in the case of the power link function n = (p* —
1)/A when X = .5. In such a case, v; = 1 (up to the factor in @) for p =0 or
1. Of course this discussion relates to the expected Hessian matrix evaluated
at the MLE and not to the actual Hessian matrix. '

The case of a singular information matrix is treated above. However, the
literature focuses on ill-conditioned nonsingular information. As presented
in Section 2, the two data patterns presented in Figures 1 and 2 posed two
different natures of ill-conditioning a nonsingular information matrix. In
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GLRs, the structure of the data patterns to force 8 to the boundary of the
parameter space may not have the clear visualization that is provided by
separation in logistic regression. Nonetheless the dire consequences of ill-
conditioned information are present. We can moreover conclude from above
that there also exists two sources of ill-conditioning of information for all
GLRs. The first arises when the explanatory variables are collinear. If the
explanatory variables are not collinear, but at the MLE there is collinearity
-among the constructed variables S, then we define this as ML-collinearity.

4 - Detection of collinearity problems

The first priority is to detect whether or not the information matrix is ill-
conditioned. If this is the case, the type of collinearity and the actual collinear
relationship(s) need to be known. These steps will be treated below.

4.1 Detection of ill-conditioned information

Ill-conditioning of a nonsingular W can be flagged using its condition num-
ber. However, there is no agreement in the statistical literature of how to

measure the severity of the ill- condxtlomng Suppose the columns of X are
standardized to unit length.

-Let )\0, )\ be the eigenvalues of W in dec;eésing order. Define the
mforma.t]on condltlon numbers kw; = (Ao/4;)?, and the largest as k(=
£w,). Mackinnon and Puterman [12] suggested to use xw as a criterion
to detect an ill-conditioned information matrix. Several geometrical and
statistical properties can be attributed to k. For instance, it can be shown
that xw describes the worst relative precision with which linear combinations
of 4 can be estimated. Belsley and Oldford [6] showed that this diagnostic can
be used for loglikelihood conditioning. Belsley [4], Weissfeld and Serexka. [22]
suggested the condition number of a standardized W, i.e. of W, = DWD,
with D? = dzag(W) 1, Marx and Smith [13] proposed yet another condition
number based on &* = 5% 3*, with 5* the centered and standardized (to
unit length columns) version of the matrix § = V3X. Yet only Kw; is
~ structurally interpretable. Therefore, and in view of the distinction between
the two types of collinearity problems, we propose to take i as a diagnostic

for detecting ill-conditioned information w1th the columns of X standardized
to unit length
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4.2 Establishing the nature of the 1ll—cond1t10n1ng
problem

Whenever the information matrix is deemed ill-conditioned by xw, we rec-
ommend distinguishing between collinearity among the explanatory variables
and ML-collinearity. It is useful to calculate the ratio ryyy = kw/kx, where
£x 1s the condition number of X. The design matrix is not square so Kx is
defined as the condition number of X'X. If the ratio ryy is high, e.g. more
than 5, and kw > 30 there is ML-collinearity. If xx > 30 there is collinearity
among the explanatory variables. ‘Mackinnon and Puterman provided easy
to determine bounds for xw [12]. They showed that the square of ryx is
bounded below by Omin/ Vmaz and above by 9,42/ Omin. However, these bounds
are often too crude to help distinguish between the two types of collinearity.

A variance decomposition table, originally suggested by Belsley, Kuh and
Welsch [5] for linear regression models, helps in identifying the collinear rela-
tionships among the regressors. Marx and Smith [13], Weissfeld and Sereika
[22] proposed such a table for the estimated information matrix W. We

- also suggest such a diagnostic table. However, it must be recognized that

its value as a diagnostic is limited. Indeed, the table cannot always point
to the correct collinear relationship among the explanatory variables, if one
exists. Further; if there is ML-collinearity, then the table cannot provide the

user with the collinear relationship among the columns of the submatrix X*.
Therefore we suggest the following strategy: -

(1) standardize the columns of X, including the constant vector, to unit
length;

(2) calculate the condition numbers xw, £x and their ratio;

(3) determine whether there is evidence of 1ll-cond1t10mng If kx > 30

‘ there is collmea.nty in X, if kw > 30 and sx is not high, there is ML-

collinearity. If both are large and the ratio is much more than 1 then both

types of collinearity are present; )

(4) calculate the variance decomposition table of W, this shows the in-
volved weighted regressors in the collinear relationships;

(5) if ML-collinearity exists, determine the cases with 4; > ¢, with ¢
an a priori determined small number. These data constitute the submatrix
of X* of X. The columns of this restricted data matrix provide information
regarding the linear relationship leading to ML-collinearity, such as in logistic
regression where such- a relationship approximately defines the separating
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hyperplane. To see this, in logistic regression we note that for quasi-complete
separation the observations on the separating hyperplane have, at the MLE,
a predicted probability away from 0 and 1 (see Albert and Anderson, 2)).

