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Abstract Performance variability, stemming from non-

deterministic hardware and software behaviors or determinis-

tic behaviors such as measurement bias, is a well-known phe-

nomenon of computer systems which increases the difficulty

of comparing computer performance metrics and is slated to

become even more of a concern as interest in Big Data ana-

lytic increases. Conventional methods use various measures

(such as geometric mean) to quantify the performance of

different benchmarks to compare computers without consid-

ering this variability which may lead to wrong conclusions.

In this paper, we propose three resampling methods for per-

formance evaluation and comparison: a randomization test

for a general performance comparison between two comput-

ers, bootstrapping confidence estimation, and an empirical

distribution and five-number-summary for performance eval-

uation. The results show that for both PARSEC and high-

variance BigDataBench benchmarks 1) the randomization

test substantially improves our chance to identify the differ-

ence between performance comparisons when the difference

is not large; 2) bootstrapping confidence estimation pro-

vides an accurate confidence interval for the performance

comparison measure (e.g., ratio of geometric means); and

3) when the difference is very small, a single test is of-

ten not enough to reveal the nature of the computer perfor-

mance due to the variability of computer systems. We further

propose using empirical distribution to evaluate computer
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performance and a five-number-summary to summarize com-

puter performance. We use published SPEC 2006 results to

investigate the sources of performance variation by predict-

ing performance and relative variation for 8,236 machines.

We achieve a correlation of predicted performances of 0.992

and a correlation of predicted and measured relative variation

of 0.5. Finally, we propose the utilization of a novel biplotting

technique to visualize the effectiveness of benchmarks and

cluster machines by behavior. We illustrate the results and

conclusion through detailed Monte Carlo simulation studies

and real examples.

Keywords performance of systems, variation, performance

attributes, measurement, evaluation, modeling, simulation of

multiple-processor systems, experimental design, Big Data

1 Introduction

Traditionally, computer researchers have used the geometric

mean (GM) of performance ratios of two computers running

a set of selected benchmarks to compare their relative perfor-

mances. This approach, however, is limited by the variabil-

ity of computer systems which stems from non-deterministic

hardware and software behaviors [1, 2], or deterministic be-

haviors such as measurement bias [3]. The situation is ex-

acerbated by increasingly complicated architectures and pro-

grams, both of which can negatively impact performance re-

producibility [4]. Wrong conclusions could be drawn if vari-

ability is not handled correctly. Using a simple geometric
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mean cannot describe the performance variability of comput-

ers [5].

Recently, computer architects have been seeking advanced

statistical inferential tools to address the problem of perfor-

mance comparisons of computers. The two common statis-

tical approaches of comparing two populations (e.g., two

computers) are the hypothesis test and confidence interval

estimation. As we know, most of the parametric tests such

as t-tests require population distribution normality [6]. Un-

fortunately, computer performance measurements are often

not normally distributed but either skewed or multimodal.

Figure 1 shows 400 measurements of execution time from

SPEC2006 benchmarks running on a commodity computer

(Intel Core i7 CPU 960@3.20GHz, 1 processor with 4 cores,

10GB DDR3 RAM(1333 MHz)). We can see that the dis-

tributions of performance measures for the benchmarks are

non-normal; benchmarks “gcc” and “mcf” are skewed to the

right, while “bzip2” is multimodal. This non-normality ob-

servation was first observed by Chen et al. [5, 7] who tackled

with a non-parametric statistics method named hierarchical

performance testing (HPT).

In this paper, we propose three statistical resampling meth-

ods [8] to evaluate and compare computer performance. The

first is a randomization test used to compare the performance

between two computers; the second is a bootstrapping confi-

dence interval method for estimating the comparative perfor-

mance measurement, i.e., speedup, through a range; and the

third is an empirical distribution method to evaluate the distri-

butional properties of computer performance. The basic idea

of resampling methods, as the name implies, is to resample

the data iteratively, in a manner that is consistent with certain

conditions (e.g., the general performance of two computers is

equal.).

Specifically, we first resample the data according to the

purpose of each method. Second, for each iteration, we cal-

culate the statistic of interest, such as the ratio of geometric

means between two computers. Third, we repeat the previ-

ous two steps a number of times. Then the distribution of the

calculated statistic is used as an approximation of the under-

lying distribution of the statistic under the assumed condition.

Hence, the resampling methods set us free from the need for

normal data or large samples so that Central Limit Theorem

can be applied [9]. Note that the proposed three methods all

follow the three steps described above. However, the resam-

pling and calculating steps within each iteration are different

according to the individual purpose for each method.

In summary, the main contributions of this paper can be

listed as follows:

First, we propose and implement a randomization test [10]

for testing the performances of two computers, which pro-

vides an accurate estimate of the confidence of a comparison

when the performances of two computers are close to each

other.

Second, we propose and implement a bootstrapping-based

confidence interval estimation method [11] to estimate the

confidence interval of the ratio of geometric means between

two computers.

Third, as a generic framework, the proposed method can

directly be applied to arithmetic and harmonic means. We

demonstrate that the arithmetic mean is very sensitive to out-

liers while geometric and harmonic means are much more

stable.

Fourth, we point out that a single test is not enough to re-

veal the nature of the computer performance in some cases

due to the variability of computer systems. Hence, we sug-

gest using empirical distribution to evaluate computer perfor-

mance and use five-number-summary to summarize the com-

puter performance.

Fifth, we investigate the source of performance variation

by predicting the performance and relative variation of ma-

chines running the SPEC 2006 benchmark suite using pub-

lished hardware descriptions and environment variables.

Sixth, we demonstrate the effectiveness of the proposed

sampling methods on Big Data benchmarks [12] which have

more variation behaviors than traditional CPU benchmarks

like SPEC or PARSEC.

Finally, we use a Biplot visualization tool [13] for com-

puter performance comparisons which can visualize the

Fig. 1 Histograms of execution times for three SPEC benchmarks from 400 repeated runs of each benchmark on the commodity computer.
(a) Execution time of bzip2; (b) execution time of gcc; (c) execution time of mcf
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projections of high-dimensional data onto a low-dimensional

space through principal component.

2 Motivating example

In this section, we show an example of comparing two com-

puters based on t-test and the proposed resampling methods.

Table 1 lists the configurations of the computers. The data

is available on SPEC website. Figure 2 shows the empirical

distributions of geometric mean for two computers. The hor-

izontal axis shows the SPEC ratio. The blue dash line is the

empirical distribution of geometric means for the NovaScale

computer, while the red solid line is the one from IBM. The

vertical dash line shows the geometric mean from the raw

data. The basic idea of using an empirical distribution is to see

the distribution of a statistic (e.g., geometric mean of com-

puter performance). We can see many useful distributional

properties from the empirical distribution, such as the cen-

ter, mode, variation, and range of the statistic. The details of

empirical distribution are described in Section 5. From Fig. 2,

although the two distributions overlap, the geometric mean of

computer A (red solid curve) is well above that of computer

B (blue dash curve). As shown in Table 2, the t-test does not

detect the difference between two computers while the ran-

domization test does. This implies that the randomization test

is more powerful at detecting the difference even when there

is an overlap between two distributions. The bootstrap inter-

val also shows the ratio of geometric means is significantly

below one (blue dashed curve against red solid curve) which

implies that computer A runs faster than computer B.

Table 1 Configurations of the two computers in Fig. 2

Configurations

Middle (blue dashed line)
NovaScale T860 F2

(Intel Xeon E5645, 2.40 GHz)

Middle (red solid line) IBM System x3400 M3 (Intel Xefon E5649)

Table 2 Test results for the example in Fig. 2

T test p-value Randomization test p-value 95% Bootstrapping

0.117 0.016 [0.974, 0.997]

3 Statistical performance comparison via
randomization test

Statistical inference is based on the sampling distributions of

sample statistics which answers the question: “if we recol-

lect the data, what will the statistic be?” A sampling distri-

bution of a statistic (e.g., geometric mean) can be well ap-

proximated by taking random samples from the population.

