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Abstract We propose generalized linear models for time or
age-time tables of seasonal counts, with the goal of bet-
ter understanding seasonal patterns in the data. The lin-
ear predictor contains a smooth component for the trend
and the product of a smooth component (the modulation)
and a periodic time series of arbitrary shape (the carrier
wave). To model rates, a population offset is added. Two-
dimensional trends and modulation are estimated using a
tensor product B-spline basis of moderate dimension. Fur-
ther smoothness is ensured using difference penalties on the
rows and columns of the tensor product coefficients. The op-
timal penalty tuning parameters are chosen based on mini-
mization of a quasi-information criterion. Computationally
efficient estimation is achieved using array regression tech-
niques, avoiding excessively large matrices. The model is
applied to female death rate in the US due to cerebrovascu-
lar diseases and respiratory diseases.
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1 Introduction

Judging from observed monthly counts of deaths (by year
and age), many diseases show seasonal patterns. It is of in-
terest to model these patterns, their overall strength and the
relative strengths in different months. Our primary interest
to better understand the seasonal patterns of deaths due to
various diseases and how these patterns vary with year and
age. In our earlier work (Eilers et al. 2008), we proposed a
modulation model: the pattern within years is described by
a (co)sine and its amplitude is described by smooth varying-
coefficient surfaces, over year and age. To this a trend is
added.

Such a modulation model can describe seasonal patterns
quite well, but from studying the residuals it became clear
that the (co)sine function is too simple: it cannot handle rel-
atively sharp peaks in winter and relatively flat troughs in
summer. One possible solution is to introduce modulated
harmonics of double or triple frequency, in the spirit of
Fourier analysis. Instead we opt for a different approach, one
that offers better opportunities for generalization. Specifi-
cally, in a one-dimensional series of counts (of death rates),
we assume that there exists a “carrier wave” (a term we bor-
row from radio technology), which is modulated over time.
The period of carrier wave is 12, and it is parameterized by
the vector γ . This leads to a bilinear modulation model. We
propose an iterative algorithm, cycling between estimation
of the carrier wave and the modulation. With proper nor-
malization of γ this leads to an identifiable model that can
easily be estimated by iterative weighted least squares.

mailto:bmarx@lsu.edu
mailto:p.eilers@erasmusmc.nl
mailto:gampe@demogr.mpg.de
mailto:roland.rau@uni-rostock.de


192 Stat Comput (2010) 20: 191–202

Fig. 1 Time series plot of death
rate per 100 000 per year due to
cerebrovascular diseases for
U.S. females during 1960–1998,
summed over ages 51–100. The
bottom panel focuses on
1970–1980

Section 2 first introduces the one-dimensional modula-
tion model for Poisson counts, over time. We start sim-
ply with a varying sine/cosine seasonal trend. We find this
model to be too simplistic, and develop the bilinear model,
which allows for a more general varying seasonal “carrier
wave.” A combined model is also presented that allows for
a sine/cosine trend in combination with a general carrier
wave. Sections 2.3 and 2.4 present a suggestion for optimal
choice of the tuning parameters, as well as one-dimensional
examples. Section 3 extends the one-dimensional bilinear
model into two dimensional, now over both year and age.
The Poisson counts are on a regular grid. All of our models
are essentially P-spline varying-coefficient models, where
in the case of the two-dimensional model tensor product
B-splines and an anisotropic difference penalty are used.
Our model is computationally demanding. We analyze a ta-
ble with 50 rows and 468 columns, fitting models with ei-
ther 169 or 507 tensor product parameters. The standard
approach, using vectorization of the data table and Kro-
necker products for the tensor product basis, puts heavy de-
mands on memory and computation time. Fortunately we
can adapt the array regression algorithms (Currie et al. 2006;
Eilers et al. 2006) to our case, gaining at least an order of
magnitude if efficiency. Details are presented in Sect. 3.1.
A two-dimensional application is given in Sect. 4. We close
with a Discussion.