5 Alternative regression methods

The most simple “biased” regression procedure is variable selection. This
is often” done in medical studies where there are many regressors and the
ill-conditioned information matrix is often interpreted as a redundancy of

- regressors. But, we have shown in Section 2 that variable deletion is not

always the best method to alleviate ill-conditioning of the information matrix,
especially with ML-collinearity, since it can lead to a dramatic loss in the

- model’s discriminative ability. We further note that in the first data set the
Wald statistic for each of the two regressors was not significant in the joint

model, but the loglikelihood ratio statistic for y was highly significant when
T was already in the model (—2logL = 18.195)

. Several alternative regression procedures have been proposed for GLRs
“in_the statistical literature. Basically they are straightforward extensions

of methods developed in linear regression. Schaefer, Roi and Wolfe [19] first

- suggested the ridge logistic estimator. Other proposals are found in (20,12,8].

Marx and Smith [14] suggested an iterative principal component procedure.
Consider further generalizing by utilizing a continuum of principal compo-
nents for each observation, Zs = X Mj;, where the (¢, 7)th element of Zs is the
score of the jth principal component for the ith obserati_on. Define M; as the
(p+1) x (p+1) matrix whose jth column is the Jth eigenvector of the infor-
mation matrix, W5 = X'V5X. The parameter 0 < 6 <1 connects the infor-
mation matrix (6 =1), on a continuum, to the correlation/covariance matrix

(6 =0). Hence Mj is an orthogonal matrix and MiWsM; = diag(As;) = As,

“where As; are the corresponding eigenvalues of Ws. We rewrite equation (2)

. Nsi = 2505, , : (4)
where zg; is the ith row of Zs and a5 = M;B. Equation (4) provides the
orthogonally transformed full principal component model. In constructing
a principal component model to alleviate ill-conditioning, a choice of § =
0 can be fruitful in the presence of explanatory variable collinearity when
ML-collinearity is not present. Whereas with ML-collinearity (regardless of
collinearity in X), § = 1is a better choice. As pointed out in [14], the
full or reduced principal component estimators can be estimated by either
iteratively or via a one-step adjustment to the ML estimator, if it exists.
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Conditional on collinearity in X, the variances of the estimated parame-
ters are inflated for all sampled situations. Instead, ML-colLinea.rity is a sign
that only for this sample, due to possibly the sparseness of the data set, the
variance of the estimated parameters is biasedly estimated. Thus, since the

~ biased regression methods rely heavily on the variance-covariance matrix of

the estimated parameters, it still has to be investigated whether they are use-
ful in the case of ML-collinearity. But, for the one-step methods a cautionary
note can already be made if ML-collinearity is present. Indeed, due to the
fact with ML-collinearity that some of the estimated 0; ~ 0, but the corre-
sponding v; are nonzero, the ML one-step adjustment to the ML estimate
can lead to incomsistent biased estimation. However, it is clear that both
for collinearity in X, as well as for ML-collinearity, the alternative regression
methods will shrink the length of the estimated pacameter vector.

6 The analysis of a practicabl example

For the analysis of the example we used SAS PROC LOGISTIC together
with SAS-IML programs. These programs are available from the authors

upon request.

6.1 TIllustration of collinearity

The cancer data from Lee [10] are taken to illustrate collinearity in logis-
tic regression. A table with the original data is included in the Appendix.
The continuous characteristics associated with cancer remission are: Cell in-
dez (CELL), Smear indez (SMEAR), Infil indez, Li indez (LI), Blast indez
(BLAST) and Temperature (TEMP). The binary response is 1 if the patient
experiences a complete cancer remission and 0 otherwise. There are 27 pa-
tients, 9 of which experienced a complete cancer remission. Forward selection
and backward elimination procedures were performed for these data. For-

ward selection chczses regressors LI, TEMP, and CELL. This will be our first
model of interest.