Traditional parametric tests assume the sampling distribution

has a particular form such as a normal distribution. If the dis-

tributional assumption is not satisfied, commonly there are

no theoretical justifications or results available. On the other

hand, the great advantage of resampling is that it often works

even when there is no theoretical adjustment available. The

basic idea of the randomization test [10] is as follows: in

order to estimate the p-value (i.e., 1- confidence) for a test,

we first estimate the sampling distribution of the test statis-

tic given the null hypothesis is true. This is accomplished by

resampling the data in a manner that is consistent with the

null hypothesis. Therefore, after resampling many times, we

can build up a distribution (called an empirical distribution)

which approximates the sampling distribution of the statistic

that we are interested in. Thus, we can estimate the p-value

based on the empirical distribution.

Fig. 2 Density plots of the empirical distributions for the two computers.
The dotted lines are the geometric means

Suppose we have two computers A and B to compare

over a benchmark suite consisting of n benchmarks. For each

computer, we ran the benchmarks m times and denote the

performance scores of A and B at their jth runs of the ith

benchmark as ai, j and bi, j respectively. The hypotheses are

specified below.

Null hypothesis: the general performance of A and B over n

benchmarks are equivalent.

Alternative hypothesis: we will use only one of the follow-

ing three as our alternative hypothesis.

H1a: the general performance of A is better than that of B.

H1b: the general performance of B is better than that of A.

H1c: the general performance of A is not the same as that of

B.

We proposed the randomization test as follows:

1) For each benchmark i (i = 1, 2, . . . , n), we combine all

the m performance scores from A and B into one list respec-

tively.

2) We randomly permute the list, for each benchmark, and
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assign the first m scores to computer A and the other m to B

for the ith benchmark.

3) Calculate the ratio of the geometric mean of the perfor-

mance scores for computer A and B over n benchmarks.

4) Repeat step 1–3 M times (M is usually a large number,

e.g., 500), so we have M geometric mean ratios, denote as

FM (i.e., the empirical distribution of geometric mean ratios

under the null hypothesis) from M repetitions.

5) Calculate gA|B, the ratio of the geometric mean of the

performance scores for computer A and B over n benchmarks

on the original data. Then we calculate an empirical p-value

based on FM and the alternative hypothesis as follows. If we

use H1a, then the empirical p-value is the proportion of FM

that is greater than or equal to gA|B. If H1b is selected, then

the empirical p-value is the proportion of FM that is less than

or equal to gA|B. If we use H1c, then the empirical p-value is

the twice of the smaller empirical p-value from H1a and H1b.

Figure 3 illustrates the proposed randomization test un-

der the alternative H1a. Note that the randomization test de-

scribed above uses the geometric mean to evaluate the com-

puter performance. However, the proposed method can be

easily modified to adopt other measures such as harmonic and

arithmetic mean.

4 Confidence interval estimation by boost-
rapping

Due to the performance variability, the comparative perfor-

mance measure, such as the ratio of geometric means and

speedups, between two computers varies on different mea-

surements. Hence, presenting a single numeric estimate can-

not describe the amount of uncertainty due to the perfor-

mance variability. The basic idea of a confidence interval (CI)

is to provide an interval estimate (which consists of a lower

limit and an upper limit) on the statistic with some predeter-

mined confidence level, instead of giving a single estimate.

The interpretation of a confidence interval is based on recol-

lecting the data or repeating the experiment.

Bootstrapping [11] is a commonly used statistical tech-

nique which quantifies the variability of a statistic, e.g., esti-

mate a 95% confidence interval of a statistic or its standard

deviation, which are not yet available in theory [14]. The

basic idea of bootstrapping is to use the sample as an ap-

proximation of the underlying population distribution, which

is unknown, and resample the data with replacement (note

that each observation can be sampled more than once). We

proposed the following bootstrapping method to estimate the

Fig. 3 Illustration of the proposed randomization test
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Fig. 4 Illustration of proposed bootstrapping confidence interval estimation

ratio of the geometric mean of the performance scores from

two computers.

1) For each benchmark i (i = 1, 2, . . . , n), we combine all

the m execution times from computer A and B into one list

respectively.

2) We randomly sample the list with replacement for each

benchmark, and assign the first m scores to computer A and

the other m to B for the ith benchmark.

3) Calculate the ratio of the geometric mean of the execu-

tion times for computer A and B over n benchmarks.

4) Repeat step 1–3 T times (T is usually a large number,

e.g., 500), so we have T geometric mean ratios, denote as

HT from T repetitions. Let Hα/2T and H1−α/2
T be the α and

1-α/2 percentiles of HT respectively. Then, a two-sided (1-

α)×100% bootstrap confidence interval is
[
Hα/2T ,H

1−α/2
T

]
. A

one-sided (1-α)×100% bootstrap confidence interval can be

either
[
HαT ,+∞

]
or
[
−∞,H1−α

T

]
. The former one-sided confi-

dence interval is explained as the ratio of GMs between com-

puter A and B is at least HαT with confidence (1-α)×100%,

while the latter as the ratio of GMs between computer A and

B is at most H1−α
T with confidence (1-α)×100%. Figure 4 il-

lustrates the proposed bootstrapping method using an exam-

ple.

5 Empirical distribution and five-number
summary

Although the proposed randomization test demonstrates more
precise than conventional t-test, when two computers show
overlapped distributions and close geometric mean, a single
test such as t-test and randomization test cannot identify their
differences. Figure 5 shows three pairs of computers listed in
Table 3. The p-values of both t-test and randomization test
for all the three pairs are close to 1.0. For example, the p-

values are 0.941 and 0.856 for t-test and randomization test

respectively for the two computers shown in Fig. 5(a). Sim-

ilar situations also apply to the pairs in Figs. 5(b) and 5(c).

This indicates no performance differences could be identi-

fied by a single test. On the other hand, an insignificant test

result does not necessarily mean the two computers have the

same performance. For example, in Fig. 5 we see that all three

computers depicted by red solid lines have slightly higher ge-

ometric means than their competitors, but their performances

are less consistent than the ones shown by blue dashed lines.

Therefore in comparing performance, we need to consider the

system variation effect especially when the means are close.

Hence, we suggest using the empirical distribution of the

geometric mean and its five-number-summary to describe of

performance for a computer as follows:
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Fig. 5 Density plots of the empirical distributions for three pairs of com-
puters. The dot lines are the geometric means. (a) Density plots for pair one;
(b) density plots for pair two; (c) density plots for pair three

Table 3 Configurations of three pairs of computers in Fig. 5

Configurations

Figure 5(a) (blue dashed line) PowerEdge R510 (Intel Xeon E5620, 2.40 GHz)

Figure 5(a) (red solid line) IBM BladeCenter HS22 (Intel Xeon X5550)

Figure 5(b) (blue dashed line) SuperServer 5017C-MF (X9SCL-F, Intel G850)

Figure 5(b) (red solid line) Acer AW2000h-AW170h F1(Intel Xeon X5670)

Figure 5(c) (blue dashed line) IBM System x3850 X5 (Intel Xeon E7-4820)

Figure 5(c) (red solid line) IBM System x3690 X5 (Intel Xeon E7-2830)

1) For each benchmark i (i = 1, 2, . . . , n), we randomly

select one performance score.

2) Calculate the geometric mean of the performance score

for this computer.

3) Repeat step 1–2 M times (M is usually a large num-

ber, e.g., 500), so that we have M geometric means, denoted

as FG R(i.e., the empirical distribution of geometric mean)

from M repetitions.

4) Then calculate the five elements of the five-number-

summary of FG: minimum, first quartile (25th percentile, de-

noted as Q1), median, third quartile (75th percentile, denoted

as Q3), and maximum.

