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An historical data set from the Adirondack region of New York is revisited to study the relationship between water
chemistry variables associated with acid precipitation and the presence/absence of brook trout (Salvelinus fon-
tinalis) and lake trout (Salvelinus namaycush). For the trout species data sets, water chemistry variables associated
with acid precipitation, for example pH and alkalinity, are highly correlated. Regression models to assess their
effects on the probability of the presence of fish species are therefore affected by multicollinearity. Because the
appropriate regressions are logistic, correction techniques based on least squares do not work. Maximum like-
lihood parameter estimation is highly unstable for the trout presence/absence data. Developments in weighted
multicollinearity diagnostics are used to evaluate maximum likelihood logistic regression parameter estimates.
Further, an application of biased parameter estimation is presented as an option to the traditional maximum
likelihood logistic regression. Biased estimation methods, like ridge, principal component, or Stein estimation
can substantially reduce the variance of the parameter estimates and prediction variance for certain future obser-
vations. In many cases, only a slight modification to the converged maximum likelihood estimator is necessary.

Un ensemble de données chronologiques pour la région des Adirondacks de I'Etat de New York est réexaminé
pour étudier la relation entre les variables de la chimie de I'eau associées aux pluies acides et la présence/
I'absence de I'omble de fontaine (Salvelinus fontinalis) et du touladi (Salvelinus namaycush). Dans le cas des
ensembles de données sur les espéces de truite, les parameétres de la chimie de I'eau associés aux précipitations
acides, comme le pH et I'alcalinité, sont fortement corrélés. La multicolinéarité influe donc sur les modeéles de
régression pour |'évaluation des effets sur la probabilité de la présence d’espéces de poisson. Les techniques de
correction basées sur la méthode des moindres carrés ne fonctionnent pas car les régressions appropriées sont
logistiques. L'estimation du parametre de maximum de vraisemblance est trés instable dans le cas des données
sur la présence/l’absence de truite. Les diagnostics de multicolinéarité pondérée sont développés pour évaluer
les estimations du parameétre de maximum de vraisemblance de la régression logistique. De plus, une application
de 'estimation d'un parametre biaisé est présentée a titre de solution de rechange a la régression logistique
conventionnelle du maximum de vraisemblance. Les méthodes d’estimation biaisée, comme I’estimation par
créte, par composante principale ou de Stein, peuvent énormément réduire la variance des estimations du para-
meétre et des prédictions dans le cas de certaines observations futures. Dans de nombreux cas, il suffit d’apporter
une légere modification & I'estimateur convergent du maximum de vraisemblance.
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estimating the probability of presence/absence of various
fish species from models involving water chemistry var-
iables responsible for lake acidification (Christensen et al. 1988;
Reckhow et al. 1987; Baker 1984; Magnuson et al. 1984; How-
ells 1983; Haines 1981). Estimating and interpretating how the
probability of presence depends on attributes of water chem-
istry which can have a great impact on efforts to prevent the
loss of ecologically and economically important species.
The analysis of data on the presence or absence of fish spe-
cies is different from ordinary regression analysis for two rea-
sons. First, the response variable (presence or absense) is a

There has recently been international concern and effort in
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binary variable which is one of two values and hence is not
normal. The approach typically used to model this type of data
is logistic regression. In logistic regression, the probability of
presence is modelled as a logistic response function which
depends on the water chemistry variables and other explanatory
variables. Estimation of the parameters for the model is done
via an extension of the least squares method called iterative
reweighted least squares.

The second difference involved multicollinearities. The water
chemistry variables associated with acid precipitation, such as
pH and alkalinity, are often highly correlated. pH measures the
concentration of hydrogen ion in the water while alkalinity is
a measure of acid neutralizing capacity of the water. Alkalinity
is dependent on pH but also reflects buffering capacity of the
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water system. Thus there is a strong but not perfect relationship
between these variables. Linear or near linear dependencies
between the explanatory variables are called multicollinearities
and can adversely affect the results of regression analysis. Man-
agement strategies which attempt to control one physical—
chemical variable based on a regression analysis may be misled
as to the effect of controlling that variable. Either the joint effets
of variables need to be considered or the effect of a single var-
iable needs to be better estimated in the presence of other var-
iables. While there is much information on the effects,
diagnosis, and adjustment of multicollinearity in multiple
regression analysis, little work has been done for the logistic
regression problem.