2 One-dimensional model details

To start simply, we describe the models in one dimension
(over time, summing over age). We move into two dimen-

sions in Sects. 3 and 4. Consider Fig. 1 which plots the
log10 monthly death rates (counts/exposures) due to cere-
brovascular diseases for females in the United States dur-
ing 1960 through 1998. The death and exposure counts are
summed over the ages 51–100. Death counts are obtained
from NCHS’s Multiple Cause of Death Data which can be
downloaded from the website of the National Bureau of
Economic Research (www.nber.org). See our references for
more detail. Population counts for single ages for the 1st
of January for each year were downloaded from the Human
Mortality Database (www.mortality.org). Monthly popula-
tion figures were estimated via linear interpolation between
the years for single ages. The observed data are a series
of pairs of counts and exposures, (yt , et ), t = 1,2, . . . , T ,
where T = 468 = 12 × 39 for Fig. 1. The lower panel of
Fig. 1 focuses on ten years during the 1970s, providing
clearer evidence of strongly varying seasonal patterns, but
generally with peaks during winter and troughs during sum-
mer.

2.1 The cosine-sine modulation model

We consider models for the logarithm of an expected value
of a Poisson random variable (yt ), i.e. log(μt ) = ηt , where
μt = E(yt ). Eilers et al. (2008) described the linear predic-
tor model

ηt = log(et ) + vt + ft cos(ωt) + gt sin(ωt), (1)

where ω = 2π/12 and the series of varying-coefficients v,
f , and g are smooth, and are modeled using P-splines.
For our application, exposures, et , correspond to population

http://www.nber.org
http://www.mortality.org
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Fig. 2 P-spline (co)sine
modulation model fit and trend
for female cerebrovascular
death rate (per 100 000 per year)
(top); the corresponding
detrended (co)sine seasonal
component (middle); the plot of
residuals (bottom)

size. This is a modulation model: the amplitude of the sea-
sonal waveforms is varied in strength by f and g. Techni-
cally this is a varying-coefficient model (VCM); the 3T pa-
rameters (with T observations) are estimated using P-splines
(Eilers and Marx 2002), requiring three penalty terms in the
penalized objective.

We save most of the specifics of P-spline fitting for the
two-dimensional extension in Sect. 3. However, estimation
of the stacked B-spline varying-coefficients, θ , (for trend,
sine and cosine regressors) chooses θ to maximize the pe-
nalized Poisson log-likelihood

l�(θ) = l(θ) − 1

2
P,

which yields the iterative “normal” equations

(M ′W̃cM + P)θ̃c+1 = M ′W̃cz̃c, (2)

where the effective regressors are M = (B | diag{cos(ωt)}B
| diag{sin(ωt)}B), B is the (T × K) B-spline basis (us-
ing rich equally-spaced knots), z and W are the Poisson
“working” response and diagonal weight matrix, respec-
tively; c represents the current iterate. The vector θ consists

of stacked B-spline coefficients for the varying-coefficients
of the intercept (trend), cosine, and sine components, respec-
tively. The intercept (trend) and the varying slopes for the
cosine and sine regressors each have their own tuning para-
meter that are reflected in the block diagonal penalty matrix

P = block diag(λ1D
′D,λ2D

′D,λ3D
′D). (3)

The matrix D is the difference matrix of order d , and in
practice we often set λ2 = λ3.

Figure 2 (top) overlays the female cerebrovascular death
rate data (per 100 000 per year) on a log10 scale with
the (co)sine modulation fit and the trend. This figure also
demonstrates the effect of the P-spline tuning parameters
on the fit: we have light smoothing on trend and heavy
smoothing on the seasonal component. The latter is perhaps
more clearly seen in the middle panel, where the seasonal
component is detrended. These panels reflect optimal fits;
optimization of the tuning parameters will be discussed in
Sect. 2.4. The time series of residuals are plotted in the
bottom panel log10(y/μ̂) = log10(y/e) − log10(μ̂/e). The
model manifests features which generally are not charac-
teristic of (co)sine functions, as confirmed by regularities
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Fig. 3 P-spline bilinear model
fit and trend for female
cerebrovascular death rate (per
100 000 per year) (top); the
corresponding detrended
bilinear component (middle);
the plot of residuals (bottom)

among the residuals. Thus, rather than extending the modu-
lation model with sine and cosine waves of double and triple
frequency (each having their own modulation), we next mo-
tivate the more general bilinear model to capture this resid-
ual pattern.