Detailed results will be shown in Section 6.5.

6 Experimental results

6.1 Monte Carlo simulation study on statistical power and

false discovery rates (FDRs)

In order to show the effectiveness of a testing method, we ex-

amine the statistical power (the ability to detect an effect, i.e.,

deviation from the null hypothesis) and the false discovery

rate which is the probability of having type I error (i.e., re-

jecting the null hypothesis while the null hypothesis is true)

of our proposed method, t-test, and a recent proposed HPT

approach [3]. A common way to evaluate and compare the

statistical powers and false discovery rates (FDRs), which are

defined below, of the tests is through Monte Carlo simulation

study.

• Statistical power The probability of rejecting the null

hypothesis while the null hypothesis is, in fact, not true. Note

that we denote power as statistical power in this paper.

• False discovery rates The probability of rejecting the

null hypothesis while the null hypothesis is, in fact, true.

Hence, ideally we would like the statistical power to be as

large as possible and the FDR as small as possible. In real

examples, we usually do not know the underlying truth. In

order to investigate the properties of HPT, t-test, and random-

ization test we applied a Monte Carlo simulation study where

the truth is known. Below are the settings for the Monte Carlo

simulation study on power and FDR for two imaginary com-

puters X and Y that uses the following steps

a) For each benchmark running on computer X, we ran-

domly select m (m = 5 in this study) execution times

without replacement (i.e., each execution time can be

selected at most once) from the 1,000 execution times

measured from that benchmark running on computer A

shown in Table 4.

b) Then we randomly pick L (L is between 0 and 13)

benchmarks and add a constant 1.0 to all the execution

times for the selected L benchmarks running on the real

computer, and assign the sum to be the execution time

of the benchmarks running on Computer Y. The reason

that we use constant 1.0 in step b to make a difference

between two computers is that the standard deviations

of the performance from all 13 benchmarks range from

0.012 to 0.91. Hence, adding 1.0 to any benchmark can
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guarantee that there is at least one standard deviation

difference between computer X and Y.

c) The HPT test, t-test, and our proposed randomization

test are carried out on the data generated through steps

a & b.

d) Repeat steps a–c 100 times.

Table 4 Configurations of the four commodity computers

Computer Configurations

A
AMD Opteron CPU 6172 @ 2.10GHz, 2 processors, each with
12 cores, with 12GB DDR3 RAM(1333 MHz)

B
Intel Core i7 CPU 960 @ 3.20GHz, 1 processor with 4 cores
(Hyperthreading enabled), 10GB DDR3 RAM(1333 MHz)

C
Intel Xeon CPU X5355 @ 2.66GHz, 2 processors, each with 4
cores, 16GB DDR2 RAM (533MHz)

D
Intel Xeon CPU E5530 @ 2.40GHz, 2 processor, each with 4
cores,12GB DDR3 RAM (1333MHz)

• Remarks Notice that the execution times in step a

for computer X and Y are selected from the same popula-

tion (from the selected commodity computer). In step b, if

L is greater than zero, then the truth is computer X has bet-

ter performance than computer Y which has longer execution

times for the L benchmarks. It is ideal if the test can detect

the difference by rejecting the null hypothesis (i.e., the gen-

eral performance of X is better than that of Y). Hence, P, the

proportion of times (among 100 repetitions) a test rejects the

null hypothesis, can be viewed as an approximate estimate of

its power for nonzero L. On the other hand, when L is zero,

that proportion, P, becomes an estimate of its FDR.

In this study, we set the significance level at 0.05 and use

the two-sided alternative hypothesis (H1c). Figure 6(a) shows

the Monte Carlo simulation results (i.e., P, the proportion

of times the null hypothesis is rejected) on HPT, t-test (TT)

and the proposed randomization test (RT) using the execution

time measurements from the selected computer as the under-

lying population. Notice that the first point (L = 0), the value

of P is an estimate of the FDR, which should be close to the

specified significance level (here it is 0.05) for a good test.

For other points (L = 1, 2, . . . , 13), the value of P is an esti-

mate of the power, which is supposed to be large for a good

test. So we can see that our proposed randomization test has

much higher power than the other two tests when L is be-

tween one and seven. When L is greater than seven, all tests

achieve perfect power. When L is zero, the FDRs for all tests

are small and close to the specified significance level (here it

is 0.05).

Without losing generality, we also repeat the above de-

scribed Monte Carlo study by using the measurements from

computer C shown in Table 4 running with PARSEC in step

a. Figure 6(b) shows the Monte Carlo simulation results (i.e.,

the proportion of times the null hypothesis is rejected) on

HPT, TT, and the proposed RT using execution time mea-

sured from another computer as the underlying population.

From this figure, similar observations can be made. When L is

between 1 and 5, RT demonstrates stronger statistical power

than HPT does. This is because, unlike our proposed RT, HPT

is calculated using rank-based nonparametric tests (i.e., using

Wilcoxon rank-sum test in Step 1 and Wilcoxon signed-rank

test in Step 2). In statistics it is well known that the statistical

power for the nonparametric tests based on ranks are usually

less likely to detect the effects due to the loss of some infor-

mation on magnitude by ranking [15]. Regarding the t-test,

we see it starts to have positive power when L is four and

reaches the perfect power when L becomes seven. In fact, t-

test shows higher power than the HPT when L is between

four and seven. The reason is that the parametric tests are

usually more efficient (i.e., higher power) than their nonpara-

metric rank-based counterparts which was used in the HPT

method [16].

Fig. 6 Results of Monte Carlo simulation study 1 (part (a)) and study 2
(part (b)) on statistical power and FDR

Thanks to high performance computers, the proposed ran-

domization test (with M = 500) takes an average CPU timing

of 0.41 seconds running on a regular Dell workstation with

an Intel Xeon 2.66 GHz processor for the above experiment.

The algorithm is implemented as R language functions.

6.2 Monte Carlo simulation study on confidence interval

Like the Monte Carlo simulation in Section 6.1, we also in-

vestigate the property of the proposed bootstrapping confi-
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dence interval and HPT speedup-under-test estimate from a

simulation with known data generation mechanism. Below

are the settings for the Monte Carlo simulation study on two

imaginary computers X and Y.

a) For each benchmark running on computer X, we ran-

domly select m (m = 5 in this study) execution times

without replacement from the 1,000 execution times

measured from that benchmark running on computer A

shown in Table 4.

b) Then we multiply all the execution times (all n bench-

marks) of computer X by a constant 2.0. We assign the

new values as execution times for computer Y.

c) The 95% speedups from HPT test and the proposed

95% bootstrapping confidence intervals are carried out

on the data generated through step a & b.

d) Repeat step a–c 100 times.

Figure 7 shows the one hundred 0.95-Speedups from HPT

test (red curves) and the proposed 95% bootstrapping con-

fidence intervals (blue curves on the boundaries with the

grey region in the middle). The black dashed line is the true

ratio, 2, and the solid black line is the measured ratio of

geometric mean. Note that the t-test confidence interval (t-

interval), which is not shown in Fig. 7, is much wider than

the bootstrapping confidence interval and outside the range

of the plot. This implies our bootstrapping confidence inter-

val is more accurate than t-interval. Based on Fig. 7, we have

the following remarks.

1) Among all 100 bootstrapping confidence intervals, there

are ninety-five intervals holding the true value, 2, which fol-

lows the pre-specified confidence level, 95%.

2) We see that the 0.95-Speedups from HPT test are consis-

tently below the true value and the bootstrapping confidence

intervals (lower than most of the lower limits of the bootstrap-

ping CIs). This is because of the low power for the rank-based

nonparametric tests.

3) The measured ratio of geometric mean varies around the

true value 2 and falls within the bootstrapping CIs. This im-

plies the ratio of geometric means is still a good estimate of

comparative performance between two computers.

We also performed the above experiment on other com-

modity computers (listed in Table 4). The results are simi-

lar to Fig. 7. The Bootstrapping method also runs fast in R.