The regressors LI, TEMP, CELL are standardized to unit length. The pa-

rameter estimates (standard error, P-value) are of the Intercept, LI, TEMP,

CELL : 3.99 (2.25, 0.08), -1.81.(0.83, 0.03), 1.22 (0.92, 0.18), -1.80 (1.45,
0.21), respectively. The condition number of X equals 190.78 indicating
collinearity problems in X. The fitted model is almost double the condition
number of X, with ky = 329.95. We note that this is close to the condition
number of the standardized matrix W, which is equal to 315.14. Ma.ckmnon
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Table 3: Variance décomposition table of Lee cancer remission data set ap-
plied to the original data

Variance Decomposition Table Original Data
Lee data with regressors LI, TEMP and CELL

Eigen Cond * Variance
value Number Proportion :
. Interc LI TEMP CELL
3.843 . 1.00 0.00 -0.01 . 0.00 0.00
0.129 545  0.00 - 0.98 -0.000  0.02
0.028 11.78  .0.00 0.01 0.00  0.97
0.00011 190.78  1.00 0.01 1.00  0.01

Table 4: Variance decomposition table of Lee cancer remission data set ap-

~ plied to the information matrix obtained from logistic regressxon predicting

cancer remission from LI, TEMP and CELL.

Variance Decomposition Table Information Matriz

Lee data with regressors LI, TEMP and CELL

. Eigen Cond ~ Variance
value Number Proportion -
L Interc LI TEMP CELL
-0.576 1.00  0.00 0.00 0.00  0.00
0.015 . 6.17  0.00 045 . 0.00 -.0.01
. 0.00055 32.29  0.01 . 0.10  0.000 0.82
5.29E-6 320.95 1.00 0.44 1.00 0.18

-‘and Puterman’s bounds for xw are 5.21 and 6992, which are uninformative

for this data. According to [12] the linear combination with the highest vari-
ance is —0.68 — 0.02 x LI + 0.73* TEM P — 0.03 * CELL, while that with

_ the lowest variance is 0.48 +0.53« LI +0.48*TEMP +0.51 * CELL. Thus,

both the intercept and the coefficient for temperature are badly estimated.
The variance decomposition table for the original data and for the informa-
tion matrix are given in Table 3 and 4, respectively. These tables show a
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Table 5: Variance decomposition table of Lee cancer remission data set ap-

plied to the original data but with an artificial variable, ARTVAR, added
which causes almost quasi-complete separation.

Variance Decomposition Table Original Data

Lee data with regressors LI, ARTVAR and CELL

Eigen ~ Cond Variance
value Number . Proportion

Interc - LI ARTVAR CELL
3.500 1.00  0.00 0.00 0.00 0.00
0.463 275 0.01 0.00 ~  0.09 0.01
0.028 11.24 0.11 0.20 0.15 0.71
0.010 - 18.60 0.87 0.79 0.76 = 0.28

similar picture for the decomposition of the variance of the regression esti-
mators into its basic components. There seems to be a collinear relationship
between TEMP and the intercept. This only happens if the values of TEMP
are relatively high with respect to their variability. Indeed, the average tem-
perature (in Fahrenheit) is equal to 99.7 and the standard deviation equal to
1.5, further the minimal value is 98 and the maximal value is 103.8. Thus, we
can conclude that one collinear relationship in the original regressors caused
the numerical and statistical instability of some of the estimated regression

coefficients and perhaps a variable selection or biased estimation technique
should be implemented.

6.2 Illustration of ML-collinearity

To illustrate ML-collinearity, we have taken again the cancer remission data
set of Lee but we removed TEMP and included an artificial variable ART-
VAR. Almost (quasi)-complete separation between the two remission groups
was created by the line ARTVAR — 2+ LI +1 = 0, i.e. this line almost
separates the two classes. For complete separation, i.e. if all data points of
one class lie with respect to the above line opposite to all points of the other
class, PROC LOGISTIC cannot provide unique maximum likelihood esti-
mates. By construction, ARTVAR and LI are highly correlated (r=0.94) but
this correlation is not high enough to cause ill-conditioning in the basic data,
the condition number of X is equal to 18.60. The variance decomposition
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Table 6: Variance decomposition table of Lee cancer remission data set ap-
plied to the information matrix obtained from logistic regression predicting
cancer remission from LI, ARTVAR and CELL.