Recent advances in the statistical literature (Schaefer 1986;
Marx and Smith 1989) offer improved ways to analyze data
resulting from studies concerned with the presence/absence of
fish species due to changes in water chemistry. It is the objec-
tive of this paper to describe weighted multicollinearity diag-
nostics for logistic regression. These diagnostics can assist in
identifying variables to be considered for potential deletion from
the model. Further, biased estimation techniques are presented
as an option to traditional maximum likelihood logistic regres-
sion. Ridge logistic, principal component logistic, and Stein
logistic models will be formulated and interpreted for brook
trout (Salvelinus fontinalis) and lake trout (Salvelinus namay-
cush) from the Adirondack region of New York. These biased
estimation techniques can be particularly useful when theoret-
ical models of interest have severe, or even moderate, multi-
collinearity problems. The techniques are applied to the data of
Reckhow et al. (1987). Reckhow et al. described the problems
of multicollinearity and presented alternatives to ordinary logis-
tic regression. Their methods however, were based on the tech-
niques used for multiple regression analysis and did not take
into account the special structure of the data. The methods pre-
sented here lead to improved results.

Brief Overview of Logistic Regression

Hosmer and Lemeshow (1989) provides an excellent overview
of logistic regression. Logistic regression is commonly used to
model the probability of a dichotomous outcome when given
explanatory variables of interest. Consider response data that is
binary in nature, such as presence/absence of trout, and suppose
there are N observations and p explanatory variables. Define
the N X (p + 1) matrix, X=(1 Xy X ). The x; are continuous
explanatory variables. Denote x', of dimension 1 X @+ 1),

as a row vector of X. Let B be the ( + 1) X 1 vector of
unknown regression parameters. The response variable is the
probability of presence which depends on the explanatory var-
iables. This probability that a fish species is found in lake i is
defined as the conditional probability, m,=P(Y,=1|x}). The
response probability is then modelled as a sigmoidal curve
which depends on the explanatory variables measured in the
lake. The logit or log odds ratio model uses the cumulative
logistic density which ensures the predicted probability is
between 0 and 1. Other cumulative densities can be used to
form an appropriate model, but are niot considered in this paper.
Given independent Bernoulli response data Y,(i=1,2, ..., N),
let Y be the N X 1 binary response vector consisting of ones and
zeros. The logistic regression model can be formulated,

(1) logit(w)=In{w,1—m) }=x'
2) or m,={1+exp(—x'B)} !

Can. J. Fish. Aquat. Sci., Vol. 47, 1990

Because the distribution of Y is neither reasonably continuous
nor symmetric, ordinary least squares is not an appropriate esti-
mation technique and iterative maximum likelihood is com-
monly used to estimate the unknown regression parameters.
The iterative maximum likelihood scheme for logistic regres-
sion can be expressed as

@) B=B + XV, X)X -,y

where ¢ denotes the iteration step, V=diag{#, (1 — 4}, and &
is the vector of predicted probabilities. Note that the procedure
is a weighted procedure, and that instead of using X'X, one uses
X'VX. The diagonal matrix V contains variances of the esti-
mated Y values. The matrix ® =X"V X is called the information
matrix. Denote ®=X'V X as estimated information. An ill-
conditioned information matrix can result in undesirable
asymptotlc properties of the logistic regression, such as large
variances associated with parameter estimates and certain pre-
diction regions. Analogous to what is done in multile regres-
sion, the effects of multicollinearity can be assessed by
decomposing the information matrix into orthogonal compo-
nents. Let G be the orthogonal matrix such that G'®G=A,
where A= dlag{)\} and \; are the e1genvalues of ®. Define
Z=XG and z, as a row of Z. As sample size gets large, the
variance of the coefficients, Var (3)=® . If ® has a small .

then some examples of undesirable properties of maximum
likelihood estimation include:

(a) extreme sensitivity of parameter estimates to small pertur-
bations in explanatory variables.

(b) The sum of the variances of the coefficients tends to infinity.

(c) For certain future observation data vectors x,, the prediction
variance is approximately

Var(f,)={m (1 —m )P2_z2 A1 — o,
(d) The test:

HOZB = Bc

H :B =B,

may have low power, where ¢ and f denote the current and
full model, respectively (c is typically a subset of f).