It takes an average time of 0.51 seconds running on a Dell

workstation equipped with an Intel Xeon 2.66 GHz proces-

sor for the above experiment.

6.3 Pairwise comparison of four commodity computers

Here, we applied our methods, t-test and HPT on pair-

wise comparison of four computers denoted as A, B, C and

D which are specified in Table 4. For each computer, we

run 1,000 times for each benchmark in PARSEC [17] and

SPLASH-2 and then measure the execution time. All bench-

marks are using their 8-thread version. In order to mimic the

reality and have a full evaluation, we randomly select 5 out of

1,000 execution times (without replacement) for each bench-

mark and computer. Then we applied HPT, t-test, and our

methods (RT) on the selected sample which is a subset of the

whole dataset. To avoid sampling bias, we repeat the experi-

ment 100 times.

Table 5 shows the Monte Carlo results (i.e., the number

of times the null hypothesis is rejected based on 100 ran-

dom repetitions) on t-test, HPT and proposed randomization

test on all six pairwise comparisons among four computers.

Fig. 7 The 95% bootstrapping confidence intervals (boundaries of shaded region), measured ratios of geometric means performance speedups
(solid line within the confidence interval) and 0.95-speedups from HPT test (red lines) based on 100 random replications
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Based on Table 5, we have the following observations:

Table 5 Results of pairwise comparison among four computers based on
100 random replications. The numbers shown in the table are the number of
times the null hypothesis is rejected at the significance level 0.01 (the num-
bers in the parenthesis are for the significance level at 0.05)

Comparison B vs. A D vs. A C vs. A D vs. B C vs. B D vs. C

HPT
100

(100)

100

(100)

5

(91)

90

(99)

100

(100)

99

(100)

T-test
100

(100)

100

(100)

91

(100)

100

(100)

100

(100)

100

(100)

RT
100

(100)

100

(100)

100

(100)

100

(100)

100

(100)

100

(100)

1) In four pairwise comparisons (i.e., B vs. A, D vs. A, C

vs. B and D vs. C), all methods have the same conclusions

(i.e., reject the null hypothesis and conclude two computers

have significantly different performance.)

2) For comparing computer A and C, we see that HPT

rejects the null hypothesis only 5 out of 100 times while

our methods rejects the null in all 100 trials at significance

level 0.01. When we change the significance level to 0.05,

the number of times the null hypothesis is rejected for HPT

increases to 91. t-test performs similar to randomization test,

except it fails to reject the null hypothesis nine times at sig-

nificance level 0.01.

3) For comparing computer B and D, we see that HPT re-

jects the null hypothesis 90 out of 100 times while both ran-

domization test and t-test reject the null in all 100 trials at sig-

nificance level 0.01. When we change the significance level

to 0.05, the number of times the null hypothesis is rejected

for HPT increases to 99.

For this experiment, we conclude that when the perfor-

mance difference between two computers is large, all three

tests will have the same significant conclusion. However,

when performance gap between two computers is small, then

the randomization test has the highest chance to detect the

difference.

Figure 8 shows the one hundred 0.95-Speedups from HPT

test (red curves), the proposed 95% bootstrapping confidence

intervals (blue curves on the boundaries with the grey region

in the middle), and 95% t-confidence interval (gray lines).

We see that the speed-up estimates from HPT approach are

smaller than the bootstrapping estimates most of the time,

which concurs with the Monte Carlo simulation results in

Fig. 7. This confirms that the speed-up estimates of HPT are

relatively conservative than the bootstrapping estimates. Re-

garding the t-confidence interval, it is much wider than its

bootstrapping counterpart, indicating that the bootstrapping

method estimate is more precise than t-test. One interesting

thing we found is that the HPT 0.95 speedup is very close

to the lower bound of the 95% t-confidence interval. This

Fig. 8 The 95% bootstrapping confidence intervals (boundaries of shaded region), 0.95-speedups from HPT test (red lines) and 95% t-
confidence interval (grey lines) on six pairwise comparisons among Computer A, B, C and D from 100 replications. (a) B vs. A; (b) C vs. A;
(c) D vs. A; (d) C vs. B; (e) D vs. B; (f) D vs. C
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Table 6 Quantitative comparisons of 0.95-performance speedups obtained by HPT, the 95% confidence intervals obtained from t-test, and bootstrapping
method

A1-A2 B1-B2 C1-C2 D1-D2 E1-E2 F1-F2 G1-G2

GM Speedup 3.339 3.495 1.698 3.259 1.984 1.675 1.27

HPT Speedup 2.64 2.24 1.39 2.45 1.76 1.546 1.15

T-interval [2.626,4.245] [2.364,5.167] [1.417,2.035] [2.540,4.182] [1.733,2.272] [1.429,1.964] [1.139,1.417]

Bootstrap CI [3.326,3.352] [3.476,3.513] [1.696,1.700] [3.257,3.262] [1.983,1.986] [1.674,1.676] [1.268,1.273]

implies that the HPT speedup estimate is conservative and

tends to underestimate the true speedup value.

6.4 SPEC CPU2006 results

Now we carry out another experiment using the data collected

from SPEC.org and have been used in Chen et al. [5]. Ta-

ble 6 shows the comparative results of the 0.95-performance

speedups obtained by HPT, 95% t-intervals, and the 95%

bootstrapping confidence intervals of the ratio of geometric

means performance speedups. The first row shows the ratio

of geometric means performance speedups from the data. In-

terestingly, we see that the bootstrapping CI holds the ratio of

geometric means performance speedups from the data. The

0.95-performance speedups obtained by HPT are all below

the bootstrapping CIs. The 95% t-intervals are much wider

than the ones from bootstrapping method, indicating its rela-

tively low precision for estimation compared with bootstrap-

ping method. In addition, the HPT 0.95 speedups are close to

the lower limits of the t-intervals.

The above experiment shows that the HPT and our meth-

ods can identify the difference between each pair of com-

puters, although the absolute Speedup numbers are differ-

ent. Now we select another seven pairs of computers from

SPEC.org listed in Table 7 and perform the same experiment.

The results are listed in Table 8. We see that HPT shows

low confidence and conservative estimate of Speedups in all

cases while our proposed RT method demonstrates high con-

fidence (>0.999). Similar as above results in Table 6, the

95% t-intervals are wider than the ones from bootstrapping

method. Again, the GM Speedup is in the range of bootstrap-

ping confidence intervals.

Table 7 Configurations of another seven pairs of computers

Computer 1 Computer 2

H1: Fujitsu, CELSIUS R570

Intel Xeon E5506

H2: Fujitsu Siemens Computers

CELSIUS M460

Intel Core 2 Quad Q9550

I1: Fujitsu, CELSIUS R570

Intel Xeon E5506

I2: Sun Microsystems

Sun Fire X4450

J1: Supermicro A+Server 2042G-6RF

AMD Opteron 6136

J2: Supermicro, Motherboard

H8QI6-F AMD Opteron 8435

K1: Huawei RH2285

Intel Xeon E5645

K2: Fujitsu CELSIUS W380

Intel Core i5-660

L1: Tyan YR190-B8228

AMD Opteron 4238

L2: Fujitsu CELSIUS W380

Intel Core i5-660

M1: Tyan YR190-B8228

AMD Opteron 4180

M2: Fujitsu Siemens Computers

CELSIUS M460

Intel Core 2 Quad Q9550

N1: Fujitsu, CELSIUS M470

Intel Xeon W3503

N2: Sun Microsystems

Sun Fire X4150

6.5 Five-number-summary results

As we shown in Fig. 5, the empirical distribution described

above fully embraces the variability of computer systems

which stems from non-deterministic hardware and software

behaviors. However, sometimes it is desired to summarize the

results through a few numbers instead of the empirical dis-

tribution, which usually contains hundreds of numbers. This

can be achieved through the five-number-summary of the

empirical distribution. Figure 9 illustrates the five-number-

summary on the IBM BladeCenter HS22. We know that the

total area under the density curve is 100%. The first quar-

tile (Q1), median, and the third quartile (Q3) cut the total

Table 8 Comparative summary results on comparing another seven pairs of computers

