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In the United States, petroleum extraction, refi nement, and 
transportation present countless opportunities for spillage 
mishaps. A method for rapid fi eld appraisal and mapping of 
petroleum hydrocarbon–contaminated soils for environmental 
cleanup purposes would be useful. Visible near-infrared 
(VisNIR, 350–2500 nm) diff use refl ectance spectroscopy 
(DRS) is a rapid, nondestructive, proximal-sensing technique 
that has proven adept at quantifying soil properties in situ. Th e 
objective of this study was to determine the prediction accuracy 
of VisNIR DRS in quantifying petroleum hydrocarbons in 
contaminated soils. Forty-six soil samples (including both 
contaminated and reference samples) were collected from six 
diff erent parishes in Louisiana. Each soil sample was scanned 
using VisNIR DRS at three combinations of moisture content 
and pretreatment: (i) fi eld-moist intact aggregates, (ii) air-dried 
intact aggregates, (iii) and air-dried ground soil (sieved through 
a 2-mm sieve). Th e VisNIR spectra of soil samples were used 
to predict total petroleum hydrocarbon (TPH) content in the 
soil using partial least squares (PLS) regression and boosted 
regression tree (BRT) models. Each model was validated with 
30% of the samples that were randomly selected and not used 
in the calibration model. Th e fi eld-moist intact scan proved 
best for predicting TPH content with a validation r2 of 0.64 
and relative percent diff erence (RPD) of 1.70. Because VisNIR 
DRS was promising for rapidly predicting soil petroleum 
hydrocarbon content, future research is warranted to evaluate 
the methodology for identifying petroleum contaminated soils.
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Although petroleum provides abundant energy, eco-

nomic, and manufacturing resources for the United States, 

its extraction, refi nement, and transportation also present innu-

merable opportunities for spillage accidents or operational losses. 

Given that petroleum hydrocarbon is a potential soil and water 

contaminant and neurotoxin for humans and animals (Schwartz 

et al., 2009), long-term exposure could increase the risk of lung, 

skin, and bladder cancer (Hutcheson et al., 1996; Boff etta et al., 

1997). Th e protection and enhancement of the nation’s natural 

resource base and environment require the development of inno-

vative, low-cost, and reproducible analytical tools to assess the 

spatial and temporal variability of soil and soil contamination. So 

far, researchers have established several spectroscopic techniques to 

identify specifi c petroleum properties including the application of 

nuclear magnetic resonance or near-infrared spectroscopy for pre-

dicting octane numbers of gasoline compounds, along with the 

quantifi cation of petroleum contaminants based on combinations 

and overtones of C-H, N-H, O-H, and S-H bonds (Kelly et al., 

1989; Dorbon et al., 1990; Stallard et al., 1996; Lee and Chung, 

1998). Crude oil signatures originate mainly from combinations 

or overtones of C-H stretching vibrations of saturated CH
2
 and 

CH
3
 groups in addition to methylenic, oleifi nic, or aromatic C-H 

functional groups (Aske et al., 2001). Th e introduction of Urbach 

tail edge detection technology (Mullins et al., 1992) has estab-

lished distinctive spectral signatures for most crude oils in the near-

infrared region (2298 nm [stretch+bend]; 1725 nm [two-stretch]; 

1388 nm [two-stretch+bend]; 1190 nm [three-stretch]; 1020 nm 

[three-stretch+bend]; 917 nm [four-stretch]). Chung et al. (1999) 

reported near-infrared prediction accuracies of 95% (for light gas 

oil) and 99% (for light straight-run which is a low boiling range and 
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low carbon number [C
5
–C

7
] petroleum product, kerosene, gaso-

line, and diesel), whereas principal component analysis (PCA) 

combined with Mahalanobis distance could be used to segre-

gate unique spectral signatures for each of the aforementioned 

petroleum products. Moreover, internal research from Analytical 

Spectral Devices (ASD) (Boulder, CO) has clearly reported 

unique spectral refl ectance signatures for crude oil, hexane, 

and diesel fuel (D. Hatchell, personal communication, 2007). 

However, the inherent complexity of petroleum composition 

has made it impossible to screen out any particular spectroscopic 

technique for the whole range of petroleum spectral signatures. 

