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Abstract:
We take a novel approach the signal regression (multivariate calibration) problem,
in particular where the signal (spectra) regressors have two dimensional struc-
ture. In general linearity is assumed to hold, but this may not be true. Through
simultaneous estimation, we parse out and estimate two separate modeling com-
ponents: (1) a single smooth regression coefficient surface associated with the
two-dimensional signal, and (2) an unknown, possibly nonlinear, link function.
Using (tensor product) P-splines for each component, we will see that their com-
bination can lead to a systematic and tractable statistical modeling approach,
while having improved external prediction performance when compared to stan-
dard signal regression approaches and partial least squares. Optimal tuning will
be discussed.
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1 Introduction

Our application considers rich and indexed two-dimensional regressor infor-
mation of UV-VIS spectra taken over several temperatures that are used
to predict scalar components of a ternary mixture. We will see that the
basic appeal of our particular modelling approach is its explicit estimation
of meaningful components: (1) a smooth regression coefficient surface as-
sociated with the two-dimensional signal (Marx and Eilers, 2005), and (2)
an unknown, possibly nonlinear, link function. Although the first is linear,
the second component explicitly models the nonlinearity, while enhancing
insight into the measurement process. Linking the response to the linear
predictor is in the spirit of single-index models (Eilers, Li and Marx, 2009).

1.1 First modeling component MPSR

The multidimensional signal regression’s (MPSR) goal is to provide a prac-
tical solution for functional linear models using the entire two-dimensional
signal as regressors. Associated with the regressors is a single overarching
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coefficient surface which serves to smoothly weigh each two-dimensional
signal digitization. Regularization is needed, and we choose a P-spline ap-
proach. Specifically, we take two steps towards smoothness: (a) The coeffi-
cient surface (not the signal) is intentionally overfit using two-dimensional
tensor product B-splines, making the surface more flexible than needed. (b)
Tensor product coefficient estimates are penalized using difference penalties
on each of the rows and columns. Given the ith regressor matrix Xi = [xijk]
of dimension p× p̆, signal regressor support on (v, v̆), and coefficient surface
α(v, v̆), express the mean

μi =

p∑

j=1

p̆∑

k=1

xijkαjk =

p∑

j=1

p̆∑

k=1

xijk

n∑

r=1

n̆∑

s=1

BrjB̆skγrs = x′iT
�γ, (1)

where i = 1, . . . , m; j = 1, . . . , p; k = 1, . . . , p̆, with tensor product
B-splines T�, where x′i = vec(Xi). We can further express (1) in matrix
form as μ = XT�γ = Mγ, where X is the m × pp̆ matrix of vectorized
signals, M = XT�.
In the P-spline spirit, the objective function is to minimize

QP (γ) =
m∑

i=1

(yi − x′iT
�γ)2 + λ

n∑

r=1

γr•D′dDdγ
′
r• + λ̆

n̆∑

s=1

γ′•sD
′
d̆
Dd̆γ•s

= ||y −Mγ||2 + λ||Pγ||2 + λ̆||P̆ γ||2,

where γr• (γ•s) denotes the rth row (the sth column) of Γ. The explicit
P-spline solution is

γ̂ = (M′M+ λP ′P + λ̆P̆ ′P̆ )−1M′y.

Two tuning parameters, associated with the row and column penalties,
respectively, allowing continuous control over the surface. The predicted
values are ŷ =Mγ̂.

1.2 Second modeling component SISR

The second modeling component is single-index signal regression (SISR),
which was presented in Eilers, Li, and Marx (2009) for one-dimensional
signals, and is a method that can provide additional insight through the
explicit modeling of any nonlinear behavior that may exist with the re-
sponse. In fact, one could view the standard multivariate calibration prob-
lem as using an identity link function, which in actuality may be (slightly)
misspecified.In effect, there may exist a true, but “missing link” function
(that is nonlinear and monotone) (Cox, 1984), and this approach serves
the purpose of estimating this link while improving external prediction.
SISR introduces a modification: μi = f(

∑
jk xijkαjk). The function f(·)
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is assumed to be smooth and is estimated from the data using univari-
ate P-splines, having its own additional tuning parameter. This model is
generally related to projection pursuit (Friedman and Stuetzle, 1981), with
additional smoothness demands on α.

Algorithm MSISR

1. Initializations:

• Choose the tuning parameter values (λ, λ̆, λf ) for Steps 1 and 2

• Choose number of knots (n, n̆, nf )

• Choose penalty order (d, d̆, df )

• Set all tuning parameters to λ0 for the initial Step 1 (default 106)

• Create M = XT�

• Calculate γ̂ = MPSR(M, y, (λ0, λ0), (d, d̆), (n, d̆))

2. Cycle until convergence of γ̂’s

• Estimate f̂ and the estimate of the derivative ḟ from S(Mγ̂, y, λf , df , nf )

• Obtain y� and M�

• Update γ̂ = MPSR(M�, y�, (λ, λ̆), (d, d̆), (n, n̆))

• Constrain γ̂/||γ̂||
3. Prediction: ŷnew = f̂(xnewT�γ̂)

end algorithm

1.3 The combined MSISR Methodology

The MSISR model has the form μ = f(Mγ), where the function f and the
smooth coefficient surface are unspecified and approximated with P-spline
coefficients α and γ. Consequently, the modified MPSR objective can be
rewritten as

Q�
P = ||y − f(Mγ)||2 + λ||Pγ||2 + λ̆||P̆ γ||2 + λf ||Ddα||2. (2)