The problems above resemble those of least squares multi-
collinearity. Multicollinearity results when one explanatory
variable can be nearly expressed as linear combination of the
remaining explanatory variables. Redundancies in the regres-
sors yields multicollinearity. With multicollinearity in a stand-
ard multiple regression, the least squares estimation technique
is not exposed to a regressor variable data structure that it truly
needs to produce clear estimates of rate of change on the
response variable (Myers 1990). Traditionally, with least
squares estimation in standard multiple regression, spectral
decomposition of the correlation matrix of explanatory varia-
bles has been used as a diagnostic tool to determine the ill-
effects of multicollinearity on parameter estimation and pre-
diction. Researchers have been unjustifiably utilizing these least
squares multicollinearity diagnostics for models not based on
least squares, logistic regression is one example. Many of the
assumptions of least squares linear regression are not met. Cer-
tainly a response which is a 0 or a 1 fails to meet normality of
error terms. Furthermore, Bernoulli variances are heterosce-
dastic.Theoretical investigation (Marx and Smith 1989) sug-
gested that logistic regression diagnostics should be oriented
toward the spectral decomposition of X' V X, where
V= diag{fr(1 — v} is a diagonal matrix of Bernoulli variances.
Multicollinearity diagnostics can be formulated among the
weighted explanatory variables, i.e. the columns of §=V2X.
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These diagnostics often yield more pertinent information for
selection of a candidate model, in that they can be used as a
variable selection tool.

Weighted Multicollinearity Diagnostics for Logistic
Regression

A matrix ® i is ill-conditioned if it has nearly linearly dependent
columns of §=V"2X. For X with full rank, notice that the
strength of the linear dependence among the columns of X does
not directly affect the condition of ® unless the diagonal matrix
V'2=kI. In such a special case, not only are the binary ¥, inde-
pendent, but they further have nearly homogeneous variance.
Diagnostics should be developed accordingly. In developing
suitable diagnostics, scaling of the information matrix is pre-
ferred in order to have a standard for comparlson (Belsley et al.
1980). A natural scahng method which gives the columns of §
unit length is given in equation (4). Let

R R _ N R B -1/2
@ $*ip=@,-S) (2 (Si,.—sj)z] .

Define the weighted correlation matrix ®* = S*'S*. The (i, jth
entry of ®* yields the correlation between the ith and jth col-
umn of S.

In assessing the degree of ill-conditioning of a general matrix
B, Hartree (1952) pointed out the importance of a relative meas-
ure of ill-conditioning called a condition number. Belsley et al.
(1980) argued that if a small eigenvalue is used as a multicol-
linearity diagnostic, then there is a natural tendency to compare
small with the wrong standard, namely zero. Hence, the ratios
of functions of eigenvalues, rather than the eigenvalues alone,
have been useful diagnostics. Condition numbers are defined
for the purpose of this paper as the ratio of the largest to the jth
smallest eigenvalue of ®*,

(5) ¥=(\%, /AN,

max’

where the A% were the ordered eigenvalues of . Large values
of ¥, (=30) indicate ill-conditioning.

Weighted Variance Inflation

For least squares estimation, variance inflation factors (VIFs)
indicate the inflation of variance above the ideal, i.e. the cor-
relation matrix of explanatory variables being the identity
matrix. Constructing such a diagnostic for logistic regression
is a bit more complicated. For one, the covariance matrix for
B is not a scalar multiple of X'X. Perhaps the most obvious
construction of welghted variance inflation factors (W VIFEs) for
logistic regression is to consider the diagonal elements of ®* ™~ L
Under jdeal conditions, i.e. when the columns of S are orthog—
onal, ®* = ®*~! = [ and all ¥, =1. Marx and Smith (1989)
quantified a measure of inflation of asymptotic variance due to
the nonorthogonality among the columns of S. Define

(6) WVIF, = jth diagonal element of o1,

as a weighted variance inflation factor. Observe that there is
WVIF associated with the intercept since the centering and scal-
ing of S does not involve a constant column of ones, but rather
V'21. Notice for the special case of V=1 and regression through
the origin, WVIF reduces to a least squares VIF. A WVIF gives
the inflation of variance above the standard of one under ideal
conditions.
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Weighted Variance Proportion

Once the WVIFs are calculated, it also can be informative to
determine to what extent the proportion of variance of each
coefficient is attributed to each near dependency in the infor-
mation matrix. Weighted variance proportion decomposition
requires the spectral decomposition of ®*. Let M be the orthog-
onal matrix such that M'®*M = A*, where A*=diag {\*¥ and
N are the eigenvalues of ®*. Using the asymptotic correlation
form covariance matrix for the converged maximum likelihood
parameter estimates, define

p
7N C;= 20 mfu/)\;’j.
A small eigenvalue has influence, to some degree, on all var-
iances. The weighted proportion of variance for the jth esti-
mated coefficient, attributed to uth eigenvalue of the sum in
equation (7), can be expressed as