Th e task of identifying a specifi c petroleum signature becomes 

more complex when petroleum products are mixed with another 

heterogeneous mixture such as soil (Wang and Fingas, 1997).

Visible near-infrared diff use refl ectance spectroscopy 

(VisNIR DRS) is a scanning technology that has recently 

become popular for rapidly quantifying and identifying soil 

properties in the laboratory and on-site (in situ). Stoner and 

Baumgardner (1981) reported close association between soil 

parameters and their spectral refl ectance curve forms. Krishnan 

et al. (1980) utilized spectral refl ectance in the VisNIR range 

to select optimal wavelengths for predicting percent organic 

matter content in soil. Moreover, simultaneous predictions 

of total organic carbon, total nitrogen, and moisture content 

of air-dried soils were performed utilizing refl ectance at three 

wavelengths in the form of log (1/R) (Dalal and Henry, 1986). 

In the laboratory, VisNIR DRS has been used to quantify 

soil electrical conductivity, pH, organic carbon, particle size, 

mineralogy, cation exchange capacity, nutrients, lime require-

ment, and clay mineralogy, both rapidly and nondestructively 

(Henderson et al., 1992; Th omasson et al., 2001; Shepherd 

and Walsh, 2002; Brown et al., 2006; Madari et al., 2006; 

Viscarra Rossel et al., 2006a,b; Vasques et al., 2009).

Th is proximal soil sensing technology, which is well suited 

for rapid scanning, has been used with portable equipment, 

on-site, to quantify soil organic and inorganic carbon, and 

clay content (Sudduth and Hummel, 1993; Ge et al., 2007; 

Waiser et al., 2007; Morgan et al., 2009). Several soil spectral 

libraries were created using a wide array of soils considering 

their physicochemical and biological properties (Ben-Dor et 

al., 1999; Malley et al., 2000; Chang et al., 2001). To date, 

few studies have reported on the use of VisNIR DRS to char-

acterize oil contaminated soils. Malley et al. (1999) reported 

linear regression relationships between NIR-predicted total 

petroleum hydrocarbon (TPH) concentrations and refer-

ence data. Additionally, VisNIR DRS has been used to show 

unique refl ectance patterns for bitumen (a heavy, tarlike hydro-

carbon used in making asphalt) in a sand–clay–water matrix 

under fi eld conditions in Alberta, Canada (Analytical Spectral 

Devices, 2007). A portable version of the ASD spectrometer 

has become a useful tool for mapping the spatial extent (verti-

cal and horizontal) of oil spills.

Th e standard gravimetric laboratory method (Clesceri et 

al., 1998) is time consuming and costly (∼US$50 per sample). 

If reliable models that estimate contamination concentrations 

could be developed and validated for on-site VisNIR spec-

troscopy, oil and hydrocarbon contamination in soils could 

be rapidly mapped, minimizing time-consuming laboratory 

measurements. Conversely, if VisNIR DRS cannot be used on-

site, soil samples could be collected, air-dried, and scanned in 

a matter of hours under laboratory conditions. Either way, a 

tool for rapid identifi cation, mapping, and quantifi cation of oil 

and hydrocarbon spills in soils could be obtained. Th erefore, 

the overall goal of this study was the successful combination of 

spectrometry and chemometry to investigate the usefulness of 

VisNIR DRS for predicting petroleum hydrocarbons in con-

taminated soils.

Application of the technology and methods tested in this 

study could be used for rapidly and inexpensively identifying 

concentrated areas of contamination requiring remediation 

before rebuilding. Furthermore, contamination might be recog-

nized in areas where it may have gone undetected. Hence, the 

specifi c objectives of this research were the following: (i) to deter-

mine the prediction accuracy of VisNIR DRS in quantifying the 

amount of hydrocarbons in contaminated soils and (ii) to com-

pare the accuracies of partial least squares regression and boosted 

regression trees in predicting TPH in contaminated soils.

