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Abstract 

Generalized additive models (GAMs) have become an elegant and practical option in model build- 
ing. Estimation of a smooth GAM component traditionally requires an algorithm that cycles through 
and updates each smooth, while holding other components at their current estimated fit, until specified 
convergence. We aim to fit all the smooth components simultaneously. This can be achieved using 
penalized B-spline or P-spline smoothers for every smooth component, thus transforming GAMs into 
the generalized linear model framework. Using a large number of equally spaced knots, P-splines pur- 
posely overfit each B-spline component. To reduce flexibility, a difference penalty on adjacent B-spline 
coefficients is incorporated into a penalized version of the Fisher scoring algorithm. Each component 
has a separate smoothing parameter, and the penalty is optimally regulated through extensions of cross 
validation or information criterion. An example using logistic additive models provides illustrations of 
the developments. (~) 1998 Elsevier Science B.V. All rights reserved. 
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I.  Introduct ion 

We revisit the generalized additive model (GAM) which fits a response variable 
Y by a sum of  smooth functions of  the explanatory variables, X 2 for j = 1 . . . .  , p 
(Hastie and Tibshirani, 1986, 1990). For a Normal response, the model is 

P 

~, = E ( r )  = ~ + Y~ jS(xj )  = ,7~, (1) 
j=! 
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where the f j ( . )  are smooth functions. For non-normal responses, the approach of the 
generalized linear model (GLM) is extended and adapted (Nelder and Wedderburn, 
1972; McCullagh and Nelder, 1989). For instance, an appropriate distribution is 
chosen for Y (from the exponential family of distributions) and a link function g(') 
(monotone, twice differentiable) is introduced. Recall that the linear predictor of the 
GLM or additive linear effects of explanatory information is 

= + (2) 

where the flj are the unknown parameters. The GAM further generalizes the GLM 
by replacing the above linear predictor with g(/~)= qA. GAMs can provide useful 
approximations to the regression surface, upholding the richness of GLMs, but relax- 
ing the linear (polynomial) structure of  the additive effects. This additional flexibility 
relieves the difficulty of  searching for the perfect linear relationship between each 
explanatory variable and the response, yet explains the variability of the response 
in an additive manner. If each component or a subset of components of a GAM 
is assumed to be relatively smooth, then these alterations permit users to entertain 
the vast parametric-free modeling literature as candidates for the additive structure 
models. Hastie and Tibshirani (1990) (H&T) suggested widespread applications. 

Several options are available to reach the objective of fitting the smooth functions 
of  a GAM. Perhaps most commonly backfitting is used which is a procedure that 
resembles the Gauss-Seidel algorithm for an iterative solution of systems of linear 
equations. To give the unfamiliar reader some intuition and insight, we find that 
backfitting is most easily explained with a simple example containing two explana- 
tory variables with a normal response. Suppose that the mean of Y, p = E ( Y ) =  0~, 
and for the moment that f2(') is known. The smooth f l ( ' )  can be found by smooth- 
ing the residual y -  o~- f2(X2) by any convenient smoother. Now if we do not know 
f2( ') ,  but rather an approximation, then we can improve the estimate of )rE(') by 
smoothing y - a - f l (X l  ). This process can be cycled until the smooth fits settle 
down. Generally, convergence is obtained, even with very rough initial estimates like 
f l ( . ) = f 2 ( - )  - 0. The backfitting algorithm is easily generalized to more than two 
explanatory variables: improve fk( ')  by smoothing of  y - ~ - ~j~k J)(Xj), cycling 
over all j ,  repeating the process until convergence. With non-normal data, general- 
ized residual and smoothing weights using working response vectors can be defined 
to get the desired results, but for non-normal data these must be iterated through, 
for example, the method of scoring or Newton-Raphson algorithms. Details of the 
local scoring algorithm can be found in H&T. 

Several authors have noted that GAMs can be reduced to large GLMs and funda- 
mental work on modelling additive splines can be revisited in Stone and Koo (1985), 
Stone (1986) and Buja et al. (1989). Although backfitting or local scoring works 
well in practice, a more direct procedure is desirable - ideally, one that stays near 
to the regression model of a GLM. In such a case, the derivation of the standard er- 
rors, regression diagnostics and convergence properties would be easier and clearer. 
Several authors have studied this problem, leading to two different approaches: (i) 
using smoothing splines and another (ii) using regression splines. 
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First, smoothing splines are discussed in detail in Green and Silverman (1994) 
and applications to the GAM can be found in H&T. The use of  smoothing splines 
for each component of  a GAM does reduce the problem to the (penalized) GLM 
framework with a smoothness regularizing parameter. Despite connections to the 
GLM, a drawback to this approach is the fact that a potentially enormous system 
of equations results: the number of equations in this system is equal to the num- 
ber of observations (N) where the number of variables is equal to the product of 
the number of observations times the number of smoothes (N x p). The penalty 
prevents singularity. Because of the arbitrary combinations of the explanatory vari- 
ables, there is no chance to exploit a banded structure of the equations that is done 
for the one-dimensional smoothing splines. The curse of dimensionality is at work 
here. 