H1-H2 I1-I2 J1-J2 K1-K2 L1-L2 M1-M2 N1-N2

GM Speedup 1.122 1.135 1.127 1.318 1.11 1.13 1.167

HPT confidence

HPT Speedup

0.732

0.950

0.868

0.928

0.576

0.944

0.885

0.962

0.753

0.94

0.804

0.908

0.825

0.932

T confidence

T -test CI

0.849

[0.956,1.316]

0.896

[0.973,1.325]

0.878

[0.967,1.314]

0.975

[1.037,1.675]

0.814

[0.948,1.298]

0.872

[0.963,1.325]

0.891

[0.964,1.413]

RT confidence

Bootstrap CI

>0.999

[1.117,1.126]

>0.999

[1.13, 1.14]

>0.999

[1.117,1.138]

>0.99

[1.31,1.325]

>0.99

[1.109, 1.11]

>0.99

[1.127,1.132]

>0.999

[1.166,1.168]
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area into four equal areas, which has 25% under curve area.

Hence, five-number-summary is a compact way to summa-

rize the distribution of a random variable and it shows the

following characteristics of the distribution: 1) the range of

data; 2) the range of the middle 50% of the data is Q3−Q1,

which is called the Interquartile range (IQR) in the statistics

community; 3) the center of the distribution. Both the range

and IQR are often used as measuring the variation of a ran-

dom variable. Figure 10 shows the boxplots, which are the

graphic presentation of five-number-summary, of the com-

puters listed in Table 3. Note that in boxplot, the bottom and

the top of the boxplot are the minimum and maximum. The

bottom and top of the box are the Q1 and Q3, respectively.

The line inside the box is the median.

Fig. 9 Illustration of five-number-summary on IBM BladeCenter HS22

7 Investigating the source of variance

For this investigation, we predict the performance variation

of a hardware configuration using only a description of the

hardware and the flags used for compilation and execution.

To simplify this prediction, we first predict the performance

of a given hardware configuration and then predict the rela-

tive variation (standard deviation of performance divided by

performance) which can then be used to calculate the varia-

tion.

We use 8,236 hardware configurations running SPEC INT

2006 available from SPEC as the dataset. The reported SPEC

ratio is used as the performance metric for each machine. Per-

formance and normalized variance histograms are shown in

Fig. 11.

Fig. 11 A histogram of the SPEC ratios (a) and relative SPEC ratio variance
(b) for 8,236 hardware configurations running SPEC INT 2006 published be-
tween 2006 and Q2, 2017

Fig. 10 Graphic representation of five-number-summaries corresponding to the computers in Fig. 5. (a) Graphic representation 1; (b) graphic
representation 2; (c) graphic representation 3



32 Front. Comput. Sci., 2020, 14(1): 21–41

We use the published hardware configurations to train per-

formance and relative variation predictors. For this experi-

ment, we consider only the “base” configuration and perfor-

mance results from the SPEC dataset.

For each hardware configuration, we have 24 variables de-

scribing the basic the hardware and software environment

including CPU Model, Frequency, number of cores, cache

sizes, etc. These variables are a mixture of integer variables

(e.g., number of threads, hard disk speed) and string variables

(e.g., operating system, compiler). In addition to the hard-

ware/software environment variables, we use Boolean vari-

ables to indicate whether or not a certain flag was used dur-

ing compilation or execution on this machine. Only the 100

most commonly used flags are considered during prediction.

In total, we utilize 132 variables for predicting performance

and relative variation.

The dataset of 8,236 machines is split into a training set

and a testing set using 70% and 30% of the total dataset, re-

spectively. The response variables are the performance and

relative variation. The performance is the geometric mean

of the median measure from 12 benchmarks. Note that each

benchmark has three measurements. The relative variation is

the ratio of the standard deviation of the geometric mean and

the performance. Note that the standard deviation is estimated

based on 500 bootstrap samples.

For both performance and relative variation, the boosting

regression tree algorithm is used to fit predictive models us-

ing 24 environment variables as well as all 124 variables. The

models are trained on training set and the prediction perfor-

mance is evaluated on testing set.

The correlation of predicted and measured performance us-

ing only environment variables on test samples is 0.982. The

top ten variables with the highest relative variable importance

when predicting performance using only environment vari-

ables are shown in Table 9.

Table 9 Environment variables with the highest relative influence when
predicting performance

Variable Relative influence

File system 40.567

CPU frequency 21.502

L3 cache size 17.014

RAM stick size 10.772

L2 cache size 1.801

Disk size 1.446

Auto-parallel enabled 1.218

RAM stick count 1.054

CPU cores per chip 0.829

L1 cache size 0.819

When predicting performance using only environment

variables, the most influential variable is the File System

type (e.g., NTFS, ext4, ReiserFS, etc.), which controls the

way the operating system stores and retrieves data, followed

by the CPU Clock Frequency. Variables relating to memory

size are highly influential including: L1, L2, and L3 cache

sizes as well as the amount of RAM (number of sticks *

stick count) and the hard disk size. Variables relating to par-

allelism rank slightly lower: “Auto-Parallel Enabled”, which

allows benchmarks to use multithreading (which may im-

prove performance but also cause inter-thread interference

increasing performance variation), and the number of CPU

Cores per Chip. SPEC CPU 2006 benchmarks are a mix of

memory bound applications (strongly influenced by memory

variables) and compute-bound applications (strongly influ-

enced by parallelism).

The correlation is increased to 0.992 when both environ-

ment and flag variables are used to predict performance; the

top ten variables are shown in Table 10.

Table 10 Environment and flag variables with the highest relative influence
when predicting performance. Flag variables are shown in bold

Variable Relative influence

AVX2 25.207

File system 20.325

CPU frequency 19.745

L3 cache size 12.589

Auto-p32 8.766

ParNumThreads=1 2.702

RAM stick size 1.289

SmartHeap64 1.19

Auto-parallel enabled 0.974

CPU cores per chip 0.928

Four flag variables are amount the top ten most influen-

tial variables when predicting performance. The most influ-

ential variable is the “AVX2” compiler flag which enables

the use of “advanced vector extensions 2” instructions, which

can combine multiple arithmetic or memory operations into

a single vector instruction and thereby reduce the total num-

ber of instructions. The second most influential variable is the

“Auto-p32” compiler flag which automatically converts 64 bit

pointers to 32 bits when possible, improving performance.

The “ParNumThreads” flag is used to specify the number of

threads to use in a parallel region.

In the dataset, ParNumThreads is used primarily to dis-

able parallelism by setting the number of threads to 1, which

prevents variation caused by inter-thread interference. The

“SmartHeap64” compiler flag enables the use of the 64-bit

MicroQuill SmartHeap library which controls memory allo-
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cations in multi-threaded applications and can improve per-

formance in heap-intensive applications.

Since the relative variation is highly skewed with some ex-

tremely large outliers, logarithm is applied to make it less

skewed. Using on environment variables, the correlation of

predicted and measured relative variations is 0.498. The top

ten variables with the highest relative information are shown

in Table 11.

Table 11 Environment variables with the highest relative influence when
predicting relative variation

Variable Relative influence

L2 cache size 25.851

File system 13.958

CPU chip count 10.414

Total RAM size 8.788

System state 6.638

CPU core count 5.152

L3 cache size 4.556

Threads per core 4.011

RAM stick count 3.995

Disk size 3.494

The top ten variables for predicting relative variation can

be broken down into two key groups. Firstly, variables related

to the total number of threads, including: CPU Chip Count,

System State, CPU Core Count, and Threads per Core. More

threads running in parallel creates more opportunities for in-

terference, which can act as a source of randomness and thus

increase variation. The System State variable indicates the

runlevel of the operating system; runlevel influences the num-

ber of OS background threads that may interfere with bench-

mark performance.