2.2 A bilinear model

Imagine a more general and unrestricted carrier wave, char-
acterized by the 12-vector γ (one entry for each month). The
model is

ηt = log(et ) + vt + htγ[t], (4)

where ht is the varying-coefficient for the carrier wave. We
use the notation [t] for {(t − 1) modulo 12} + 1, which,
simply put, produces an index of 1 through 12 replicated
T/12 times. Figure 3 (top) overlays the female cerebrovas-
cular death rate data (per 100 000 per year) on a log10 scale
with the bilinear optimal fit and the trend. The middle panel
shows the detrended bilinear component. The time series of
residuals are plotted in the bottom panel, again log10(y/μ̂).
The residuals generally show a better fit. Consequently there

is more than 35% reduction in the residual standard error,
from 29.35 to 18.97, and we find some benefit from gen-
eralizing the carrier wave in the bilinear model. Figure 4
(left) shows the shape of the estimated carrier wave for fe-
male cerebrovascular disease. Notice the positive spikes in
winter months of the carrier wave, which perhaps are track-
ing epidemics. To a lesser extent, the carrier wave estimates
negative spike in the summer months. The local trough in
February for cerebrovascular diseases does not seem to be
an artifact. A similar dip has been found for Denmark for
mortality from all-causes Rau and Doblhammer (2003). It
could be the outcome of some “harvesting effect” in Janu-
ary: some of those would have “normally” died in February
of cerebrovascular disease already died in January. Alterna-
tively, we can hypothesize that people dying in January died
of immediate causes of the cold climate (as shown in the
right panel of Fig. 4 for respiratory diseases). Circulatory
diseases such as cerebrovascular disease are, however, not
only affected by the sudden impact but probably by the ac-
cumulation of detrimental effects throughout the entire cold
period.
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Fig. 4 Estimated carrier wave
for female cerebrovascular
bilinear death rate model (left),
and for female respiratory death
rates combined model (right)

Unlike the (co)sine modulation approach, the wave is un-
known, and hence the model is bilinear because both h and
γ are unknown. We see that htγ[t] is a product of functions,
and fitting such products has been considered, e.g., by Tutz
and Binder (2004). We propose the following iterative algo-
rithm: (i) For given γ , we have a VCM again to estimate h

and v. Specifically we use the system of equations in (2),
now with M = (B | 	B), and P having only the first two
entries of its block diagonal structure. The (diagonal) ma-
trix 	 = diag(c) ⊗ γ, where c is a vector of ones of length
T/12. (ii) For given h and v, estimation of γ can be updated
using (generalized) linear regression, which can be viewed
as an “estimated” wave basis. We cycle back and forth until
convergence: (i) to improve both the v trend the h modula-
tion (given γ ), use 	Bγ , and (ii) to improve γ carrier wave
(given trend and modulation), use V Rγ, where R = c ⊗ I12

and V = diag(v). Starting values for γ are simple monthly
means. Standard identifiability conditions are required on h

or γ ; we choose
∑12

k=1 γk = 0 and
∑12

k=1 γ 2
k = 12.

2.3 The combined model

Despite the generality of the carrier wave, one potentially
limiting feature of the bilinear model is that the carrier wave
exhibits peaks in the same months from one year to the next.
One the other hand, while the (co)sine modulation model
has limited flexibility in carrier structure, its peak is allowed
to shift. It is natural to try to combine (1) and (2) into one
model: the (co)sine then models the major periodic seasonal
patterns, while γ and h would explain additional shocks, i.e.

log(μt ) = log(et ) + vt + ft cos(ωt)

+ gt sin(ωt) + htγ[t]. (5)

Implementation of the combined model can be achieved in
a similar fashion to the bilinear model, this time switch-
ing back and forth between γ and (v, s, g,h). Section 2.5
presents the results of the combined model for female respi-
ratory death rates.