Secondly, Hastie and Tibshirani (1990, Ch. 9) studied the use of  regression 
splines. A smooth function is now modeled as the sum of B-splines. This tech- 
nique is revisited in the next section and smoothing boils down to (generalized) 
linear regression. Each smooth function is projected to a much lower dimensional 
sub-space of  say nj << N. This way, a GAM is reduced to a GLM. The beauty of this 
method is that B-splines are easy to construct. H&T discuss these advantages, but 
also discuss the awkward problem of optimizing the position and number of knots 
that are necessary to define the B-splines. Stone (1994) considers multidimensional 
splines where the knot placement problem becomes even larger. 

We propose to use the strengths of both of these methods. In a previous publication 
we have shown that knot optimization can be avoided by combining B-splines with a 
difference penalty (Eilers and Marx, 1996). This approach leads to a one-dimensional 
smoother with many attractive properties, which we termed P-splines. In this article 
we aim to show that P-splines are very attractive for GAMs as well, extending our 
previous work into a p-dimensional additive case. Some of the advantages include: 
• GAM estimation is reduced to (generalized) linear regression with a tractable 

penalty; 
• the system of equations is of  low dimension and is easy to solve; 
• all of the smooths are estimated simultaneously; 
• the resulting GAM fit is compactly summarized by a relatively few number of 

parameters that facilitate future prediction; 
• standard errors and regression diagnostics can be computed with relative ease. 
These claims are detailed in the following sections, and GAMs with P-splines 
(termed P-GAMs) will be applied to data in a case study example. First, we provide 
some background on the GLM and GAM, as well as on B-splines and P-splines. 

2. Background and notation for the GLM and GAM 

2.1. The 9eneralized linear model 

Before delving into P-splines and P-GAMs, we provide some details of the GLM. 
We suggest that the unfamiliar reader to refer to Dobson (1990) who provided a 
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nice introductory presentation of  how many statistical methods involving a linear 
predictor can be united through generalized linear models. The GLM can accom- 
modate an entire family of  response distributions, thus is responsible for broadening 
the domain of the standard linear model which often needed mathematically con- 
trived transformations to coerce normality. Thus, statisticians are now faced with 
a rich modelling mechanism to directly fit the response at hand using a variety of  
discrete or continuous response distributions and any monotone transformation (link 
function). For a thorough overview and standard theory of  the GLM refer to Mc- 
Cullagh and Nelder (1989) or Fahrmeir and Tutz (1994). The parameter estimates 
(the fl's in r/L) in most cases now must be iterated using an algorithm described 
below that resembles (iteratively) weighted least squares. We attempt to construc- 
tively use the details of  the GLM to serve as an impetus for our notation. In many 
applications, rarely does one have to derive the details given below since tables exist 
(e.g. Fahrmeir and Tutz, 1994, Table 2.1 ) that specifies, e.g. the c ,d  components 
as well as the details of  the canonical link function for common exponential family 
members (Normal, Bernoulli, Poisson, Gamma, etc.). 

Some specifics now follow for the interested reader that will lead up to the impor- 
tant method of  scoring algorithm provided below in (4). The GLM requires that the 
random response vector, YN× 1, has independent entries Y~ following a distribution in 
the (canonical form) exponential family and is expressed as, f ( y ;  0, ~b)= exp[{y0+  
c(O)}/c~ + d(y)],  where c ,d  are known functions. Further, 0(#) is the canonical 
link function, also referred to the natural parameter of  the distribution. It can be 
shown that E ( Y ) = # = c ' ( O ) ,  providing the crucial connection between 0 and /z, 
i.e. 0 =  (c ' ) - I ( /~)= g(#). In constructing the joint distribution for the Y,, we find as 
many 0~ to estimate as there are observations (for i =  1,. . .  ,N).  The dimensionality 
of  estimation is reduced from N to p by substituting 0~ with the linear predictor 
r/L. 