Materials and Methods

Soil Samples
Forty-six soil samples (including both contaminated and refer-

ence or uncontaminated samples) were collected from six sites, 

each located in a diff erent parish within southern and central 

Louisiana (Table 1). Th e sampling scheme was carefully devel-

oped in accordance with the prior knowledge of oil spill in loca-

tions provided by the Louisiana Oil Spill Coordinators Offi  ce 

(LOSCO) to ensure maximum TPH variability within the soil 

samples collected. Areas of known oil contamination or spill-

age were identifi ed by visible evidence or odor of petroleum and 

sampled fi rst. Subsequently, nearby areas of similar soil series 

with no known contamination were identifi ed and sampled. Th e 

samples were collected to a depth of 15 cm and placed in air-tight 

glass bottles to prevent hydrocarbon volatilization and preserve 

fi eld-moisture status. Samples were placed on ice for transport 

to the laboratory and refrigerated at 5°C in the laboratory. Th e 

offi  cial soil series description of each sampling site showed a wide 

variation in soil properties between sites (Table 1).

VisNIR DRS Scanning
Th e collected soil samples were scanned with an AgriSpec 

VisNIR portable spectroradiometer (Analytical Spectral 

Devices, Boulder, CO) with a spectral range of 350 to 2500 

nm (ultraviolet/VISNIR [350–965 nm], short-wave infrared 1 

[966–1,755 nm], and short-wave infrared 2 [1756–2500 nm]). 

Th e spectroradiometer had a 2-nm sampling resolution and a 

spectral resolution of 3- and 10-nm wavelengths from 350 to 

1000 nm and 1000 to 2500 nm, respectively. For fi eld-moist 

scanning of intact aggregates, each sample was spread evenly 

on a plastic dish and scanned with a contact probe, having a 

2-cm-diameter circular viewing area and built-in halogen light 

source. Each sample was scanned four times with the contact 

probe at diff erent locations within a sample to obtain multiple 

sample spectra for averaging purposes. Each individual scan 

was an average of 10 internal scans over a time of 1.5 s. Th e 

detector was white-referenced using a white spectralon panel 

with 99% refl ectance, ensuring that fl uctuating downwelling 

irradiance could not saturate the detector. Moreover, white 
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referencing removes dark current and ambient temperature 

humidity variation eff ects. After scanning, the samples were 

again bottled and sent to a commercial lab for TPH analysis. 

Following TPH analysis, the samples were air-dried, equally 

divided into two parts (weight basis), and placed into separate 

air-tight plastic bags. For each air-dried sample, one part was 

left as intact aggregates and the other part was ground to pass 

a 2-mm sieve to produce air-dried ground soil for scanning. 

Th irty grams of each sample was spread evenly in a borosilicate 

optical-glass Petri dish and scanned from below four times with 

a muglight (high-intensity source probe with a halogen light 

source), connected to the AgriSpec. Between each of the four 

scans, the sample was rotated 90°.

Laboratory Analysis
In the commercial laboratory, petroleum in soil samples was 

extracted using method 5520 D Soxhlet extraction (Clesceri 

et al., 1998), and TPH was quantifi ed by method 5520 F 

(Clesceri et al., 1998). In the Soxhlet extraction, petroleum 

was extracted at a rate of 20 cycles h−1 for 4 h using n-hexane or 

solvent mixture (80% n-hexane/20% Methyl tert-butyl ether, 

v/v). For gravimetric determination of TPH (method 5520 F), 

the extracted oil was redissolved in n-hexane and an appropri-

ate amount of silica gel was added. Th e solution was stirred 

with a magnetic stirrer for 5 min and fi ltered through a fi lter 

paper premoistened with solvent and collected in a fl ask. Th e 

silica gel and fi lter paper were washed with 10 mL solvent, and 

combined with fi ltrate. Solvent was recovered by distillation 

from fl ask in a water bath at 85°C. Th e fl ask was cooled in a 

desiccator for at least 30 min and weighed.

Other laboratory analyses of each soil sample consisted of stan-

dard physical and chemical soil analyses, including particle size 

analysis by modifi ed hydrometer method with 24 h and 40 s clay 

and sand determinations (Gee and Bauder, 1986), respectively, 

saturated paste pH (Soil Survey Staff , 2004), salinity (Soil Survey 

Staff , 2004), and total organic carbon by dry oxidation (Nelson 

and Sommers, 1996). All samples were subjected to Mehlich 

III extraction (Mehlich, 1984), and ion concentrations in the 

extracted solution were quantifi ed by inductively coupled argon 

plasma (ICAP) analysis (Soltanpour et al., 1996) with a CIROS 

CCD (SPECTRO Analytical Instruments Inc, NJ). X-ray diff rac-

tion analysis was conducted for bulk soil mineralogy confi rmation 

(Whittig and Allardice, 1986) on selected representative samples. 