2.4 Further summary: female cerebrovascular death rates

The co(sine) modulation model, the bilinear model, and the
combined model were all fit to the female cerebrovascular
death count data (1960–1998, summed over ages 51–100).
In all models, the smooth varying coefficient terms used cu-
bic B-splines on (25 + 3) equally-spaced knots and a sec-
ond order difference penalty on each set of B-spline coeffi-
cients. Since we used a common tuning parameter for both
the cosine and sine smooth terms, two tuning parameters are
needed for each of the modulation and bilinear models, and
three are needed for the combined model.

Table 1 presents the results of the optimal fits based on
minimizing a quasi-AIC criterion (Lee et al. 2006; Eilers et
al. 2008),

QIC = Q(y, e;μ) + 2ED = T + ED + T log(φ̂).

The extended (log-)quasi-likelihood is chosen because of
evidence of over-dispersion and is defined as

Q(y, e;μ) = dev(y;μ)/φ + T logφ,

where φ = dev(y;μ)/(T − ED) and T is the number of ob-
servations. The effective dimension of the model (ED) is ap-
proximated by the trace of the smoother matrix. To search
for the optimal tuning parameters, log10(λ) (for each term)
was varied on a linear grid, in steps of 0.5. We find that the
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Table 1 Summary:
one-dimensional female
cerebrovascular models
(25 + 3 knots, d = 2 penalty)

Model QIC ED Deviance Original dimension Optimal λ SE (rate resides)

Cosine-sine 1861 32 7993 1404 (84) [103,106] 29.35

Bilinear 1499 51 3405 948 (68) [102,102.5] 18.97

Combined 1463 75 2806 1884 (124) [102.5,102.5,105] 17.20

Table 2 Summary:
one-dimensional female
respiratory models
(25 + 3 knots, d = 2 penalty)

Model QIC ED Deviance Original dimension Optimal λ SE (rate resides)

Cosine-sine 2560 43 33883 1404 (84) [100.5,105] 53.24

Bilinear 2405 52 23381 948 (68) [100.5,101.5] 45.97

Combined 2371 94 17790 1884 (124) [103,101,102] 38.53

Fig. 5 Combined model for
respiratory death rate: model fit
and trend (top); sinusoidal
component (middle); bilinear
carrier component (bottom)

combined model, when compared to the modulation and bi-
linear models, performs best based on QIC. We also find
further evidence that the bilinear model and the combined
model are actually quite strong competitors, which is con-
firmed with the reported standard errors of residuals in Ta-
ble 1. For cerebrovascular disease, it appears that despite
the 35% reduction in residual standard error going from the
(co)sine modulation model to the bilinear model, there is
not as much additional gain moving to the combined model
(<10%). In the next section, we will however see signifi-
cant benefits in using the combined model for the female
respiratory death rate data. Table 1 also shows that ED is
naturally higher for the combined model compared to its
simpler versions. Conversely, the deviance decreases as we
move from the modulation, to the bilinear, and then to the
combination model. The original (unprojected) dimension
of the coefficient space is also reported, as well as the di-
mension projected onto B-spline (plus the dimension of the

carrier wave). The optimal tuning parameters are provided
for reproducibility.

2.5 A second example using female respiratory death rate
data

The co(sine) modulation model, the bilinear model, and the
combined model were also fit to the female respiratory count
data (1960–1998, summed over ages 51–100). We find that
evidence in favor of the combined model, when compared
to the (co)sine modulation and bilinear models. Table 2 pro-
vides the summaries for the three models fit to the respira-
tory data. The last column, corresponding to the standard
deviation of the residuals, shows a 13.6% reduction in resid-
ual standard error moving from the (co)sine modulation to
the bilinear model, and an additional 16.2% reduction mov-
ing to the combined model. Figure 5 displays the combined
model fit and trend (top) followed by the (co)sine modula-
tion and bilinear components (middle and bottom). Notice
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Fig. 6 Combined model for
respiratory death rate: enlarged
fit during 1970–1980

how the sinusoidal and bilinear components take turns reg-
ularly: when the (co)sine term is high, the bilinear term is
not, and vice versa. As noted, the modulated carrier wave
must have its peak in the same month (or months). How-
ever the (co)sine term can change its phase and so it has a
flexible position, i.e. when the peak in a year is not at the
carrier peak, it gets a small amplitude and the (co)sine dom-
inates. Figure 4 (right) displays the carrier wave for female
respiratory combined model, which has similar features to
the carrier wave for female cerebrovascular bilinear model.