MmN
C,

i

(8) puj =

Weighted variance proportion decomposition

Proportion of

Ordered A N .
Eivengalue Var (8,) Var (8, Var (8,)
Ao Poo Po1 o Pop
N P10 P11 o Pip
)‘p pPO Pp1 B Cpp

A matrix of proportions can be constructed. Hence, a small
eigenvalue (relative to the maximum eigenvalue) responsible
for at least two large proportions suggests that weighted mul-
ticollinearity is damaging desirable properties of the logistic
regression. Action should be taken accordingly. If a large WVIF
is present, then the researcher should consider deletion of one
of the variables responsible for a large p,; (associated with a
small eigenvalue) or an alternative estimation technique, for
example, a biased logistic estimation technique (Schaefer
1986). If specific theoretical models are not of interest, then
perhaps wary variable deletion based on the above diagnostics
can satisfy the researcher’s needs for a predictive model. How-
ever, in instances where a coefficient estimate is of primary
concern, variable deletion may not be reasonable.

To illustrate the effects of the ill-conditioned information
matrix, we consider the models in Table 1 which were presented
in Reckhow et al. (1987). Using brook trout presence/absence
data from Adirondack lakes, Table 1 provides a model uses
explanatory variables: lake pH, calcium content (log trans-
formed), and the interaction between these two variables.
Table 1 also provides a model for presence/absence of lake
trout. Explanatory variables used are lake pH, alkalinity (log
transformed), and the interaction term. Reckhow et al. (1987)
provide plots justifying the importance and interpretation of the
interaction terms for both species of trout. Table 1 provides a
deviance goodness-of-fit measure. The deviance measures how
well the model fits the data and is defined as D = 21}’ . dz., where
d= —2In(1 —4r) for y=0 and d*= —2In(#,) for y=1.

Can. J. Fish. Aquat. Sci., Vol. 47, 1990




TABLE 1. Maximum likelihood estimates, standard errors, and devi-
ance for Reckhow et al. (1987) trout data.

TABLE 3. Logistic weighted muticollinearity diagnostics for lake trout
data (N =32).

B se(B) D
Brook trout (N =46)
Intercept —49.8460 26.4290 43.2936
pH 9.1906 3.9094
In(Ca) 8.0101 5.9051
pH*In(Ca) —1.4885 0.8249
Lake trout (N =32)
Intercept —233.4000 127.6000 34.4160
pH 32.3834 16.6454
In(Alk)* 45.6460 26.0854
pH*In(Alk) —6.3188 3.4195

*Alkalinity shifted + 150 to create all positive values.

TaBLE 2. Logistic weighted muticollinearity diagnostics for brook trout
data (N =46).

Correlation matrix of weighted regressors

Intercept pH In(Ca) pH*In(Ca)
Intercept 1.0000 0.8084 0.8794 0.6326
pH 0.8084 1.0000 0.9615 0.9554
In(Ca) 0.8794 0.9615 1.0000 0.9138
pH*In(Ca) 0.6326 0.9554 0.9138 1.0000
Weighted variance inflation factors
Intercept 235.5
pH 292.8
In(Ca) 384.0
pH*In(Ca) 564.5
Variance proportion decomposition
E-value v, Intercept pH In(Ca) pH*In(Ca)
3.5846 1.0000 2.5E-04 2.6E-04 2.0E-04 1.2E-04
0.3857 3.0484 0.0067 3.0E-04 1.6E-05 0.0016
0.0290 11.1146 0.0018 0.0593 0.0419  9.9E-04
6.9E-04 71.8325 0.9912 0.9401 0.9578 0.9973

Asymptotic arguments suggest that D has a limiting (with sam-
ple size) x%_,_, distribution.

Although tﬁe fit of these above models seems reasonable,
there are some disturbing problems. The magnitude and stand-
ard errors of the coefficients for these models are inflated rel-
ative to models containing only one variable. For example,
when the presence of lake trout is modelled in terms of pH
alone, the estimated coefficient is 0.923 (SE=0.457), while the
three variable model results in a coefficient of 32.38
(SE=16.65). Further evidence of problems are given by the
weighted multicollinearity diagnostics for the brook trout data
(Table 2) and the lake trout data (Table 3). Notice the large
positive correlations among the weighted regressors yielding
extremely large weighted variance inflation factors, especially
in the lake trout data. For both data sets, we find a large con-
dition number (=30) with the smallest eigenvalue of the infor-
mation matrix. The decomposition matrix has a last row of val-
ues all nearly one indicating a redundancy among the
explanatory variables. Certainly an option is to drop the inter-
action term from both models. Even though this may be a rea-
sonable approach, the coefficient of interaction may be of inter-
est. As an option to variable deletion, we consider a variety of
biased estimation techniques.