Given the set of  p explanatory variables, GLMs use the relationship g ( # i ) =  ~/L, 
where /A i = E ( Y / )  and g is a monotone, twice differentiable link function with a 
unique inverse, h := g -1. The estimation of  fl does not depend on having knowledge 
of  q~ (which is assumed constant over the observations). The loglikelihood equation 
(here ~b = 1, without loss of  generality) can be expressed (since g(Iti) = Oi = rli) as 

N 

l ( f l ;X,  y)= 2{[yirli + C(~]i)] -~- d ( y i )  }. (3)  
i=1 

The maximum likelihood estimation of  the parameters is typically based on maxi- 
mizing (3) through the method of  scoring iterative equations which simplifies to 

+ x(x  g_,2,_,, (4) 

where, if convergence is attained, the estimated information matrix ~ = X  T VX,/2 = 
diag(t3i/) -- diag[{h'(~;)}2/var(Y,-)], zi -- q; + ei/ht(~i), and ~i = Yi -/~i.  Here the esti- 
mates of  V and £ must be updated at each iteration step until convergence, because 
they are a function of  the iterated qt-1. 
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2.2. The generalized additive model 

We now provide the local scoring algorithm, before providing our own more direct 
method of estimation of smooth components. For generalized additive models, the 
components of #(#i) = qA are conventionally fitted using a blend of backfitting and 
the iterative method of scoring algorithm in Eq. (4). Since each smooth may be 
estimated in a nonlinear fashion, there exists an additional backfitting cycle within 
each scoring iterate, specifically: 

1. initialize r/A with g(IT); f l  . . . . .  f p = 0 ;  
2. construct and update adjusted dependent variable and weights as above, but 

using r~=~ + ~;=1 J~j and/~ =h(~);  

3. Cycle j -- 1 . . . . .  p: ~ -- Sj(z - ~_,j4j J) [ xj, I.V), where S is the smoothing oper- 
ator; 

4. iterate and cycle until specified convergence is met. 
The algorithm cycles through each smooth, trying to improve the fit for the one 

dimension while holding the other p -  1 dimensions at their current estimates. Hence, 
the local scoring algorithm is essentially backfitting with an adjusted dependent 
variable and weights. 

3. Revisiting the B-spline smoother 

Among the several popular smoothing techniques, e.g. cubic splines, loess and 
kernel smoothers, the user is often provided graphical summaries of nonparametric 
fits. Although nonparametfic modeling provides rich exploratory flexibility, it is of- 
ten not easily used for future prediction. Recall that an objective of our proposed 
approach is to provide methods useful, in practice, through a compact representation 
of GAM components useful for prediction. We will see that penalized B-splines are 
a natural choice. First, some background is provided since not all readers will be 
familiar with B-splines. 

The basic B-spline reference is de Boor (1978), and we find Dierckx (1993) to 
have a nice presentation. Perhaps the best way to introduce B-splines is by means 
of an example. The top graph in Fig. 1 shows linear (degree=l)  B-splines. On 
the left are three points, Xl,X2,X3. These horizontal positions are called knots, and 
they are equally spaced in this illustration. At these knots polynomial pieces - 
in this case linear-join together. At the left of Fig. 1 (top) there is one B-spline 
of degree 1. This consists of two linear pieces; one from x~ to x2, and the other 
from x2 to x3. They are fused together at x2. The knots are Xl, x2 and x3. This 
B-spline is zero to the left of Xl and to the right of  x3. To the right of Fig. 1 
(top), three more (overlapping) B-splines of  degree 1 are provided, each based on 
3 knots. Similarly, in Fig. 1 (bottom), B-splines of degree 2 are shown; they each 
consist of three quadratic pieces joined at two knots. B-splines do overlap to con- 
struct the basis; at a given x, two first degree or three second degree B-splines are 
non-zero. 
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Fig. 1. Illustration of B-spline bases: degree=l (top) and degree=2 (bottom). 

Additionally, a B-splines smooth basis is independent of the response variable, 
and only depends on a few pieces of information: (i) the range of the explana- 
tory variable; (ii) the number and position of the knots (we will choose a modest 
number that are equally spaced); and (iii) the degree of the B-spline (commonly 
cubic or third degree). More generally, a B-spline of degree q: consists of  (i) q + 1 
polynomial pieces of degree q; (ii) these polynomial pieces join at q inner knots; 
(iii) the points of fusion of the polynomial pieces have continuous derivatives up to 
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Two quadratic B-splines 

A complete basis of quadratic B-splines 

The B-splines individually sealed 

The sum of the scaled B-splines 

Fig. 2. Illustration of B-spline constructed smooth. 

order q -  1; (iv) a B-spline is positive on a domain spanned by q + 2 knots (zero 
elsewhere); (v) except at the boundaries, a B-spline overlaps with 2q neighboring 
polynomial pieces; (vi) at a given x, q + 1 B-splines are non-zero. Of practical 
value is a recursive algorithm to compute B-splines of degree q from B-splines of 
degree q -  1. 