Figure 6 enlarges the combined fit during 1970–1980.
These are the years were the (co)sine and bilinear terms ap-
pear to take turns regularly. The asymmetric carrier wave
appears to do its work effectively, with the exception of the
years 1975–1977. During the three years, the positions of
the peaks shift and the (co)sine tries to correct, by adjusting
its phase, for the lack of fit of the bilinear term.

3 The two-dimensional bilinear model

Eilers et al. (2008) also formulated the modulation model
in two dimensions; here we extend the bilinear model as

such. The counts and exposures are now arranged in a two-
dimensional table Y = [yta],E = [eta] e.g., indexed by both
time, t = 1, . . . , T , and by age, a = 1, . . . ,A. The two-
dimensional bilinear model is expressed as,

log(μta) = ηta = log(eta) + vta + htaγ[t]. (6)

Notice that (6) has a double (time and age) subscript for the
exposure offset, varying trend, and modulation coefficients,
producing varying coefficient surfaces. The carrier has the
same periodic structure as with the one-dimensional bilin-
ear model. The varying coefficients v and h are assumed to
be smooth along time and age, and thus we model them us-
ing tensor product B-spline bases, allowing general surfaces.
In the spirit of a P-spline approach, we avoid knot selection
by: (i) using a sufficiently rich K ×L gridded tensor product
basis, and (ii) imposing penalties on the coefficients associ-
ated with the rows and columns of the tensor product basis,
where each penalty is regularized by its own positive tuning
parameter, λ, hence allowing for anisotropic smoothing. De-
spite the fact that our penalization allows for anisotropy, we
point out that it is only a limited type: one that only allows
for anisotropic smoothness along the age and time axes.
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Fig. 7 A sparse representation of a cubic tensor product basis

Figure 7 shows a sparse representation of a cubic B-
spline tensor product basis; a figure containing the full basis
is too crowded to appreciate its structure. Associated with
each mountain in Fig. 7 is an unknown tensor product co-
efficient, which together can be placed into a K × L ma-
trix. Multiplying each mountain by its coefficient and sum-
ming the basis produces very general surfaces. Let B = [btk]
(B̆ = [b̆al]) be the T ×K (A×L) B-spline basis on the time
(age) domain. Denote A and B as the K × L matrices of
the tensor product coefficients for V = [vta] and H = [hta],
respectively. We can rewrite (6) as

log(M) = log(E) + V + 	H

= log(E) + BAB̆ ′ + 	BBB̆ ′, (7)

where M = [μta] and 	 = C ⊗ γ . Again, for fixed diagonal
matrix 	, we have a two-dimensional VCM; for fixed V and
H , we have a generalized linear regression. Identifiability
conditions are also again chosen to be:

∑12
k=1 γk = 0 and

∑12
k=1 γ 2

k = 12.
Penalties are now applied to both rows and columns of A

and B. Denote the (second order) difference penalty matri-
ces D and D̆ with dimensions (K −2)×K and (L−2)×L,
respectively. Figure 8 provides a visualization of strong row
and column penalization, producing linear trends for the ten-
sor product coefficients within the rows and columns. The
penalty is defined as

P = PA + PB

= {λ1‖DA‖F + λ̆1‖AD̆′‖F }
+ {λ2‖DB‖F + λ̆2‖BD̆′‖F }, (8)

where ‖ · ‖F indicates the Frobenius norm, or the sum of
the squares of all elements. The penalty is composed of two
parts, e.g. the first is equivalently

PA = vec(A)′[λ1(IL ⊗ D′D) + λ̆1(D̆
′D̆ ⊗ IK)]vec(A),

where I is the identity matrix. The tensor product coeffi-
cients, A and B, are found by maximizing the penalized
Poisson log-likelihood function

l�(A, B) = l(A, B) − 1

2
P, (9)

where the 1
2 is a small trick to absorb the 2 under differenti-

ation.