Secondly, variables related to memory, including: L2

Cache Size, File System, Memory Size, L3 Cache Size, RAM

Stick Count, and Disk Size. Lower memory tiers are shared

by more competing threads and thus larger sizes can increase

the impact of thread interference. Similarly, the file system

type will influence the quality of service for parallel disk ac-

cesses.

Combining the environment and flag variables, the correla-

tion of predicted and measured relative variations is increased

to 0.534. The top ten variables with the highest relative infor-

mation are shown in Table 12.

When using all variables for predicting relative variation,

only two flag variables appear in the top ten. “Par Num

Threads = 1” disables parallelism when used, preventing

variation caused by inter-thread interference by limiting the

number of threads to 1. The “HugeTLBFS-link=BDT” flag

instructs Linux’s RAM-based filesystem to store data into

huge pages. Huge pages decrease the time required to find

where memory is mapped by increasing page file size from

∼4 KB to ∼4 MB (sizes vary by platform). Increasing the

page file size reduces the total number of page files required

to manage virtual memory, decreasing the time required to

find a specific memory address.

Table 12 Environment and flag variables with the highest relative influence
when predicting relative variation. Flag variables are shown in bold

Variable Relative influence

L2 cache size 20.976

CPU chip count 8.647

File system 7.818

Total memory size 6.724

Par Num Threads = 1 4.427

CPU core count 4.364

System state 3.751

Threads per core 3.688

HugeTLBFS-link=BDT 3.228

Memory stick count 3.066

From this investigation, we see that while performance can

be explained almost completely by the environment and flag

variables used – relative variation can only be explained in

part. Our results suggest that the primary source of variation

is intra-thread interference given that significant environment

variables relate to the number of active threads and the size of

shared memory. Flag variables were found to be less signif-

icant than environment variables when prediction variation,

with the most significant flag variable being disabling paral-

lelism for some benchmarks. We do not have variables relat-

ing to the number of OS threads running in the background or

certainty that the SPEC 2006 was run as the only application,

which could explain the remainder of the variation.

8 The sampling size

Due to the performance variability, we usually measure the

performance score more than once for each benchmark.

Hence, it remains a question that how many measurements

(performance scores) for each benchmark, m, we should take.

Generally, the size of m depends on two factors:

1) The size of the performance variability. If there is no

performance variability, then measuring once, m = 1, gives

an accurate performance score. On the other hand, if the per-

formance variability is large, then we need m be large to have

a good estimation of performance.

2) The quality of the statistical inference. Hypothesis test-

ing and estimation are the two major branches of statistical

inference. A good test procedure should have a high probabil-
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ity to detect the deviation from the specified null hypothesis

(i.e., high statistical power) when the null hypothesis is not

true. On the other hand, the width of the confidence interval

and the mean squared error (MSE) of an estimated parameter

(e.g., speedup), gives us some idea about how uncertain we

are about the unknown parameter. The smaller the width of

a confidence interval (with fixed confidence level, e.g., 95%)

and MSE, the more precise the estimate is. Hence, the sta-

tistical power, MSE and the width of confidence interval are

widely used to examine the quality of statistical inference.

Here, we redo the Monte Carlo simulation study on power,

described in Section 6.1, with L = 1 on the commodity com-

puter (AMD Opteron CPU 6172 @ 2.10GHz, 2 processors,

each with 12 cores, with 12GB DDR3 RAM(1333 MHz)) us-

ing different sizes of m, m = 3, 5, 7, 10, 15, 20, 30, 50, 100.

The top panel of the proposed bootstrap estimate with differ-

ent sizes of m. The vertical grey bar indicates the standard de-

viation of MSE. We see that the size of MSE (the smaller the

MSE, the more accurate the estimate is) and its standard de-

viation decreases with the increase of m. Sometimes we may

constrain the width of the confidence intervals. For example,

we want to have a 95% confidence interval with width (i.e.,

upper limit – lower limit) no greater than 0.03. Notice that

the smaller the width, the more consistency the estimate has.

The bottom panel of Fig. 12 shows the width of 95% confi-

dence interval with different size of m. The vertical grey bar

indicates the standard deviation of width. Similar to MSE,

we see that the width of confidence interval decreases as m

increases.

The above study shows the statistical properties of the pro-

posed methods by increasing the size m. However, in practice

we usually do not know the truth. Hence, the power of the test

and MSE are unknown. A common way to determine the size

of m is by setting the width of the confidence interval in ad-

vance. Figure 13 shows the flowchart of selecting the size of

m in practice based on the predetermined width of confidence

interval Δ. Basically, we need specify an initial value of m,

usually a small value like 3, and a threshold for the width of

confidence interval Δ. Then we sample m measurements for

each benchmark and computer. We calculate a bootstrapping

confidence interval based on the sample data. If the width of

confidence interval is greater than the threshold Δ, then we

increase the size of m and sample more measurements for

each benchmark and computer. Then we recalculate the con-

fidence interval. We stop sampling when the width of confi-

dence interval is no greater than the predetermined threshold

Δ.

For the example below, we use two computers: A and C de-

scribed in Section 6.3. We would like to find the size of m by

restricting the width of the bootstrapping confidence interval

of the ratio of geometric means performance speedups to be

no greater than 0.015. Table 13 shows the bootstrapping con-

fidence intervals and corresponding width with various sizes

of m. We see that the sample size of m should be at least 16

under the restriction.

Fig. 12 The sample size effect on the statistical power, MSE and the width
of confidence interval under various sizes of m. (a) The sample size effect on
the statistical power; (b) the sample size effect on the MSE; (c) the sample
size effect on the width of confidence interval

Fig. 13 Flowchart of choosing the sample size based on the width of con-
fidence interval
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Table 13 An illustration of choosing the sample size (m) based on the width of confidence interval

m 3 5 7 10 13 15 16

Bootstrap CI [1.203, 1.228] [1.204, 1.223] [1.207, 1.227] [1.212, 1.228] [1.216, 1.231] [1.216 1.232] [1.217, 1.232]

CI Width 0.0256 0.0198 0.0194 0.0166 0.0153 0.0155 0.0149

9 Applicability to other means

As a generic framework, our proposed methods can be di-

rectly applied to arithmetic and harmonic means while the

HPT framework cannot apply since it uses rank instead of

any performance metric. We applied the propose methods

using these three means on an example in which we com-

pare SPEC scores of two machines: IBM System x3500 M3

with Intel Xeon E5530, and CELSIUS R570 with Intel Xeon

X5560, which are obtained from SPEC website. Table 14

shows the confidences and confidence intervals using three

metrics on the example. We see that both harmonic mean and

geometric mean identify the difference between two com-

puters while arithmetic mean cannot. This is because the

arithmetic mean is subject to extreme values. For example,

among 29 benchmarks, CELSIUS R570 has 25 benchmarks

with a larger mean performance score than their counterparts

for IBM System x3500 M3. However, IBM System x3500

M3 has much higher performance scores in the libquantum

and bwaves benchmarks than their counterparts in CELSIUS

R570. If the two benchmarks are eliminated from the data,

then changes in the confidence and confidence interval using

the arithmetic mean are much larger than the ones using the

geometric and harmonic means.