Can. J. Fish. Aquat. Sci., Vol. 47, 1990

Correlation matrix of weighted regressors

Intercept pH In(Ca) pH*In(Alk)
Intercept 1.0000 0.8441 0.9423 0.7406
pH 0.8441 1.0000 0.9525 0.9781
In(Alk) 0.9423 0.9525 1.0000 0.9125
pH*In(Alk) 0.7406 0.9781 0.9125 1.0000
Weighted variance inflation factors
Intercept 3180.3
pH 3972.7
In(Ca) 4544.9
pH*In(ca) 6580.2
Variance proportion decomposition
E-value ¥, Imtercept  pH In(Alk pH*In(Ca)
3.6885 1.0000 1.9E-05 1.8E-05 1.6E-05 1.0E-05
0.2920 3.5541 5.8E-04 7.0E-05 2.1E-05 1.8E-04
0.0194 13.7845 9.4E-04 0.00569 0.00518 3.6E-04
5.5E-05 259.3000 0.99850 0.99420 0.99480 0.9994

Biased Logistic Regression Estimators

Using Taylor series arguments, it can be shown that the max-
imum likelihood parameter estimates are asymptotically
unbiased. In making certain adjustments to maximum likeli-
hood, asymptotically biased parameter estimates can be con-
structed. Ridge, principal component, and Stein asymptotically
biased estimators are presented in this paper. There is much
controversy regarding centering and scaling of explanatory var-
iables (i.e. adjusting each variable to mean zero and unit length).
In presenting ridge and principal component estimators below,
centering and scaling is done. This is consistent with Myers
(1990) and Schaefer (1979, 1986). The notation becomes a bit
more complicated. However, there is a connection between the
centered and scaled estimated coefficients and the ones in the
natural units. Let X, = (x,...x)). Define the (i,j)th element of
X*

O Xi(ij)=q; 'X;—X)

where g; = {Z_,(X,,—X,)’}'/>. Notice that X*'X* is the p X p
correlation matrix for the explanatory variables. Augment the
matrix X% with the constant column of ones and denote
X*=(1 X3).

In using X* as the data matrix, let 8 be the converged max-
imum likelihood estimate for unknown B* and V be the cor-
responding estimated d1agonal matrix of Bernoulli variances.
Denote @ =X*'V X*. F is the matrix of eigenvectors and the
v; are the corresponding of eigenvalues of .

Certainly similar derivations for biased estimators can be
made for uncentered and unscaled explanatory variables. In
addition, if by design the explanatory variables are measured
in the same units, then further standardization may not be
needed. It is not this paper’s objective to discuss alternate
standardizations.

Ridge Logistic Regression Estimators
Schaefer (1979, 1986) suggested
(10) Bro)= ()_(*'Vg(* +kI)71 X*'V X*B
=o' 0B
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where k>0 is called the shrinkage or ridge parameter. Note
that this is a simple adjustment to the maximum likelihood esti-
mator. For k=0, 8 is a maximum likelihood estimator of 3*.
Upon choice of k, uncentering and unscaling the estimated
coefficients to the natural units can be done. Define

A1) Bg,=q; 'Bs, forj=1,2, ..p

P _ -
(12) and BRO BRO - g qj_IXjBRJ'

The asymptotic covariance matrix for B(k) is ®; '®® . The

asymptotic standard errors associated with the uncentered and
unscaled ridge estimates can be expressed as

13) SE(BRJ) SE(BRJ) forj=1, 2,

(14) SE(BR,O):{VM(BR,O) + é (q;IXj)zvar(BRJ)

+2 2 2 qj_l IX XCOV(BR l’BR,]
i<j Jj#0
I - ~ ~

-2 2 q; lXjCOV(BR,O’BRJ)}I/Z'

j=1

The choice of k is subjective, however, Schaefer recom-
mended a harmonic mean method

(15) k=@+D/PB ),

which is quite conservative (relatively small) under extreme ill-
conditioning of ®. Marx (1988) has also suggested a ridge trace
approach (ridge coefficient estimates versus k) and other
approaches for the generalized linear model. Only the ridge
trace are presented in the trout examples.