3.1 Efficient computation using array regression

We present the array algorithm in a nutshell here; for a more
detailed account one should consult Currie et al. (2006)
or Eilers et al. (2006). Assume that the T × A matrix
Z = BAB̆ ′ is a model for the expected values of the ma-
trix Y of the same size. The bases B and B̆ have sizes
T × K and A × L respectively, and A is the K × L co-
efficient matrix. A T × A matrix W is given, and to esti-
mate the coefficients by weighted least squares we minimize∑

t

∑
a wta(yta − zta)

2.
The classical solution (1) vectorizes the matrices: y =

vec(Y ), α = vec(A) and z = vec(Z), w = vec(W); (2) con-
structs a diagonal matrix W ∗ = diag(w); (3) combines the
bases with a Kronecker product, B∗ = B̆ ⊗ B; and (4) mini-
mizes (y −B∗α)′W ∗(y −B∗α), which is standard weighted
linear regression. The normal equations are

(B̆ ⊗ B)′W ∗(B̆ ⊗ B)α̂ = Qα̂ = (B̆ ⊗ B)′W ∗y. (10)

It is easy to see that B∗, with dimensions AT × KL, can
require a lot of memory space. Also, but perhaps less obvi-
ous, the multiplications and sums that lead to the elements
of Q are rather fine-grained and waste an enormous amount
of processing time. Both problems are eliminated by rear-
ranging the computations.

Let R = B�B indicate the row-wise tensor product of B

with itself. Hence R has T rows and K2 columns and each
row of R is the tensor product of the corresponding row of
B with itself. One can show that the elements of

G = (B�B)′W(B̆�B̆)

have a one-to-one correspondence to the elements of Q.
Of course they are arranged differently, because Q has di-
mensions KL × KL and G dimensions K2 × L2. However,
it is easy to rearrange the elements of G to get Q. Three
steps are needed: (1) re-dimension G to a four-dimensional
K × K × L × L array; (2) permute the second and third
dimension; (3) re-dimension to a KL × KL matrix.

A similar, but simpler computation finds the right side of
(10) by computing and rearranging B ′(W ·Y)B̆ , where W ·Y
indicates the element-wise product of W and Y .

In a generalized additive model or varying-coefficient
model with multiple tensor product bases, weighted inner
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Fig. 8 A visualization of a strong column (left) and row (row) difference penalty producing linear trends within columns and rows

products of the different bases have to be computed using
the same scheme as outlined above. Array regression offers
very efficient computation with increases in fitting speed (of
far more than 10-fold in most cases) when compared to the
following unfolded representation. Typically array regres-
sion is used when the data are on a regular grid, however
it is possible to include a mix of array and other standard
regressors. In such case a hybrid approach is needed, form-
ing Kronecker products like (B�B) ⊗ C with the design
matrix C of the non-gridded regressors. There will still be
efficiency gains, but not as dramatic as for a full grid. An
example of a hybrid situation would occur in a model that
combines life tables from several countries or regions in one
country.

3.2 Optimization of the penalty

In the bilinear model, we have four tuning parameters:
a penalty on the rows and columns for each of the varying
trend and the varying modulation (carrier wave) coefficient
surfaces. The penalty in (8) is constructed in such a way
that each row (or column) of the tensor product coefficients
has the same amount of penalization, but with a breakage in
linkage from one row (or column) to the next. Large λ en-
forces smoothness, whereas small values encourages rough-
ness in either the row or column orientation. Overdispersion
was present, thus we chose to optimize the tuning parame-
ters by monitoring and minimizing

QIC = T A + ED + T A log(φ̂),

where ED is the approximate effective dimension computed
from the trace of the corresponding “hat” or smoother ma-
trix, and φ̂ = deviance(Y,E; A, B)/(T A − ED).