Let the j th  GAM component utilizes the B-spline smoother, then J ) =  Bjaj. Note 
that f j  is reduced to a linear sum ( j  = 1,. . . ,  p), where Bj is the known B-spline 
matrix (with nj knots) of dimension N x nj. Refer to the unknown aj as the vec- 
tor of coefficient associated with the B-spline bases. One can also view the aj 
as the amplitudes of the B-splines. Refer to Fig. 2 which shows how B-splines 
actually produce smooth curves. The top two portions of Fig. 2 again show the 
building blocks of quadratic B-spline bases. In the third portion of Fig. 2, each 
B-spline is multiplied by its corresponding amplitude in aj. The bottom portion 
of Fig. 2 shows the resulting smooth which is simply the sum of the scaled B- 
splines. Linear combinations of smooth B-spline bases produce smooth (univariate) 
curves. 

Fig. 2 shows how to construct a smooth curve from B-splines with given coeffi- 
cients. Most of  the time we are confronted with just the reverse problem: find the 
coefficients that give a smooth fit to the data of interest (scatterplot, time series, 
histogram). Because smoothness is an inherent property of B-splines, we only have 
to consider the fit to the data. Let the data be Yi and xi, with i - -1  . . . . .  N. Also 
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let bit =Bt(xi) be the value of the B-spline t at xi. Further, let ~'~tn__l bitat be the 
sum of B-splines. The fit to the data can now be expressed by the sum of squared 
differences 

S =  Z Y i -  bitat • 
i=1 t=l / 

The solution for the vector a is given by regression of y on the matrix B. For 
non-normal data, we apply the framework of the GLM: the linear predictor r/ is 
modelled as a sum of  B-splines and the iterative method of scoring is used. It is ev- 
ident that the smoothness of  the curve will depend on the number of  B-splines used 
to construct it. This does give one way to regulate smoothness, however, a course 
way since the number of  B-splines is a relatively small integer. A more flexible way 
would be desirable. 

Not only the number of B-splines influences the smoothness of the curve, also 
the values of the coefficients or amplitudes are important. If these are all nearly 
equal, then the curve will be very flat. If the amplitudes vary wildly, the curve will 
show many wiggles. This observation is key to a new way to regulate smoothness: 
constraining the amplitudes by means of a penalty (E&M). 

4. Direct P-GAM Hkelihood and estimation 

Clearly, if the unknown aj- are estimated by standard maximum likelihood, then 
there is no spatial restriction on the estimates of adjacent amplitudes. Hence, if neigh- 
boring estimated coefficients are erratic, then undesirable anomalies can be produced 
in the fitted smooth. We propose a smoothness requirement of the B-spline parame- 
ters or amplitudes. Additionally, one obvious drawback to the B-spline smoother is 
that the user has to optimize the number and position of knots. To both regularize 
smoothness and avoid knot selection schemes, P-splines (E&M) recommend using a 
large number of  equally spaced knots (say between 10 & 30), but prevented over- 
fitting by attaching a difference penalty on adjacent B-spline coefficients, ensuring 
smoothness. Continuous positive smoothing parameters regulate the penalty opposed 
to the discrete flexibility provided by knot selection. 

We consider a P-GAM in the form of g ( # ) =  Ba = r/, where B = (IIIB~ I1... IIBp) is 
the N x (1 + )--~ff=l nj) regressor matrix, and a= (~ , a l , . . . , ap ) ' .  P-splines directly fit 
GAMs through a slightly modified method of scoring algorithm and avoid the call to 
backfitting. Our proposed P-GAM technique essentially eliminates step 3 (in Section 
2.2) of  the local scoring algorithm. Overfit B-splines for each GAM component, 
while penalizing estimation of  each vector aj, j = 1,..., p (based on finite differences 
of  adjacent B-splines coefficients), results in maximizing the penalized version of 
the log-likelihood 

1 ~ 2ja~.Pjas, l* = l(y; a) - 
j= l  

(5) 
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where 2j > 0, for all j > 0 are the smoothing parameters, and (for the canonical link 
function) 

N 

l(y; a) = Z {[yir h -k- c(qi)] q- d(yi)}. 
i=1 

The term t/; is the ith element of  Ba = t 1. 
We now take a closer look at the structure of  the penalty given in the subtract- 

end of  (5). Define Pj = (/3~j)'Dj a, where d = 0, 1 ,2 , . . . .  The matrix/9~j, of  dimension 
(nj - d)  x nj is the building block of  the penalty with its (banded) rows consisting 
of  dth-order polynomial contrasts. For fixed component j ,  this banded matrix cor- 
responds to the matrix representation of  the difference operator of order d. For the 
j th  component, we express a nj - d  vector of  differences as Ddaj, where 

D° aj = aj and Djd. + ' a: = D1Dd aj, 

D)aj= {ajk--aj, k- ,}  k = 2 , . . . , n j .  