Given the tensor B-spline coefficient vector γ, the estimation of function
f becomes a one-dimensional smoothing problem, and we can apply any
scatter-plot smoother to obtain its estimate, which driven by the basis coef-
ficient estimates α̂. We estimate f using a (cubic) P-spline scatter smoother
(Eilers and Marx, 1996). The penalty on α ensures a smooth f ; recall that α
is the vector of B-spline coefficients with equally-spaced knots placed along
η. Due to the virtue of using B-splines, the first derivative of f (denoted
as ḟ), which is needed in our algorithm, can be easily computed (using a
basis with one degree less and first differenced basis coefficients).
Once given an estimate of f , the coefficient vector γ can be estimated
using a (first-order) Taylor series approximation of the function f (about
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the current estimate, γ0). Specifically, if γ0 is the current estimate for γ,
then the current estimate of μ = f(Mγ) can be approximated by

f(Mγ) ≈ f(Mγ0) + ḟ(Mγ0)M(γ − γ0). (3)

Using (3), with fixed f , we have an approximation of Q�
P

Q�
P ≈ ||y − f(Mγ0)− ḟ(Mγ0)M(γ − γ0)||2 + λ||Pγ||2 + λ̆||P̆ γ||2

= ||y� −M�γ||2 + λ||Pγ||2 + λ̆||P̆ γ||2, (4)

where y� = y − f(Mγ0) + ḟ(Mγ0)Mγ0 and M� = diag{ḟ(Mγ0)}M. Note
that (4) implies that given f , the optimal α that minimizes the right-hand

side of (4) can be obtained through a MPSR(M�, y�, (λ, λ̆), (Dd, Dd̆), (n, n̆)).
Hence, in our algorithm, we first carry out a MPSR with the response y on
M (Step 1). Then, given γ, an estimate of f is obtained (Step 2). The two
steps, estimation of f and γ, are iterated until convergence of γ̂.

1.4 Aims and benefits of the combined MSISR approach

The estimation between f and α is iterative and tractable, essentially boil-
ing down to repeated alternate applications of MPSR and P-spline smooth-
ing on “working” responses and regressors. Some additional features of
MSISR that are worthy of note include: (a) Although smooth, f can be as-
sumed to be very general, an explicit function can be estimated. (b) Heavy
penalization associated with f typically produces low degree polynomial
estimates for f . (c) The entire signal can be used as regressors. (d) The
number of highly spatially correlated regressors can far exceed the number
of observations. (e) The parameterization yields a very manageable sys-
tem of equations. (f) The candidate coefficient surface can be non-additive.
(g) Since the two-dimensional signals and single estimated coefficient sur-
face have a common indexing plane, potentially important regions can be
visually identified.

2 Illustration and Optimization

We apply our MSISR to ternary mixture data. The responses are the
mole fraction of a mixture, consisting of three components: water, 1,2-
ethanediol, and 3-amino-1-propanol. There are 3 pure, 12 edge, and 19
interior (1 center) mixtures. The two-dimensional signal is constructed us-
ing the p × p̆ = 4800 digitized regressors, Xi, arranged using the (first)
differenced UV-spectra, across the temperature levels. The indexing axes
that define the support coordinates of Xi are specified as wavelength with
p = 400 wavelength channels (701 to 1100nm, by 1 nm) and with p̆ = 12
temperature levels (30, 35, 37.5, 40, 45, 47.5, 50, 55, 60, 62.5, 65, 70o C).
The data were not preprocessed in any other way.
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We divided the m = 34 observation into three subsets as follows. The
training set consisted of mtrain = 16 observations using the 3 pure, 12
edge, and 1 center mixtures. The remaining 18 interior observations were
divided into a validation set (to optimize tuning parameters) and a test
set (to quantify quality of external prediction). Optimal tuning parameters
were determined by minimizing RMSEV in the trained model. Given these
optimal tuning parameters, external prediction was evaluated on the test
data using RMSEP using the newly trained model that combined both
the training and validation data. Table 1 presents the root mean square
error of prediction (RMSEP) for the external prediction set, using optimal
MSISR, MPSR, and PLS models. For responses water and 1,2-ethanediol,
we find an improvement in external prediction for MSISR over both MPSR
and PLS, leading to RMSEP reductions that range from 30% to 55%.
For MSISR, the external RMSEP values are between 0.0214 and 0.0241,
which when multiplied by 100 gives units of percent mixture. Figure 1
displays the optimal MSISR model using the response mixture component
1,2-ethanediol.

Table 1. MSISR, MPSR, PLS external prediction RMSEP, optimal models.

Response MSISR MPSR PLS

Water 0.0214 0.0365 0.0465
1,2-ethanediol 0.0241 0.0338 0.0382
3-amino-1-propanol 0.0306 0.0251 0.0359

3 Discussion

We have shown how to estimate nonlinear relationships in multivariate
calibration, by combining the single index model with multidimensional
penalized signal regression. We found that the explicit estimation of the
nonlinearity can provide some insights into the physical and chemical pro-
cess underlying the measurements, which we view as a contribution over
some of the other more “black box” approaches, while modestly improving
external prediction. In the present case the response is assumed to have a
normal distribution. Our other current research generalizes SISR, e.g., for
binary classification, e.g. a Bernoulli response with probability πi could be
modeled with log(π/(1 − π)) = f(Xβ). Additionally we are investigating
two-dimensional surfaces for f , over another indexing variable, that allows
for f to interact with, e.g., temperature.
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FIGURE 1. 1,2-ethanediol: The estimated f̂ function is given (upper, left), along
with (f̂ − η̂) (lower, left). The plotted points represent the nine observations in
the external test data set. The right panels provide the “optimal” image plots
for the estimated coefficient surface (upper) and the coefficient surface difference,
MSISR−MPSR (lower).
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