We implement the search in a greedy way: each of the
four λs is changed in turn, by one step up and one step down

on the grid. The step that decreases QIC is kept. In the case
there is no improvement in QIC, then the current value is
kept. In our experience less than 100 sets of λs are visited,
which is an enormous reduction compared to, e.g. with K =
L = 20, a 204 full grid search.

Of course, this is not the most sophisticated way of op-
timizing the penalty parameters, but is fast and effective.
It is also attractive when compared to several alternatives.
On could try to exploit the mixed model equivalence (Ngo
and Wand 2004), but it is non-trivial to adapt existing mixed
model software to use efficient array computations and to
handle over-dispersion. The same is true for a fully Bayesian
approach, along the lines of Lambert and Eilers (2005).

A modern alternative is boosting (Tutz and Binder 2007),
essentially repeating smoothing with too strong a penalty.
Array regression can be applied straightforwardly, but one
might need to perform many hundreds or even thousands of
boosting steps, which compares unfavorably with the effi-
ciency of our grid search.

4 Two-dimensional example

Figure 9 displays the two-dimensional U.S. female monthly
raw cerebrovascular death counts, by both year (1960–1998)
and age (51–100). This figure can be thought of a visual
representation of a large contingency table with 23 400 or
[50 × (39 × 12)] cells. A similar perspective plot could be
constructed for exposures. As another view, Fig. 10 presents
an image plot of cerebrovascular (log10) death rates (per
100 000 per year) (top panel). The bottom panel of this fig-
ure shows the (log10) average seasonal trends (averaged over
age), which really highlights the strong and varying cyclical
behavior from year to year.
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We applied the two-dimensional bilinear rate model to
these data. Both the trend and the modulation surfaces were
constructed on the year and age grid using a basis with
K × L = 13 × 13 tensor products of (cubic) B-splines;
remember that we are smoothing the coefficients and not
the raw data. A second order difference penalty was used
on both the rows and on the columns of the tensor prod-
uct coefficients, each having their own tuning parameter
to allow anisotropic smoothing. The λs could take values
on a grid with width 0.5 (on a base 10 log scale), and
were changed in turn to test for possible downhill turns in
(weighted) QIC. Approximately 80 sets of λs were only vis-
ited, opposed to a 204 full grid search. The results were:
λ = (0.32,3.2,10 000,3.2). Figure 11 displays findings for

Fig. 9 Female cerebrovascular monthly death counts by age (51–100)
and year (1960–1998)

the optimal cerebrovascular model in two-dimensions. The
varying-intercept or smooth trend (upper, left) is tracking
the raw data as expected. The two-dimensional varying-
coefficient surface is displayed for H (upper, right), as well
as its marginalized version across year (lower, right). Note
that the large λ2 = 3.2 × 104 suggests a “ribbon” surface in
that the modulation effect for fixed time varies in a strongly
linear fashion along the age axis. The modulation surface,
however, is not additive as the nature of the penalty allows
the linear slopes in the direction of age to vary from one
time to the next. The carrier wave again shows positive (neg-
ative) spikes for winter (summer) months. The combined
ED = 177.4, associated with both estimated varying coeffi-
cient surfaces. We see that ED < 2 × 132, indicating that we
chose a sufficiently rich set of bases. Figure 12 displays the
Pearson residuals for the two-dimensional bilinear model,
which shows many vertical stripes indicating cohort effects.
Notice when controlling for age, the (absolute value) size of
the Pearson residuals for Fig. 12 is approximately an order
of magnitude less when compared to the one-dimensional
bilinear model residuals.

5 Discussion and extensions

We have proposed bilinear varying-coefficient models for
strong seasonal and age dependent effects in series or ta-
bles of counts. A beauty of our model is that, by assuming a
common carrier-wave over time, we gain parsimony. Yet at
the same time, we have not sacrificed generality, as we do
not assume a specific functional form for the carrier wave.