When d = 0 ,  we have Pj =I,j×,j  which reduces to ridge regression with B-splines. 
For d > 0, Pj has a banded structure. In principle, each Pj can have differing orders, 
and in practice, an order between one and three is usually adequate; d > 4 is rarely 
needed. It should be noted that what we denote as degree is one less than what 
de Boor refers to as order of the B-spline. Our notation is consistent with S-plus 
algorithms. 

Since P-GAMs only utilize penalized GLM Fisher scoring (and not the backfitting 
algorithm), maximization of  l* leads to an iterative estimation technique for a given 
by 

gt,+, = ( B ' ~ B  + P ) - ~ B ' ~ , t ,  (6) 

until specified convergence. We denote W=diag{[h'(~i)]2/var(Yi)} and 2i =q i  + 
(y-~ti)/h'(fli) construct the Fisher scoring weight matrix and adjusted dependent vec- 
tor used in GLM estimation, respectively. The matrix P = blockdiag(0, 21P1,..., 2pPp). 
The zero in the (1,1) position of  P corresponds to the intercept term. Note that (6) 
estimates all p components of  the GAM simultaneously. 

Upon convergence, /~ = 0-1(B~) and ~ = Bj~j. When the 2j = 0, for all j > 0, the 
iterative process reduces to GLM estimation with a B-spline basis. It is tempting to 
try to borrow the asymptotic normal theory of the standard GLM, i.e. if 2j = 0, for 
all j > 0 ,  crv( f j ) ,~Bj(B'WB)-IB~.  When 2 j > 0 ,  for at least one j ,  it is natural to 
try to generalize this result to 

c r v ( f j ) ~ B j ( B ' ~ B  + P ) - ' B ' ~ B ( B ' ~ B  + P)- 'Bj .  (7) 

The diagonal elements of  (7) are useful to construct twice standard error bands for 
P-GAM smooth in the example provided in Section 6. All smoothers have some 
form of  regularization whether it is the number and positions of  knots, the degree 
of  the local polynomial, or fraction of  points used in the smoothing window. For 
P-GAMs, these decisions are transferred into the parameter vector 2. One caveat 
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with any smoothers: the asymptotic distribution of its estimator is not necessarily 
Normal, or for that matter even assured to be symmetric. We do not pursue this 
issue further here. 

Due to the fact that the columns of each B/sum to one, rank(B) = 1 - p  + ~;=1 n/ 

and B'WtB is inherently singular. We find that using a very small (10 -6) ridge 
penalty on the entire system of equations works well for all the examples that we 
have encountered. Thus the length of a is gently pushed toward zero, stabilizing 
estimation. It should be pointed out that deficiency in rank with B-splines can occur 
outside the P-GAM setting, and under the simplest applications. It is possible for 
rank(Bj)<nj. This will occur when the kth column of Bj is the vector 0, i.e. when 
zero observations fall under Bjk. This less than full rank (LTFR) condition presents 
itself if nj is large relative to N, if the explanatory variable Xj is unevenly dispersed 
in its own range, or both. Another feature of the P-GAM approach is that LTFR 
caused by gaps in the domain greater than one B-spline footprint will be automat- 
ically taken care of by penalized B-splines. We have another argument in favor of 
using a difference penalty: B-splines presenting the LTFR condition are interpolated 
by adjacent B-splines. 

As pointed out in Section 1, H&T (1990, p. 150) have in fact proposed a penalized 
modification of the Fisher scoring algorithm. Their idea instead is maximize the 
log-likelihood, much like the work of O'Sullivan (1986), they consider the penalized 
likelihood, 

l f (f/'(x)}2 dx. , f p )  = l ( r / ; y )  - (8) 

The expression in (8) ~P=~ 2j f {f/'(x)} 2 dx reduces to the form ~;=,  2jf/Kjfj if 
each coordinate function is a cubic spline. The matrices K/ are certain quadratic 
penalty matrices (see H&T, Section 2.10 or Green and Silverman, 1994, Ch. 1 ). Note 
that each Kj is of order N, resulting in potentially an enormous system of equations, 
and can be numerically complex. Although there is nothing particularly special about 
the second derivative of f ,  higher-order derivatives are rarely used in the above 
penalty. Perhaps the reason for the rarity of quintic splines is due to the practical 
problems of constructing higher-order equations. In using the difference penalty for 
each component, in a block diagonal fashion, P-GAMs provide a straightforward 
discrete approximation to quintic splines and higher-order derivative penalties. The 
connection of the above penalty to the work suggested by O'Sullivan (1986, 1988) 
is provided in Eilers and Marx (1996). 