Siemens Diff rac AT V3.1 software was used to run the Siemens 

D5000 X-ray diff ractometer (Bruker AXS Inc., Madison, WI). 

Th e MacDiff  4.0.0 program, a Macintosh shareware applica-

tion, was used to interpret each representative sample using the 

International Centre for Diff raction Data’s Powder Diff raction 

File. Estimates of quantitative mineral abundance (% weight 

basis) were obtained with XRDFIL, a computer application based 

on the technique described by Cook et al. (1975), except that the 

total clay mineral peak intensity factor was changed to 20.

Spectral Preprocessing
Spectral data was processed in ‘R’ (R Development Core Team, 

2004) using custom ‘R’ routines (Brown et al., 2006). Th ese 

routines included (i) a parabolic splice to correct for “gaps” 

between detectors, (ii) averaging replicate spectra, (iii) fi tting 

a weighted (inverse measurement variance) smoothing spline 

to each spectra with direct extraction of smoothed refl ectance, 

(iv) fi rst derivatives at 10-nm intervals, and subsequently, (v) 

second derivatives at 10-nm intervals. Th e resulting 10-nm 

average refl ectance, fi rst-derivative, and second-derivative spec-

tra were individually combined with the laboratory measured 

TPH contents. Th ese processed data were used to create pre-

diction models using partial least squares (PLS) regression and 

boosted regression tree (BRT) analyses.

Partial Least Squares: Model Calibration and Validation
Partial least squares regression was used to develop TPH pre-

diction models through spectral decomposition. Th is regres-

sion technique produces robust statistical models by utilizing 

all available soil refl ectance data (Vasques et al., 2009). In the 

present study, the original TPH contents of the samples were 

widely and non-normally distributed from 44.3 to 48,188 mg 

kg−1 of soil. Th erefore, the Box-Cox transformation (Box and 

Cox, 1964) was applied to the original TPH data and the origi-

nal data (λ = 1) was log
10

–transformed (λ = 0) to make it more 

normal (Fig. 1). Th us, PLS models were developed based on 

log
10

–transformed data that approximated a Gaussian distribu-

tion after stabilizing the variance.

A total of nine models were developed using the PLS algo-

rithm with Unscrambler 9.0 (CAMO Software, Woodbridge, 

NJ) to identify the eff ects of diff erent levels of soil processing on 

Table 1. Location, soil series, and classifi cation of soils evaluated for petroleum contamination using visible and near-infrared diff use refl ectance 
spectroscopy in Louisiana.

Site Parish Soil series Classifi cation†
Contaminated 

samples
Noncontaminated 

samples

Alpine Jeff erson Barbary Very-fi ne, smectitic, nonacid, hyperthermic Typic 
Hydraquents

6 6

Mississippi River 1 Plaquemine Carville Coarse-silty, mixed, superactive, calcareous, 
hyperthermic Fluventic Endoaquepts

1 1

Mississippi River 2 Saint Charles Cancienne Fine-silty, mixed, superactive, nonacid, 
hyperthermic Fluvaquentic Epiaquepts

1 1

Sabine Cameron Creole Fine, smectitic, nonacid, hyperthermic Typic 
Hydraquents

4 4

Sonat Vernon Ruston Fine-loamy, silicious, semiactive, thermic Typic 
Paleudults

6 6

Winn Dixie East Baton Rouge NA‡ Udarents 5 5

† Soil Survey Staff  (2005).

‡ NA, not applicable.
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VisNIR DRS prediction of TPH. In response to the variability 

of TPH distribution, 70% (32) of the samples were randomly 

selected to build the calibration or training dataset and the 

remaining 30% (14) were used for the validation or testing data-

set. Th e same split for the calibration, or training dataset, was 

used for all scans with leave-one-out cross-validation for model 

creation and selection for the number of latent factors. Models 

with as many as 10 factors were considered, and the optimal 

model was determined by choosing the number of factors with 

the fi rst local minimum in root mean square error of cross-valida-

tion (RMSE
cv
). Th e signifi cant wavelengths in the fi rst derivative 

model were plotted to identify what portions of the spectra were 

important for TPH predictions. Th e signifi cant wavelengths (p 

< 0.05) were selected by ‘R’ based on Tukey’s jackknife variance 

estimate. Th e coeffi  cient of determination (r2), root mean square 

error of prediction (RMSE
p
), relative percent diff erence (RPD), 

and bias were calculated for each model using the validation 

data. Th e statistical formulae of the aforementioned indicators 

followed Gauch et al. (2003), Brown et al. (2005), and Chang et 

al. (2005) in the following equations:

� �
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n n
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where SD is the standard deviation of measured TPH of the 

validation data and n is the number of validation data.