Fig. 10 Image plot of
cerebrovascular log10 death rate
(top); average rate over age
(bottom)
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Fig. 11 Female
cerebrovascular: Image plot of
the varying intercept term or
overall trend (upper, left); 2D
modulation effect for the carrier
wave, (upper, right); the
estimated carrier wave (lower,
left); Marginal modulation
effect (lower, right)

Fig. 12 Cerebrovascular: Image plot of the Pearson residuals for the
two-dimensional bilinear model

Beyond understanding and interpreting seasonal effects,
certainly there is more future work ahead. The model could
perhaps capture even further structure, e.g. serial correlation
in the age or time direction, more similar to a more tradi-
tional time series model, building on the work of Cai (2007).

Such an approach could prove to be conducive and fruitful
toward forecasting beyond the horizon. There also remains
the opportunity to model and isolate a “cohort” effect, e.g.
as clearly seen along the 45◦ line in Fig. 12, which poses ad-
ditional correlation. Further, other approaches to optimizing
the tuning parameters could be more fully explored, includ-
ing: Bayesian through MCMC, mixed models, and boost-
ing.

The bilinear model assumes that the carrier wave has
the same pattern for each year and age, only the amplitude
changes. We have done some preliminary modelling that re-
laxes this assumption along the lines of the BAYSEA model
(Akaike 1980). Instead of a 12-vector series γ , we intro-
duce a series with as many elements as there are months
in the data. To reduce its freedom, penalties are introduced,
between identical months in adjacent years. This forces the
parameter value for, e.g., May 1990 not to deviate too much
from the average of the parameter values for May 1989
and May 1991. This scheme is applied to all years and all
months. In one dimension the model is ηt = vt + st , where
v is the trend, s is the seasonal component. A second order
difference penalty is put on v. The penalty on s is seasonal,
having components (s1 −2s13 + s25)

2 + (s2 −2s14 + s26)
2 +

· · · . Thus the elements of s corresponding to, e.g., January
readings get a second order penalty, as do other months. Es-
sentially this model contains one long series, the trend v, and
12 shorter smooth series, one for each month. To gain effi-
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ciency in computation, we propose to use P-spline smooth-
ing for v as well as for each of the twelve smooth series cor-
responding to the months. This model is more flexible than
the periodic carrier wave modulation model, but is more dif-
ficult to interpret. In one dimension, the BAYSEA model has
no modulation component. In two dimensions we can imag-
ine a carrier wave in BAYSEA style, which is modulated by
a surface along age and time.

It is interesting to compare our model to some other (one-
dimensional) approaches. Harvey (1989) discussed cyclical
and seasonal state space models. Fahrmeir and Tutz (2001)
further adapted this work to a generalized linear model set-
ting. To simplify the discussion we outline the linear case.
The model represents a time series by yi = ti + γi + ei ,
where t represents trend, γ the seasonal component and e

noise. The objective function is

S = ‖y − t − γ ‖2 + λ‖Dt‖2 + κ‖Pγ ‖2.

Here D is the usual matrix for forming differences of or-
der d . The matrix has a special structure to push the sum
of 12 (if the period is 12) adjacent values of γ towards
zero. In row i of P , the elements from i to i + 11 are 1,
while all other elements in that row are zero. This interesting
penalty gives γ freedom to fit a seasonal deviation from the
trend; the larger the κ, the more similar the elements of γ —
that are 12 observations apart—will be. Although Akaike’s
BAYSEA model does something similar to these other ap-
proaches, it penalizes (higher order) differences between el-
ements of γ that are 12 months apart. In this way, the penalty
can allow for a more gradual change in the seasonal patterns
over time.

The purpose of our bilinear model is to estimate one
periodic pattern that only changes in strength, but not in
shape, over time. This evidently simplifies interpretation
over Akaike’s BAYSEA or state space model because one
only has to look at twelve numbers when studying the sea-
sonal pattern. Naturally, whether the bilinear model works

well or not depends on the data; we found it to be successful
for the mortality data that we studied.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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