5. Smoothing parameters, Hat matrix and diagnostics 

We choose the vector 2 to both balance goodness of fit and complexity of the 
model. In principle, each component can be optimally regulated with its own penalty 
parameter, thus preserving the independent nature of the additive components. The 
choice of the vector of positive penalty parameters 2j, j > 0, is not entirely trivial, 
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requiring a grid search of some type. 
scale parameter, such as the binomial 
be easily extended to P-GAMs. Define 

For response distributions that have known 
and Poisson, information criterion (IC) can 

IC(2) = dev(y; a, 2) + 6 trace(H), (9) 

where H = B(B 'WB+p)- lB 'W is the converged smoother matrix. When 6 = 2 and 
6 = log(N), we have the Akaike (AIC) and the Bayesian (BIC) information criteria, 
respectively. The trace of/-it is the estimated effective dimension of the entire P- 
GAM fit, and is more efficiently computed using trace{H} = trace{B' I~'B(B'WB + 
P)-~ }. IC is appealing since it only requires a single application of Penalized Fisher 
scoring for each vector 2 in the grid search. However, an estimate variance is needed 
to compute the deviance with normal, Gamma, or negative binomial response dis- 
tributions. Because of  the regression context with B-splines, linearized likelihood 
(generalized) cross-validation (GCV) can be done inexpensively and is particularly 
useful for this latter case. A desirable choice of the vector 2 is one which minimizes 
(G)CV or IC. These details can be found in Hastie and Tibshirani (1990). 

5.1. The effective dimension of the fit 

The second term in (9) is of interest because T(2) = trace(H) can be interpreted as 
the effective dimension of the fitted GAM, with or without a penalty. When each 2j 
is set to zero, we have the well-known result that the trace of the hat matrix is equal 
to the number of regressors. Here the maximum value of T(2) is achieved, which 
depends on the number and distribution of data points. With at least one nonzero 
2/, T(2) is the complexity of the GAM model. The minimum value of T(2) is met 
when all 2 / ~  oo. Due to the fact that the columns of each P-GAM component basis 
sums to unity, min{T(2)} = 1 - p + ~P=l dj (Eilers and Marx, 1996). 

5.2. Regression diagnostics 

The (linear approximation) regression diagnostics for the logistic model (Pregibon, 
1981; Hosmer and Lemeshow, 1989), and their extensions to the GLM can be 
routinely implemented with the P-GAM approach. Computations are not taxing since 
we can use the diagonal elements of the effective hat matrix H to generate ( i , - i )  
deletion diagnostics. Thus, for example, the effect of each covariate pattern on the fit 
of the model due to deletion can be assessed through change in Pearson chi-square 
or deviance, as well as the effect on the change of B-spline amplitudes aj. 

5.3. Connecting to parametric models 

An advantage of using P-splines in GAMs (P-GAMs) over using cubic splines (or 
other smoothers) as GAM components is that the null space of the difference penalty 
are polynomials of degree dj - 1. This is one selling point of P-GAMs. In addition to 
offering the opportunity for local polynomial fitting, the difference penalty of order 
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dj has the built-in property that as 2j ~ c~, then the j th fitted GAM component will 
approach a global polynomial of degree d - 1, provided the degree of the B-spline 
qj _> dj. This result is very useful, in practice, for the following reason: if the 
measured IC or CV is maintained while imposing a large penalty parameter, say 
,~,j = 104 on the j th smooth GAM component, then the j th GAM component may be 
polynomial of degree dj - 1. Thus, by weaking a penalty parameter, a mechanism 
will be available to provide a continuum between smooth GAM components and 
parametric polynomial functions. An underlying beauty of the proposed penalized 
approach is that if a latent polynomial trend exists within a GAM component, then 
it can be revealed by imposing a large penalty coefficient. We see this feature of 
P-GAMs in the example to follow. 

6. Illustrative example 

We revisit the Kyphosis case study presented by Hastie and Tibshirani (1990, 
Section 10.2) as an application of generalized additive modeling. The response is 
the binary outcome of the presence of (1) or the absence of (0) of postoperative 
spinal deformity in children. Regressors used in the GAM are: Age of patient 
(months); Number of vertebrae levels involved; and the S tar t  position of the level of 
vertebrae involved in surgery. There are N = 81 observations; 17 ones and 64 zeros 
(after omitting the two observations, one corresponding to Age = 243 and the other 
to l~umber = 14). Hastie and Tibshirani considered several logistic additive models, 
typically fitting each term with a smoothing spline with a nominal dfj---3. See 
Fig. 3 (top) which displays both the GAM fit using smoothing splines dfj  = 3. 

The estimated components are displayed with their associated partial residuals 
and twice standard error bands. We see from Fig. 3 that the odds of the presence 
of Kyphosis is highest in children about months of Age and also when the S tar t  
position of surgery involves the lower vertebrae. Notice the groupings of negative 
residuals in the partial residual plots for Age and Star t  reminding us of Hastie and 
Tibshirani's warning of a pure-region effect. The largest positive partial residual in 
each of the three figures is a potentially valuable observation since it corresponds to 
a presence (1) in a region with very low predicted probability. H&T also provided 
an analysis of deviance for subset smooth models, subset semi-parametric models, 
and parametric (polynomial and piecewise linear) models. We do not intend to 
compare P-GAM methodology in such an exhaustive fashion here. 