One-Step Principal Component Logistic Regression
Estimators

Schaefer (1986) developed a principal component estimator
for logistic regression of the form

(16) Bp.=C*VX*)*" (X*'VX*) B

=0+ DB,

where

Note that r=p+1—s is the number of components deleted.
The v, are the eigenvalues of @ (usually in descending order)
and f; are the corresponding eigenvectors. A conversion of [3‘

to BS in the natural units, can be made using equations similar
to equations (11)-(14).

Iterative Principal Component Logistic Regression Estimators

Marx and Smith (1990) developed an alternate iterative prin-
cipal component estimator which behaves very closely to
Schaefer’s one step adjustment to maximum likelihood above
in equation (16) in the framework of logistic regression. The
iterative method considers fitting the model to the principal
components, i.e.

(A7) logit(mw*) =Z* a*,
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TABLE 4. Ridge trace parameter estimates, deviance, and associated
standard errors as a function of shrinkage for brook trout data (N = 46).

k SR,O BR,I GR,Z BR,B D

0.0000 —49.846 9.19056 8.0101 —1.4885 43.2936
0.0005 —18.787 4.59572 1.3115 —0.5099 45.0160
0.0010 —11.965 3.53317 —0.1081 —0.2927 46.0002
0.0015 -9.019 3.03896 —0.6867 —0.1973 46.5424
0.0020 —17.402 2.74195 —0.9791 —-0.1439 46.8974
0.0025 —6.395 2.53725 —1.1418 —0.1098 47.1588
0.0030 —-5.719 2.38370 —1.2356 —0.0861 47.3674
0.0035 —-5.239 2.26180 —1.2893 —0.0689 47.5436
0.0040 —4.887 2.16107 —1.3178 —0.0557 47.6985
0.0045 —4.620 2.07535 —1.3300 —0.0453 47.8387
0.0050 —4.414 2.00079 —1.3311 —-0.0370 47.9682

k SE(Bg o) (Br,1) SE(Bg ) SE(B 3)
0.0000 26.4290 3.9094 5.9051 0.8249
0.0005 9.9936 1.6018 2.5119 0.3007
0.0010 6.5147 1.1474 1.8643 0.1843
0.0015 5.0815 0.9668 1.6094 0.1332
0.0020 4.3309 0.8706 1.4720 0.1046
0.0025 3.8820 0.8093 1.3825 0.0864
0.0030 3.5888 0.7653 1.3165 0.0738
0.0035 3.3848 0.7310 1.2639 0.0645
0.0040 3.2347 0.7028 1.2196 0.0575
0.0045 3.1204 0.6787 1.1810 0.0520
0.0050 3.0304 0.6574 1.1465 0.0476

where Z*=X*F and a*=F'B*. The iterative scheme is
employed in a specified subset a* and a*=0. The iterative
equation becomes

(18) & = &< _,+T7 L, Z¥'(y— &),

where ¢ denotes the iterative step until convergence and I, is
the diagonal matrix of subset eigenvalues of ®, which are not
deleted. Upon convergence of &2¢, an estimate of B* is given
by

19) pr=

Again, a conversion can be made to the natural units, using
an approach similar to that given in equations (11)-(12), to yield
@r¢. Asymptotically, the standard errors for the one- step and
the iterative principal component techmques are the same. Not-
ing that the estimated asymptotic covariance matrix for B,7¢ and

s is FI'7'Fy, an equation similar to equations (13)—(14) can
be used to obtain the uncentered and unscaled standard errors.

F afe.

Stein Logistic Regression Estimators

Schaefer (1986) suggested an extension of the Stein (1960)
estimator for logistic regression. Consider shrinking the max-
imum likelihood estimate as follows

(20) B,=cB,

where 0<<c<{1. The motivation of Stein estimation is to shrink
both the estimated parameter vector, and associated standard
errors, by a simple scahng techmque One choice of ¢, which
minimizes the E(Lz) (cB B)' (cB B) criterion (with respect
to ¢), is

1) c=B'PYP'B+trace(d )}

The standard error of a Stein estimator is ¢ times the standard
error of the maximum likelihood estimator.
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TABLE 5. Ridge trace parameter estimates, deviance, and associated
standard errors as a function of shrinkage for lake trout data (N =32).