Boosted Regression Tree Analysis
Following Friedman’s Gradient Boosting Machine (Friedman, 

2001), boosted regression tree (BRT) analysis was also used. 

Th ese models have the ability to partition the data, creating more 

homogeneous classes by separating the target variables recursively 

(Vasques et al., 2009). Th e analysis was performed by Treenet 

2.0 (Steinberg et al., 2002) (Salford Systems, San Diego, CA), a 

multiple additive regression trees (MART)–based program. Th e 

same datasets used in PLS (70% calibration, 30% validation) 

were used for BRT with a maximum of 12 branches per node, 

to identify the higher order interactions. Log
10

–transformed data 

was used in boosting mode to have a fair comparison with the 

PLS models. Th e Huber-M loss criterion (Huber, 1981), which 

encompasses the best properties of least absolute deviation and 

least square deviation, was used. Initially, the maximum number 

of trees to be grown was set to 200. Th e number of trees was 

increased (>200) manually in two conditions: (i) up to a point 

when RMSE
p
 value stopped decreasing and (ii) when the opti-

mal number of trees was close enough to the maximum numbers 

of trees specifi ed beforehand.

Principal Component Analysis
Principal component analysis was performed in ‘R’ (R 

Development Core Team, 2004) to determine the ability of 

VisNIR DRS to distinguish contaminated versus noncontami-

nated soils qualitatively. Th e fi rst 15 principal components 

(PC) of fi eld-moist intact fi rst derivative spectra were used to 

produce a “Screeplot,” which was used to choose the number 

of PCs in the following supervised classifi cation. Fisher’s linear 

discriminant analysis (LDA) was used, assuming equal prior 

probability for each group. Additionally, pairwise scatterplots 

of the fi rst three PCs were produced to generate the ideas on 

how contaminated and reference soils were separated from 

each other in the spectral space.

Fig. 1. (a) Original (λ = 1) and (b) log-transformed (λ = 0) total petroleum hydrocarbon contents of the soil samples collected from six diff er-
ent parishes in Louisiana. Increase in Shapiro–Wilk statistic for log-transformed data revealed that the Box-Cox transformation normalized the 
original TPH data.
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Results and Discussion
Forty-six soil samples were analyzed for TPH and used as 

dependent variable for the PLS and BRT analyses. Calibration 

(n = 32) and validation (n = 14) datasets were selected ran-

domly; however, both had similar means (2.62 and 2.66 log
10

 

mg kg−1) as well as similar standard deviations (0.72 and 0.58 

log
10

 mg kg−1), respectively. Th e similarity among the valida-

tion and calibration data indicated that validation models 

should not be skewed. Among other soil properties, soil salin-

ity varied from 0 to 2.54 dS m−1. Substantial variability was 

observed for soil pH (5.20 to 7.85), clay content (160 to 600 

g kg−1), organic matter (9.3 to 130.5 g kg−1), and bulk min-

eral concentrations (% weight basis) from site to site (Table 

2). Th e Sabine site samples had the highest salinity, which was 

further supported by the elemental extraction analysis (7758 

mg kg−1 Na, on average). Extractable element concentrations 

diff ered between sites, as expected. No signifi cant relationship 

was identifi ed between organic matter, clay, and TPH content 

(both F-test and randomization test p-values were 0.11 using 

0.05 or 0.10 as signifi cance level).