Table 14 Summary of comparing geometric, harmonic and arithmetic
means on confidence and confidence interval (CI)

G-mean H-mean A-mean

Confidence >0.99 >0.99 0.492

CI [0.913, 0.920] [0.887, 0.892] [1.019, 1.031]

Confidence* >0.99 >0.99 >0.99

CI* 0.882, 0.889] [0.881, 0.886] [0.880, 0.889]

10 Applicability to Big Data benchmarks

In this section we study the effectiveness of the proposed

sampling methods on Big Data benchmarks [12], which

have been demonstrated to be different from traditional CPU

benchmarks like SPEC or PARSEC. Big Data analytics is an

emerging field that is driven by the need to find trends in

increasingly large data sets. Applications include search en-

gines, social networking, e-commerce, multimedia analytics,

and bioinformatics. Big Data applications require extra lay-

ers in the software stack due to the use of distributed storage

and processing frameworks, such as Apache Hadoop, thus

creating additional opportunities for variance. We find the

execution-time-variance of Big Data applications (calculated

as the standard deviation divided by the mean) to be about

twice as large as that of spec benchmarks; this is due to these

additional virtualization layers used by the Big Data Bench

(i.e., Hadoop, Spark, Java).

As listed in Table 15, a set of seven Big Data bench-

marks were chosen from the spark implementation of the

BigDataBench version 3.1.1 and executed on five separate

machines listed in Table 16. Each benchmark was executed

1,000 to 2,000 times on each machine and the execution time

was measured. The larger variance of Big Data application

performance makes naïve comparisons of machine perfor-

mances impractical and mandates a sampling method such

as the one proposed.

We ran three studies using the big data described above.

Study 1 and 2 are both based on the random sampling of Ma-

chine 3 and Machine 4. Namely, for each benchmark from

each computer, five execution times are randomly selected

without replacement. Then we (1) compare the two comput-

ers using HPT, t-test and proposed randomization test; (2)

estimated the ratio of the geometric means through the pro-

posed bootstrapping confidence interval, t-test confidence in-

terval and HPT speedup-under-test estimate based on the ran-

domly selected subset of data. Both studies were repeated 100

times. (3) For Study 3, we applied a new visualization tool

Table 15 Summary of selected Big Data workloads

ID Domain Operations or algorithm Types Data sets

a Social networks Connected components Offline analytics Facebook social network

b Social networks Kmeans Offline analytics Facebook social network

c Search engine Sort Offline analytics Wikipedia entries

d Search engine Grep Offline analytics Wikipedia entries

e Search engine Word count Offline analytics Wikipedia entries

f E-commerce NaiveBayes Interactive analytics Amazon movie reviews

g Search engine Page rank Offline analytics Google Web graph
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Table 16 Summary of selected computers

ID Configurations

1 Intel Xeon CPU E5-2630 @ 2.6 GHz, 2 processors, each with 12 cores, 192GB DDR3 RAM (1600 MHz)

2 2,Intel Xeon CPU X5530 @ 2.40GHz, 2 processors, each with 4 cores, 12GB DDR3 RAM (1333MHz)

3 Intel Core i7 CPU 3820 @ 3.6 GHz, 1 processor with 8 cores, 24GB DDR3 RAM (1600 MHz)

4 Intel Core i7 CPU 960 @ 3.20 GHz, 1 processor with 4 cores (Hyperthreading enabled), 10GB DDR3 RAM(1333MHz)

5 AMD Opteron CPU 6172 @ 2.1GHz, 2 processors, each with 12 cores, with 12GB DDR3 RAM(1333 MHz)

Fig. 14 The 95% bootstrapping confidence intervals (solid blue lines), measured ratios of geometric means (solid black line within the
confidence interval), 95% t-test confidence intervals (solid green lines) and 0.95-speedups from HPT test (red dash lines) based on 100 random
replications

called a Biplot [13] to visually examine the performance of

many computers and benchmarks simultaneously.

In Study 1, for a significance level of 0.05, HPT fails to

reject null hypothesis as the two machines generally have the

same performance in terms of the geometric mean, 69% of

times, while t-test and our randomization test both are 0%

(i.e., reject all 100 times). When the significance level is 0.01,

since HPT uses nonparametric test, their p-value in this case

cannot go below 0.01. The t-test fails to reject the null hy-

pothesis 4% of the time, while our test still rejects all 100

times.

11 Biplots for the visualization of benchmark
effectiveness

Figure 14 shows the results of Study 2. The black solid line

in the center is the observed geometric means based on 100

simulations. The blue solid lines show the 95% bootstrapping

confidence intervals. The green solid lines show the 95% t-

test confidence intervals. The red dash line shows the HPT

speed-up estimates. Based on the figure, we can see that the

t-test confidence interval is consistently wider than the boot-

strapping confidence interval and that the HPT speedup es-

timates are highly variable bouncing up and below and far

away from the observed Geometric means.

Finally, we use a Biplot visualization tool [13] for com-

puter performance comparisons. Biplot is a useful tool to vi-

sualize the projections of high-dimensional data onto a low

dimensional space through principal component analysis. In

this section, we will first briefly describe the principal com-

ponent analysis technique and introduce the Biplot method

through an illustrative example. Then we will apply the Bi-

plot method to the performance results of all five machines

used in section IX with seven Big Data benchmarks and ex-

plain the results that may shed new insights on comparing

computer performance.

Principal component analysis is a time-honored method for

dimension reduction and data visualization. Figure 15 shows

a randomly generated dataset with 1,000 points from a bivari-

ate Gaussian distribution. Figure 15(a) shows the raw data

with the two principal components. The first principal com-

ponent (PC1), shown as the red arrow in the plot, is the di-

rection in feature space (e.g., X1 and X2 in this case) along

which projections have the largest variance. The second PC

(PC2), shown as the blue arrow in the plot, is the direc-

tion which maximizes variance among all directions orthog-

onal to the first PC. The principal components are the linear

combination of all the features. The value of the coefficients

for the PC is called the loading vector of the corresponding

PC. The value for the sample point of the PC is called the

score for the corresponding PC. For example, PC1 is equal

to 0.996X1+0.258X2; hence the loading vector for PC1 is

(0.996, 0.258). For a sample point with X1=1 and X2=0, the

PC1 score is equal to 0.996×1+0.258×0=0.996.
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Instead of plotting the data on its raw scales, an alternative

way to visualize the data is to project the data onto PC1 and

PC2. In this example, since the data contains only two vari-

ables, X1 and X2, projecting onto PC1 and PC2 is equivalent

to rotating the data to use PC1 and PC2 as the horizontal and

vertical axes. This is shown in Fig. 15(b). For each point, the

projected value on the horizontal axis is its PC1 score, while

the projected value on the vertical axis is its PC2 score. A

Biplot graph, which is shown in Fig. 15(c), presents not only

the PC scores but also the loading vectors in a single dis-

play. The red arrow shows the coefficient values for X1 on the

PC1 and PC2 loading vectors. As can be seen, the coefficient

value for X1 in PC1 (i.e., 0.966) is larger than its counterpart

in PC2 (i.e., 0.258) and the coefficient value for X2 in PC2

is negative (i.e., –0.966), with its absolute value being larger

than its counterpart in PC1. Hence, we can see PC1 reflects

mainly the variation in the X1 direction, and PC2 mainly re-

flects variation in the X2 direction.

Figure 15(d) shows the proportion of variance that is ex-

plained by each PC. Since the data has only two variables,

there are at most two PCs. The first PC explains about 95%

of the total variance of the data, while PC2 explains the re-

maining 5%.

Fig. 15 Illustrative example for principal component analysis and biplot.
(a) Raw data with PC1 and PC2; (b) PC scores on the PC1 and PC2; (c)
lower left: biplot of the data; (d) proportion of total variance explained by
PC1 and PC2

Figure 16 shows the Biplot of the performances of all five

machines used in Section 9 with all seven Big Data bench-

marks. Note that for each machine and each benchmark, we

have measured about 1,000 times. To create the Biplot in

Fig. 16, we use the median value of the performance measure

for each benchmark and machine. The median values for all

five machines and all seven Big Data benchmarks are listed in

the Table 17. Since we have five machines and seven bench-

marks, there are up to five PCs. The right panel of Fig. 16

shows the proportion of total variance explained by each PC.