k GR,O GR,] BR,Z GR,:& D
0.00000 —233.35 32.3834 45.6460 —6.3188 34.4160
0.00025 —27.74 5.5119 3.7373 —0.7934 37.5601
0.00050 —13.16 3.5814 0.7797 —0.3992 38.0683
0.00075 —7.89 2.8670 —0.2797 —0.2552 38.2677
0.00100 -5.20 2.4906 —0.8126 —0.1807 38.3757
0.00125 —-3.59 2.2557 —1.1258 —0.1352 38.4447
0.00150 —2.53 2.0933 —1.3268 —0.1046 38.4936
0.00175 —1.79 1.9732 —1.4629 —0.0826 38.5308
0.00200 —1.26 1.8799 —1.5583 —0.0661 38.5606
0.00225 —0.86 1.8046  —1.6265 —0.0532 38.5855
0.00250 —0.55 1.7422 —1.6757 —0.0430 38.6070

k SE(BR,O) (GR,I) SE(BR,Z) SE(BR,s)
0.00000 127.6000 16.6454 26.0852 3.4195
0.00025 18.8117 2.3948 4.3011 0.4566
0.00050 12.1473 1.4899 3.1345 0.2459
0.00075 10.1183 1.2046 2.8026 0.1693
0.00100 9.2191 1.0753 2.6537 0.1300
0.00125 8.7276 1.0036 2.5669 0.1062
0.00150 8.4176 0.9581 2.5069 0.0903
0.00175 8.2006 0.9261 2.4604 0.0791
0.00200 8.0361 0.9019 2.4216 0.0707
0.00225 7.9039 0.8825 2.3876 0.0643
0.00250 7.7927 0.8662 2.3568 0.0592
10
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FiG. 1. Ridge trace plot for brook trout estimated regression coeffi-
cients as a function of shrinkage.

Application of Methodologies

The above methodologies were applied to the lake chemistry
data sets for brook trout and lake trout. Tables 4 and 5 give
ridge estimates of the parameters for the two models for dif-
ferent values of the ridge parameter (k). Also, standard errors
are provided. Even with small &k (0.001), the ridge method is
effective in reducing the magnitude of the coefficients and their
standard errors, but the sign of the coefficient for the second
explanatory varaible, BR’Z, differs from the univariate model
which only includes the second explanatory variable. Ridge
trace plots are given in Fig. 1 and 2 and demonstrate the insta-
bility of maximum likelihood estimates. These plots indicate
rapid change in the coefficients until k is 0.001. Values near
this would represent reasonable values for the ridge coefficient.
The trout examples coefficients have been transformed to their

Can. J. Fish. Aquat. Sci., Vol. 47, 1990

50

Bax |

40 : ﬁa.z

0:0 D:.’i lW.D 1.5 2.0 2.5
k (X 1000)
Fic. 2. Ridge trace plot for lake trout estimated regression coefficients
as a function of shrinkage.

TABLE 6. Iterative principal component and Stein estimates and asso-
ciated asymptotic standard errors for brook trout data (N =46).

pe(-1) pe(-2) Stein(c=0.78)
Bo —0.5382 —5.4530 —38.8111
B, 2.2315 0.2920 7.1560
B, —2.9793 0.5514 6.2369
B, 0.0528 0.0380 —1.1590
SE(By) 2.9551 2.3125 20.5781
sE(B,) 0.8189 0.1207 3.0440
SE(B,) 1.4470 0.2278 4.5978
sE(B,) 0.0175 0.0157 0.6423

TABLE 7. Iterative principal component and Stein estimates and asso-
ciated asymptotic standard errors for lake trout data (N =32).

pe(-1) pe(-2) Stein(c=0.77)
Bo 3.8311 —6.3505 —179.6000
B, 1.5139 0.2607 24.9259
B, —2.9043 0.6635 35.1343
B, 0.0629 0.0355 —4.8637
SE(B,) 8.2051 3.9684 98.1859
sE(B,) 0.9215 0.1637 12.8122
SE(B,) 2.5853 0.4164 20.0781
SE(B,) 0.0302 0.0223 2.6320

natural units, i.e. Tables 4-5 and Fig. 1-2 provide B, and
SE(Bg)-

The results of the iterative principal components analysis and
Stein method are given in Tables 6 and 7. Tables 6-8 use the
uncentered and unscaled 37° and SE(BfC). The estimates
obtained by deleting one component are not satisfactory in terms
of the signs of the coefficients. The second set of estimates,
obtained by deleting two components, is more satisfactory. Note
that the estimates obtained by Reckhow et al. (1987, their table
4) are quite close to these except for the coefficient for alkalin-
ity. In contrast to Reckhow et al., we did not find close simi-
larity between principal component estimates and the ridge esti-
mates. In particular, the signs of the coefficients were not
consistent between the two methods. Further, the ridge standard
errors for the estimates still seem inflated. The addition of the
interaction term is not supported. Thus this analysis would sug-
gest that the model is not appropriate.
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TaBLE 8. Estimated rate of a change in probability of occurrence (at fr,=.5) per unit change in explan-
atory variable (8X,= 1) for various estimation techniques using trout data.