Partial Least Squares Regression Models
Using the PLS regression algorithm for VisNIR DRS analysis, 

calibration models were developed using refl ectance, fi rst, and 

second derivatives. Th e calibration quality was evaluated by 

calibration r2. Despite the widespread use of the fi rst deriva-

tive of refl ectance spectra for VisNIR models to predict soil 

properties (Reeves et al., 1999; Brown et al., 2006; Waiser et 

al., 2007), refl ectance and fi rst-derivative-based calibration 

models of fi eld-moist intact scans performed similarly, whereas 

the second-derivative model was unsatisfactory (calibration r2 < 

0.15) (Table 3). Although the fi eld-moist intact fi rst-derivative 

model exhibited a slightly better RMSE
cv
 than did the fi eld-

moist intact refl ectance model, the main advantage of the fi rst 

derivative was fewer latent factors (fi ve) compared with the 

refl ectance-based model (eight latent factors) to prevent over-

fi tting. Results indicated a continuous reduction of latent fac-

tors as the model changed from refl ectance to fi rst and second 

derivatives. Th is reduction of principal components (latent 

factors using PLS) could be due to the use of higher-degree 

spectrally preprocessed (fi rst and second derivatives) data to 

refrain from viewing geometry eff ects (Demetriades-Shah et 

al., 1990). Brown et al. (2006) reported the advantage of using 

the PLS regression to surmount the inherent dimensionality of 

spectral data. When all calibration models were compared, the 

fi eld-moist intact and air-dried ground models outperformed 

the air-dried intact models.

Prediction accuracies of the aforementioned calibration 

models were evaluated by incorporating the separate valida-

tion sets where only the refl ectance and fi rst derivative were 

taken into consideration (Fig. 2). According to Chang et al. 

Table 2. Soil pH, quantitative mineral abundance (% weight basis), clay (g kg−1), and organic matter (g kg−1) of soils evaluated for petroleum contami-
nation using visible and near-infrared diff use refl ectance spectroscopy in Louisiana.

Site pH
 Minerals 

Clay Organic matter
Quartz K-feldspar Plagioclase Anhydrite Clay minerals

—————————————————— % —————————————————— ——— g kg−1 ———

Alpine 7.66 87.7 4.3 6.0 – 1.7 224.9 9.3

Mississippi River 1 7.85 82.1 3.8 6.0 – 8.0 206.5 47.9

Mississippi River 2 7.20 73.0 – – – 6.0 160.0 43.0

Sabine 6.46 39.8 2.3 3.5 1.0 53.3 600.0 130.5

Sonat 5.20 97.8 0.7 0.1 – 1.3 229.7 20.7

Winn Dixie 7.01 72.3 3.6 6.5 – 17.4 335.2 126.6

Table 3. Calibration and validation statistics for partial least square regression models of soils evaluated for petroleum contamination using visible 
and near-infrared diff use refl ectance spectroscopy in Louisiana.

Model 
Latent 
factors

Calibration r2 RMSE
cv

†
(log

10
 mg kg−1)

Validation r2 RMSE
p
‡

(log
10

 mg kg−1)
RPD§

Bias
(log

10
 mg kg−1)

Field-moist intact

Refl ectance 8 0.79 0.323 0.64 0.353 1.64 −0.101

First derivative 5 0.81 0.311 0.64 0.341 1.70 −0.054

Second derivative – Unsatisfactory¶ Unsatisfactory – – – –

Air-dried intact

Refl ectance 5 0.57 0.436 0.63 0.216 1.94 −0.07

First derivative 4 0.64 0.393 0.57 0.335 1.25 −0.20

Second derivative – Unsatisfactory Unsatisfactory – – – –

Air-dried ground

Refl ectance 5 0.75 0.346 0.48 0.429 1.35 −0.14

First derivative 5 0.81 0.303 0.42 0.547 1.06 0.15

Second derivative 4 0.79 0.312 – – – –

†RMSE
cv

, root mean square error of cross-validation.

‡ RMSE
p
, root mean square error of prediction.

§ RPD, relative percent diff erence.

¶ Model performance was unsatisfactory based on very low calibration r2 (<0.15).
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(2001), accuracy and stability of spec-

troscopic models should be based on 

their RPD statistics. Stable and accu-

rate predictive models showed a RPD 

> 2.0, fair models with potential for 

prediction improvement had a RPD 

value between 1.4 and 2.0, whereas 

models with RPD values < 1.4 were 

categorized as poor predictive models. 