We fitted P-GAMs by varying the orders of the penalty and considered: d = 2, 3, 4. 
A grid search was performed to obtain optimal (based on AIC in this case) 2(Age), 
2 ( N u m b e r ) , 2 ( S t a r t )  o n  powers of l0 s, where y = - 4 , - 3 , - 2  . . . .  ,4. Thus, the grid 
search required 3 × 9 3 GAM fits. The top 10 performers, by order of penalty, are 
provided in Table 1. 

For the purpose of this illustration, we overfit with cubic (qj = 3, for all j )  
B-splines by partitioning the domain of each explanatory variable into 11 equidis- 
tant knots each for Age and Star t ,  and nine knots for Number. The knots include 
boundary regions. Through penalization, we achieve a parsimonious representation 
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Fig. 3. Estimated additive fit, twice standard error bands & partial residuals: (top) Smoothing splines 
with d f =  3 for each component, dev =45.14 on d fro =71.09; (bottom) cubic P-splines, third-order 

penalty & optimal 2 chosen by AIC, dev = 37.17 on d fear = 66.74. 

Table 1 

Top 10 performers based on AIC, by degree of penalty (d), for the mode P-GAM (At = Age, )(2 = 
Number, )(3 = Start). Note that lOgl0 (2j) = 7j 

d = 2  d = 3  d = 4  

AIC 71 ~'2 Y3 AIC "~1 72 '~3 AIC 71 72 Y3 

59.249 - 1  - 4  1 58.173 4 - 4  4 60.733 4 - 4  - 2  
59.273 - 1  - 4  0 58.173 3 - 4  4 60.733 3 - 4  - 2  
59.324 - 1  - 4  2 58.173 4 - 4  3 60.733 2 - 4  - 2  
59.334 - 1  - 4  3 58.174 3 - 4  3 60.734 1 - 4  - 2  
59.335 - 1  - 4  4 58.175 2 - 4  4 60.735 0 - 4  - 2  
59.492 0 - 4  0 58.176 2 - 4  3 60.846 - 1  - 4  - 2  
59.493 0 - 4  1 58.176 4 - 4  2 61.145 4 - 4  - 3  
59.590 0 - 4  2 58.176 3 - 4  2 61.145 3 - 4  - 3  
59.603 0 - 4  3 58.178 2 - 4  2 61.145 2 - 4  - 3  
59.604 0 - 4  4 58.197 1 - 4  4 61.146 1 - 4  - 3  

o f  the G A M  c o m p o n e n t s  as desired.  N o t i c e  that sort ing the grid search in Table  1 

for the vec tor  2 b y  A I C  is s tr ikingly  fruitful. The  7is surface in m e a n i n g f u l  c lusters .  
In the case  w h e n  d = 2,  farming  out  top c o m p e t i t o r s  results  in o b v i o u s  c h o i c e s  for 
2 (Age)  = 10 - l ,  ,;t(Nuraber)= 10 -4  w h i l e  2 ( S t a r t )  can range free ly  and as high as 104 

( s u g g e s t i n g  l ineari ty) .  H & T  ( S e c t i o n  4 . 2 )  s u g g e s t e d  that regressor  S t a r t  m a y  be  
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well fitted using a linear parametric component. This is confirmed in Fig. 4 (top). 
The effective d f  for Age, Number, and Star t  are 3.68, 6.39, and 1.45 respectively 
for d = 2 .  

Similar patterns exist when d is increased to 3, in Fig. 3 (bottom). Note that now 
AIC is minimized for choices of 2(Number)= 10 -4, while 2(Age)= 2 ( S t a r t ) =  10 4, 
indicating that the variables Age and Star t  may be inherently quadratic in nature. 
Recall that large penalties yield quadratic fits with a third-order penalty. These val- 
ues of ~.----104 are really overkill, and essentially the same fit is achieved using 
2(Age) = 2(Star t )  = 100 (the ninth rank for d -- 3), with effective d f  of 2.01, 6.23, 
and 2.01 respectively. From the competing models with d = 3, we observed a dra- 
matic switch from 2(Number)= 10-4-104, when AIC reached 61.831. Remember, 
the nature of A1C is to compromise between goodness of fit and complexity of the 
model. A (nonsignificant) linear trend will be fitted for Number with ,~,(Number)= 10 4, 
increasing deviance considerably. However, AIC is compensated for by a significant 
reduction in the effective degrees of freedom for the Number component; hence an- 
other competitive model. Similar explorations with d = 4  are provided in Fig. 4 
(bottom) where again a quadratic trend (overfit cubic due to large 2(Age)). Notice 
the increased slope for S tar t  after vertebrae number 12; this is where the vertebrae 
change from thoracic to lumbar (effective d f  = 4.63). Again to avoid such enormous 
penalties, we present the fourth ranked which reduces 2(Age) from 104 to 101 with 
essentially the same fit (effective d f  = 2.97). 