Brook O, : : _ — ;
trout —_aX,. ML Ridge (0.001)  Ridge (0.002) pc(—1) pc(—2) Stein
pH 2.298 0.883 0.685 0.558 0.073 1.789
In (Ca) 2.002 -0.270 —-0.245 —0.745 0.138 1.559
pH * In (Ca) -0.372 -0.073 —-0.036 0.013  0.009 —-0.289
Lake o,

trout X,

pH 8.096 0.623 0.469 0.378 0.065 6.231
In (Alkalinity) 11.411  —0.203 -0.389 —-0.726 0.166 8.784
pH * In (Alkalinity) —1.579 —0.045 —-0.016 0.016  0.009 —-1.216

The Stein method does not seem to produce good results as
the coefficients are too large relative to single variable models.
We therefore cannot recommend it as a technique. Table 8 pro-
vides estimates of the rate of change in the probability of occur-
ence of trout species for a given unit change in a specific
explanatory variable (i.e. if x; is changed by one unit, what is
the resulting change in the probability of occurrence). It is inter-
esting to note that except for maximum likelihood and Stein
methods, the estimated changes are similar across species for
a given method. However, there are considerable differences
between the methods. Although we do not think that any of the
methods is appropriate for this data, the method that incorpo-
rates all the variables and seems best is the principal compo-
nents method, deleting two components associated with the
smallest eigenvalues.

From a modelling point of view, notice that none of the
approaches are totally satisfactory. Most of the coefficients are
only marginally significant and some of the coefficients are not
significant (at 0.05 significance level). Furthermore for the
models given in Table 1, the maximum likelihood estimated
standard errors are all deemed infinite (Hauck and Donner 1977)
except for both intercepts and the pH coefficient in the brook
trout model. Harrell (1986) deems the standard errors infinite,
in the SAS software Proc Logist procedure, if the absolute value
of a parameter estimate is greater than or equal to five divided
by the range of the corresponding explanatory variable, and its
standard error is greater than or equal to 15 divided by the range.
The trout examples coefficients have such a limited range. In
addition, the WVIFs and the condition numbers in Tables 2-3
indicate severe ill-conditioning of the information matrix, and
hence an unstable inverse. The approaches given suggest that
either variables need to be deleted or the model needs to be
changed.

Discussion

The methods described above are useful for diagnosing pos-
sible problems in logistic regression. The diagnostics are quite
effective at detecting multicollinearity and indicating which
variables are involved. The logistic ridge, principal component,
and Stein methods provide reasonable alternative parameter
estimates to that of maximum likelihood, especially when
weighted multicollinearities are detected and explanatory var-
iables are not deleted. Evidence from applications to acid rain
and other data sets indicates that the principal components and
ridge methods generally give reasonable results. The Stein
approach does not shrink the estimates enough and we cannot
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recommend it as a useful procedure. Choice of which method
is better in any application depends on the purpose of the model.
Models in which good parameter estimates are required should
be assessed differently from models in which good prediction
is required. With complex data, one need not expect a single
model to be the best for all purposes.

The ridge, principal component, and Stein methods described
here for logistic regression can substantially reduce the variance
of the estimated coefficients and prediction variance for future
observations outside the mainstream of weighted multicolli-
nearity (i.e. future observations having levels of the explanatory
variables not among the patterns of data when the columns of
S are plotted). The principal components method presented here
uses an approach for deletion of components based on the mag-
nitude of the eigenvalues and assessment of fit of the reduced
model. Other approaches are possible, i.e. prediction. The
principal component approach given here differs from that of
Reckhow et al. (1987). In their approach, a principal compo-
nent analysis of X, X, was done, then logistic regression on
leading components. This approach, while successful in many
cases, ignores the underlying model and may lead to difficul-
ties. In fitting models, assessment and adjustment for multi-
collinearity is only one aspect of the modelling process. Other
concerns, such as influential values (Pregibon 1981) and assess-
ment of prediction are also impotant and need to be addressed.
Lastly, the biased estimation techniques described in this paper
can be used in the broader framework of the generalized linear
model as described in Marx and Smith (1990) and Marx (1988).
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