#Chapter 5 #5.1 install.packages("mma") library(mma) #data organization and variable identification data("weight_behavior") #binary predictor x #binary y x=weight_behavior[,c(2,4:14)] pred=weight_behavior[,"sex"] y=weight_behavior[,"overweigh"] data.b.b.1<-data.org(x,y,mediator=5:12,jointm=list(n=1,j1=7:9), pred=pred,predref="M", alpha=0.4, alpha2=0.4) summary(data.b.b.1) #Alterantive to define potential third-variables data.b.b.2<-data.org(x,y,pred=pred,contmed=c(7:9,11:12), binmed=c(6,10),binref=c(1,1),catmed=5, catref=1, predref="M",jointm= list(n=1,j1=7:9),alpha=0.4,alpha2=0.4) summary(data.b.b.2) #5.1.2 third-variable analysis med.b.b.1<-med(data=data.b.b.2,n=50) med.b.b.1 med.b.b.2<-med(data=data.b.b.2,n=50,nonlinear=TRUE) med.b.b.2 #5.1.3 third-variable effect inference bootmed.b.b.1<-boot.med(data=data.b.b.2,n=2,n2=50) bootmed.b.b.2<-boot.med(data=data.b.b.2,n=2,n2=40, nu=0.05,nonlinear=TRUE) #three functions in one x=weight_behavior[,c(2,4:14)] pred=weight_behavior[,3] y=weight_behavior[,15] mma.b.b.glm<-mma(x,y,pred=pred,contmed=c(7:9,11:12), binmed=c(6,10),binref=c(1,1), catmed=5, catref=1,predref="M",alpha=0.4, alpha2=0.4, n=2,n2=50) mma.b.b.mart<-mma(x,y,pred=pred,contmed=c(7:9,11:12), binmed=c(6,10),binref=c(1,1), catmed=5, catref=1,predref="M",alpha=0.4,alpha2=0.4, nonlinear=TRUE,n=2,n2=40) summary(bootmed.b.b.2,alpha=0.2) summary(bootmed.b.b.2,RE=T,alpha=0.2,quant=T)