In all cases presented in Table 1, Number chooses 2 = 10 -4 suggesting either the 
absence of a polynomial trend, lack of significance, or a degree larger than cubic. All 
of our P-GAM fits converged in 6 -8  iterations of the scoring algorithm (bypassing 
the call to backfitting). For the sake of interest, we fitted a parametric polynomial 
model (quadratic in Age & Star t ,  linear in Number) yielding an AIC = 61.455. This 
illustration endorses that P-GAMs can be an effective approach to find parametric 
components of a GAM. As mentioned, Hastie and Tibshirani have in fact proposed 
optional parametric models for this data. They provided a quadratic approximation 
for Age, as P-GAMs suggest. After further investigation H&T decided to explain the 
quadratic feature in S tar t  by a piecewise linear fit with a switch point at s t a r t  = 12, 
where the vertebrae change from thoracic to lumbar, which is consistent with our 
exploratory results using d - -4 .  

7. Computational details 

We have written the S-plus functions necessary to construct P-GAMs, namely, 
ps () and ps .warn(). These functions work directly with the existing gem() function 
and are available upon request from the authors. The ps()  function parallels the 
bs () or B-spline function, except that equidistant knots are constructed, not on the 
quantiles of the regressor. The ps()  function has arguments to specify the number 
of ps.intervals, the degree of the B-spline (default=3),  order of the penalty 
(defaul t=3)  and the regularization parameter lambda (default=0).  At tr ibu tes  are 
constructed from ps (), such as the D d matrix. This D d matrix is easily constructed 
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Fig. 4. Estimated additive fit, twice standard error bands and partial residuals: (top) P-splines using 
2nd order penalty with dev = 37.39 on d f e ,  = 65.52; (bottom) fourth-order penalty with dev = 34.03 

on d f ~  = 63.43. Optimal 2 chosen by AIC. 

in S-plus by d repeated applications of  the difference() function, e.g. D 1 is simply 
d i f f e r e n c e ( d i a g ( n ) ) .  Data augmentation is a useful tool to achieve penalization. 
The function ps .warn() orchestrates the iterative penalized method of  scoring. Until 
specified convergence, a generalized weighted linear model is fitted on the following 
augmented response, regressors, and weights: 

' D* ' = , (10) 

where 1, 0 are vectors of  dimension ~J'=l (nj - d j ) .  We define the matrix, 

= blockdiag(0, v/~(Dla,..., v~pDp a ). D* 

Constructing P-GAMs in S-plus has the same syntax as GAMs, e.g. 

pgaml <- gam(Kyphosis ~ ps(Age, ps.intervals=lO, degree=3, order=3, 

lambda=l) + Number + ps(Start, ps.intervals=lO, lambda=lO), data= 

kyphosis, family=binomial) 

which fits P-splines to Age and Start and a linear fit to Number. Analysis of  deviance 
is straight forward; the degrees o f  freedom are approximated by the trace of  the 
smoothing matrix. Other design or class variable can be routinely handled. 
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8. Conclusions 

We hope that this paper can be used as a platform to provide researchers with 
a practical application for model building. P-spline smoothers are originally pre- 
sented in Eilers and Marx (1996). These smoothers have a wide range of thought 
provoking properties and contemporary applications, including: scatterplot smooth- 
ing, generalized linear models and density estimation. P-GAMs extend the work 
of P-splines into the p-dimensional additive model. As we mentioned in previous 
work, penalized likelihood is a subject of growing popularity. However, penalties 
are routinely defined in terms of the square of the second derivative of the fitted 
curve. For example, refer to the book by Green and Silverman (1994). Applica- 
tions to higher-order derivatives, e.g. quintic, are rare. Corresponding algorithms are 
rarer. P-splines provide a mechanism to approximate higher-order penalties. With 
little effort, B-splines generalize to any degree and penalties to any order. P-splines 
provide a continuum to higher-order parametric polynomial models. If n knots are 
used for each dimension of the P-GAM, then n x p parameters summarize the fit, 
compared to nonlinear counterparts which can have a summary as large as N × p 
fitted values and corresponding second derivatives. Lastly, it should be evident that 
iterating with P-splines is just Gauss-Seidel iteration. If convergence is met, then it 
gives the same solution as solving for the large GLM model directly; thus there is 
no need to simulate. 
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