Th erefore, the present study consid-

ered validation r2 and RPD as the 

main criteria for comparing model 

performances, but other error sta-

tistics were provided, including the 

RMSE
p
 and bias (Table 3). Th e fi eld-

moist intact fi rst-derivative model 

was superior to the more biased 

fi eld-moist intact refl ectance model, 

with a slightly higher RPD value of 

1.70 although the validation r2 value 

for both was 0.64. However, both 

in terms of validation r2 and RPD, 

the air-dried intact refl ectance and 

air-dried ground refl ectance models 

always performed better than their 

fi rst-derivative models. Th e air-dried 

ground scan showed the largest pre-

diction error (0.547 log
10

 mg kg−1) 

with dispersion about the validation 

subset. Moreover, in the refl ectance 

and fi rst-derivative models, the air-

dried ground scan showed a very low 

RPD (1.34 and 1.06, respectively). It 

is worth noting that the prediction 

accuracy of the air-dried intact refl ec-

tance model (validation r2 = 0.63) was 

comparable to the fi eld-moist intact 

scan models (validation r2 = 0.64 in 

the refl ectance and fi rst-derivative 

models). Additionally, the air-dried 

intact refl ectance model showed the 

highest RPD (1.94).

Boosted Regression Tree Analysis
Model statistics for the BRT analy-

sis, summarized in Table 4, showed 

much higher validation RMSE
p
 com-

pared with the PLS models. Field-

moist intact models included most optimal trees. Notably, the 

numbers of predictors increased as fi rst-derivative data were 

used. Perhaps the fi rst-derivative models used more predic-

tors because of multiple interactions with linear and nonlinear 

correlations, as reported by Brown et al. (2006). In terms of 

validation r2 and RPD, BRT did not perform as well as PLS. 

However, the fi eld-moist intact fi rst-derivative model exhibited 

the highest predictability (RPD = 1.49), which somewhat con-

fi rmed the PLS trend. Considering the calibration quality of 

fi eld-moist intact scans, the fi rst-derivative calibration model 

generated a better calibration r2 (0.85) than did the refl ectance 

model (0.38), whereas in the air-dried intact scan, the BRT 

refl ectance model did not perform satisfactorily (calibration r2 

< 0.15).

Improving BRT predictive performance by increasing the 

number of important predictors from refl ectance to fi rst-

derivative-based models was consistent with prior knowledge 

of BRT model performance (Snelder et al., 2009). However, 

in the case of the fi eld-moist intact scan, the refl ectance model 

exhibited more optimum trees (507) compared with the fi rst-

derivative model (500). Given that tree-based models require 

large datasets for robust model predictions (Vasques et al., 

Fig. 2. Predicted vs. measured total petroleum hydrocarbon (TPH) content of the validation data set 
for (a) fi eld-moist intact refl ectance, b) fi eld-moist intact fi rst derivative, (c) air-dried intact refl ec-
tance, (d) air-dried intact fi rst derivative, (e) air-dried ground refl ectance, and (f) air-dried ground fi rst 
derivative models for soils from Louisiana. The triangles represent validation samples. The dashed 
line and dark line represent the 1:1 line and the prediction trend, respectively.
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2009), the small dataset was most probably the crucial factor 

for BRT underperformance as compared to PLS models.

Underperformances of Air-Dried Models
Results indicated that for the PLS and BRT models (or tech-

niques), the fi rst-derivative model of the fi eld-moist intact 

scan outperformed the air-dried intact and air-dried ground 

models, respectively (except in the air-dried intact refl ectance 

PLS model). Soil refl ectance is an integrated property that 

depends on various soil parameters like soil moisture, texture, 

and organic matter content (Morgan et al., 2009). Th e air-

dried ground models were expected to perform better due to 

the removal of some water signals (due to air drying) that could 

mask the spectral signatures of other important predictors (soil 

properties). Additionally, smaller, more homogeneous 

particle sizes are known to produce higher absorption 

peaks because of greater surface area for absorption.

To study the possible reasons for the air-dried mod-

el’s underperformance, air-dried intact subsamples (10 

samples) from the whole range of samples (46) were 

carefully selected so that each would represent a spe-

cifi c range of TPH. Th ese subsamples were further ana-

lyzed for TPH in the same commercial laboratory using 

method 5520 D Soxhlet extraction and method 5520 

F for quantifi cation (Clesceri et al., 1998). Results con-

fi rm that TPH contents were signifi cantly (sign test p 

value = 0.001) lower in most of the subsamples reana-

lyzed for TPH, compared with the primary TPH con-

tents as a result of drying (Fig. 3). Similar losses in TPH 

contents were reported as a result of varying degrees 

of weathering where volatilization, oxidation, reduc-

tion, and microbial metabolism were the prime factors 

(Whiteside, 1993; Malley et al., 1999).