As we can see, the first two PCs explained more than 99.7%

of the total variance. Hence, using the leading two PCs in

the Biplot keeps almost all the information in the data. Based

on the Biplot, which is shown on the left panel, we have the

following remarks.

Fig. 16 Biplot on big data benchmark example. (a) Biplot on PC1 and PC2
together with the loading values for seven benchmarks; (b) proportion of
total variance explained by five PCs

1) We see that the benchmark b has the largest impact (i.e.,

coefficient value) on the PC1. This indicates that PC1

roughly reflects the performance measure on bench-

mark b. This can be verified by the dominant value of

the loading coefficient for benchmark b in PC1 (i.e.,

equal to 0.91).

2) For PC2, the remaining six benchmarks measures are

clustered together and have about the same impact (i.e.,
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coefficient value). This indicates that these six measures

(from benchmark a, c, d, e, f, g) are highly correlated

to each other and PC2 mainly reflects the average per-

formance on these six benchmarks. Table 18 shows the

pairwise correlation among all seven benchmarks. We

see that most of the pairwise correlations among bench-

marks a, c, d, e, f, g are over 0.95 (shown in bold type).

3) The PC1 score for machine 5 is far greater than the other

four machines. This is due to its higher performance on

all seven benchmarks and particularly on benchmark b

(i.e., 92291).

4) The PC2 score for machine 2 is the smallest among all.

This is due to its lower performance on benchmark a, c,

d, e, f, g, for which is has the lowest values among all

five machines, and relatively large value on benchmark

b, which for which it has the third largest value among

all.

5) Overall, machines 1, 3 and 4 have similar performance

over all seven benchmarks. Machine 5 has the highest

overall performance, while machine 2 has the lowest

overall performance.

Table 17 Median values of all five machines on seven big data benchmarks

a b c d e f g

1 12746 53600 14182 12785 14473 13292 19774

2 7265 53581 9157 7427 9154 7718 14602

3 10945 44492 12101 10894 12379 11184 16028

4 11499 47084 12318 11205 13062 11444 16997

5 18429 92291 18867 16448 18915 17429 29271

Table 18 Pairwise correlation among all seven big data benchmarks

a b c d e f g

a 1.00 0.82 1.00 0.99 1.00 1.00 0.96

b 0.82 1.00 0.83 0.76 0.80 0.78 0.94

c 1.00 0.83 1.00 0.99 1.00 1.00 0.97

d 0.99 0.76 0.99 1.00 1.00 1.00 0.93

e 1.00 0.80 1.00 1.00 1.00 1.00 0.95

f 1.00 0.78 1.00 1.00 1.00 1.00 0.95

g 0.96 0.94 0.97 0.93 0.95 0.95 1.00

12 Related work

Over decades, the debate over the method and metrics for

computer performance evaluation has never ended [18–20].

Fleming and Wallace [15] argued that using geometric mean

to summarize normalized benchmark measurements is a cor-

rect approach while arithmetic mean will lead to wrong con-

clusions in this situation. Smith, however, claimed that ge-

ometric mean cannot be used to describe computer perfor-

mance as a rate (such as mflops) or a time by showing

counter examples. Furthermore, Johnson [16] advocated us-

ing weighted arithmetic mean or harmonic mean instead of

geometric mean to summarize computer performance over a

set of benchmarks. Hennessy and Patterson [21] described

the pros and cons of geometrics mean, arithmetic mean, and

harmonic mean. Eeckhout [22] summarized that arithmetic

and harmonic means can clearly describe a set of benchmarks

but cannot apply the performance number to a full work-

load space, while geometric mean might be extrapolated to

a full benchmark space but the theoretic assumption cannot

be proven.

Relying on only a single number is difficult to describe sys-

tem variability stemming from complex hardware and soft-

ware behaviors. Therefore, parametric statistic methods such

as confidence interval and t-test have been introduced to

evaluate performance [1, 23]. Nevertheless, Chen et al. [7]

demonstrated that these parametric methods in practice re-

quire a normal distribution of the measured population which

is not the case for computer performance. In addition, the

number of regular benchmark measurements from SPEC or

PARSEC is usually not sufficient to maintain a normal dis-

tribution for the sample mean. Therefore, Chen et al. [7]

proposed a non-parametric statistic hypothesis tests to com-

pare computer performance. As demonstrated in the paper,

our proposed resampling methods can identify smaller dif-

ferences between two computers even in a situation where a

single test is not enough to reveal it.

Oliveira et al. [24] applied quantile regression to the non-

normal data set and gained insights in computer performance

evaluation that analysis of variance (ANOVA) would have

failed to provide. Our approach considers different variation

sources (non-deterministic or deterministic behaviors) for the

fixed computer configurations and handles the non-normality

by using resampling technique such as bootstrapping and per-

mutation.

Patil and Lilja [25] demonstrated the usage of resampling

and Jackknife in estimating the harmonic mean of an entire

dataset. Unlike their approach, we applied resampling meth-

ods on a more complicated situation-comparing two com-

puters on multiple benchmarks with multiple measurements.

Hence, the bootstrapping method in our paper is different

from the one in [25]. Namely, we bootstrap the samples

within each benchmark instead of on the entire dataset.

Much research has been conducted in an effort to identify

and remove sources of performance variation (and thus in-

crease quality of service) in cloud computing systems per-

forming many concurrent tasks. Iosup et al. [26] study the
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impact of workload on performance variability in cloud ser-

vices via program trace analysis. Similarly, Leitner and Cito

[27] profile infrastructure-as-a-service (IaaS) cloud systems

seeking the cause of performance variation, especially inter-

task interference. In contrast, our Big Data benchmark per-

formance study uses only one active task.

Previous work has been conducted on profiling applica-

tions to predict performance variation in multi-threaded sys-

tems. Zhang et al. [28] propose VarCatcher for measuring the

performance variation of individual execution paths within

an application; execution patterns are then clustered in an ef-

fort to explain performance variability. Pusukuri et al. [29]

use runtime performance metrics (i.e., cache misses, thread

context-switches) to throttle inter-thread interference and

thereby reduce performance variation. Jimenez et al. [30] pre-

dict the performance variation bounds for compute intensive

applications and propose to limit variation by reducing band-

width at the cost of reduced performance. Our research simi-

larly studies the relationship between hardware and OS-level

events, but we data collected from many different hardware

configurations to predict variation in advance. This work is

an extension of our prior ISPASS publication [16] which was

limited in scope to statistical resampling methods for measur-

ing computer performance on SPEC benchmarks without the

use of Biplot visualization tools.

13 Conclusion

We propose a randomization test framework for achieving a

both accurate and practical comparison of computer archi-

tectures performance. We also propose a bootstrapping con-

fidence interval estimation framework for estimating a confi-

dence interval on a quantitative measurement of comparative

performance between two computers. We illustrate the pro-

posed methods through both Monte Carlo simulations where

the truth is known and real applications.

Interestingly, even though geometric mean as a single

number cannot describe the performance variability, we find

that the ratio of geometric means between two computers al-

ways falls into the range of Boosted confidence Intervals in

our experiments. In cases where two computers have very

close performance metrics, we propose using empirical dis-

tribution to evaluate computer performance and using five-

number-summary to summarize the computer performance.

We investigate the source of performance variation by us-

ing hardware and environment descriptions to predict perfor-

mance and relative variation with a predicted and measured

correlation of 0.992 and 0.5 respectively. The best predic-

tors of relative variation are found to be the degree of par-

allelism and the size of amount memory space, suggesting

performance variation comes in large part from thread inter-

ference.
We demonstrate that the proposed sampling method is

effective at differentiating the performances of machines

running Big Data benchmarks, which have higher variance

than traditional CPU benchmarks. Our analysis of Big Data

benchmark variance was extended using a Biplot to visualize

machine performance similarities and benchmark correlation.
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