Variance Decomposition Table Information Matriz

Lee data with regressors LI, ARTVAR and CELL

Eigen Cond : Variance

value' Number Proportion

' ' Interc LI ARTVAR CELL

0.134 1.00 0.00 0.00 0.00 0.00

0.010 3.59 0.00 - 045 0.00 0.01
0.000025 73.64 0.52 -0.39 0.34 0.14
0.000013 100.75 0.48 061 0.66 0.86

table of X is shown in Table 5. A logisﬁc model was estimated predicting
remission from INTERCEPT, LI, ARTVAR and CELL. The parameter es-

. timates (standard error, P-value) of the standardized estimates are : 13.00

(13.11, 0.32), 24.99 (15.59, 0.11), -32.30 (20.06, 0.11), -4.48 (7.08, 0.53), re-
spectively. Thus none of the regressors are significantly predicting remission,
still 85.2% of the cases are correctly classified. The condition number of the

~information matrix from this logistic model is much higher than for the basic

data, kw = 100.75, which is more than 5 times higher than the condition
number of X. The variance decomposition table of W' is shown in Table 6.
From this table apparently all regressors are involved in the collinearity cor-
responding to the condition number of 100.75. A linear regression analysis
on the 9 cases with v; > 0.01 shows that these points are all close to the
two-dimensional plane LI = 0.48 +0.53* ARTV AR, this model has an R? of
0.99. Observe that this hyperplane almost coincides with the original chosen

-quasi-separating hyperplane.

In principle also here an alternative regression procedure can be applied

- to obtain more stable estimates. However, in this case it is not yet clear what
. the statistical properties are of such a procedure. Anyway, variable selection

would be a bad choice.

7 Conclusions

In linear regression collinearity problems only involve the regressors. We have
shown that in GLRs also the response and the choice of the model play a role
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in the degree of ill-conditioning of the information matrix. This lead us to
introduce the concept of ML-collinearity, where there is no collinearity among

the original regressors but, due to the combination of response, regressors and
the choice of the model, the information matrix becomes ill-conditioned at
the MLE. This was not yet recognized in the literature and we have shown

that it is of importance to distinguish between multicollinearity and ML-
collinearity. :

We have concentrated on the logistic regression model to exemplify our
ideas. Of course any other member of the class of GLRs (with the natural link
function) could have been chosen. Further, our discussion above also applies

to other models, not especially GLRs but with an information matrix having
the expression X'V X. For example, for the conditional logistic regression

model the estimated information matrix has this expression with V a block

diagonal matrix [7]. The multlple group logistic regression model is another
example [3,11].

When the information is not ill-conditioned, the estimation of parameters

in GLRs often works well in practice. Yet, when ll-conditioning occurs,

practitioners should be able to take the appropriate corrective action. The
current versions of the commercial statistical programs like SAS, BMDP, etc.
do not provide the user with sufficient statistical tools to adequately respond
to problems associated with ill-conditioning of the information matrix. They
do not contain any variance decomposition table of the information matrix

nor any alternative GLR regression method. We hope that this paper will
add to change this situation.

Appendix

The Lee cancer remission data set was taken from $AS, SUGI Supplemen-
tary Guide (1986). The study was conducted to associate patient’s charac-
teristics with cancer remission. Information was recorded on the following
variables: Y = 1 if complete cancer remission, = 0 if incomplete cancer re-

mission; X1, Cell index; X2 Smear index; X3, Infil index; X4, LI index; X5,
Tempera.ture

OBS Y £ X2 X3 X4 X5
1 1 800 830 660 1900 996
2 1 900 360  .320 1.400 992
3 0 800 880  .700 800 982
4 0 1000 870 870 - .700 986

(continued)
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OBS Y Xl X2 X3 X4 X5
5 1 .900 7507 680 1.300 - .980
6 0 1.000 .650 650 .600 982 -
7 1 950 970 920 1.000 992
5 8 0 950 .870 .830 1.900 1.020
§ 9 0 1.000 © 450 450 .800 . 999
10 0 950 © 360  .340 | .500 1.038
11 0 .850 390 - 330 7700 988
12 0 700 760 .530 1.200 982
13 0 800 . .460° . .370 . 400 1.006
14 0 .200 .390 .080 .800 .990
15 0 1.000  -.900 - .900 - 1.100 . 990"
16 1 1.000 - .840 = .840  1.900 1.020
17 0 .650 420 270 2500 1.014
18 0 1.000 - .750 750 1.000  1.004
19 0 .500 440 - 220 600 .990
20 ‘1 1.000 630 - .630 . 1.100 986
21 0 1.000 .330 330 400 1.010
22 0 .900 930 .840 .600 1.020
23 1 1.000 .580 .580 1.000 .1.002
24 0 .950 320 .300 1.600 .988
25 1 1.000 600 . .600 1.700 .990
26 1 1.000 690 690 .900 986
27 - 0 1.000 . ..730 .730 .700 986
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