In Fig. 4, the regression coeffi  cients (black bars) of 

the fi rst-derivative PLS model of each scan and those 

that were signifi cant (red, thick bar, p < 0.05) based 

on Tukey’s jackknife variance estimate were plotted. 

Notably, the number and intensities of signifi cant 

wavelengths changed in air-dried intact and air-dried 

ground scans compared with fi eld-moist intact scans. 

Th e change in numbers and intensities were apparent, 

specifi cally in the 1600- to 1850- and ∼2250- to 2350-

nm regions, which could contain the 1725-nm (two-stretch) 

and 2298-nm (stretch+bend) crude oil spectral signatures as 

reported by Mullins et al. (1992). Moreover, typical 1450- 

and 1940-nm spectral signatures for water were not highly 

signifi cant. Th is trend was somewhat consistent with previous 

VisNIR DRS work by Waiser et al. (2007), where the amount 

of water in the soil samples did not alter the predication accu-

racy of the validation models.

Soil moisture loss due to air drying may have some eff ects 

on decreasing predictability (decreasing validation r2 and 

RPD) in the fi rst-derivative models of fi eld-moist intact to 

air-dried ground scans, but random loss of TPH in the air-

dried samples was likely the principal contributor for poor 

performance of the air-dried intact and air-dried ground 

Table 4. Calibration and validation statistics for boosted regression tree models of soils evaluated for petroleum contamination using visible and 
near-infrared diff use refl ectance spectroscopy in Louisiana.

Model
Important 
predictors

Calibration r2 Validation r2 RMSE
p
†

(log
10

 mg kg−1)
RPD‡ Optimal trees

Field-moist intact

Refl ectance 11 0.38 0.42 0.420 1.38 507

First derivative 13 0.85 0.52 0.387 1.49 500

Air-dried intact

Refl ectance – Unsatisfactory§ – – – –

First derivative 7 0.68 0.45 0.589 0.98 179

Air-dried ground

Refl ectance 5 0.41 0.39 0.437 1.32 75

First derivative 12 0.47 0.42 0.392 1.47 204

† RMSE
p
, root mean square error of prediction.

‡ RPD, relative percent diff erence.

§ Model performance was unsatisfactory based on very low calibration r2 (<0.15).

Fig. 3. Total petroleum hydrocarbon (TPH) contents (mg kg−1) of 10 selected 
subsamples for soils from Louisiana. The black bars and gray bars represent TPH 
contents of subsamples before and after air drying, respectively.
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models. Notably, due to random loss of TPH on air drying, 

the air-dried model statistics weakened, and the fi eld-moist 

intact fi rst-derivative PLS model was selected as the best 

among all the models investigated. While the RPD was not as 

high as that obtained for other constituents of soils (Malley, 

1998), the results were encouraging, considering the eff ects of 

weathering processes on petroleum hydrocarbon. Moreover, 

it should be remembered that TPH does not have a fi xed 

composition and is a term used to express a large family of 

several hundred chemical compounds originating from crude 

oil. Nonetheless, the corresponding RPD of 1.70 also indi-

cated that there is suffi  cient scope for model enhancement 

(Chang et al., 2001). Malley et al. (1999) reported compa-

rable statistics for near-infrared TPH predictions (validation 

r2 of 0.68 and 0.72).

Principal Component Analysis
Th e “Screeplot” of the fi rst 15 PCs of fi eld-moist intact 

fi rst derivative spectra was plotted in Fig. 5. Th e fi rst PC 

accounted for 61% of the variance, whereas the second and 

third PCs accounted for 16 and 11% of the variance, respec-

tively. Th us, the fi rst three PCs accounted for 88% of the 

total variance. It was obvious that the selection of three or 

six PC scores for LDA were appropriate considering their 

percent variance in each PC.

Pairwise principal component plots (i.e., PC1 vs. PC2, PC2 

vs. PC3, and PC1 vs. PC3) of the fi eld-moist intact fi rst deriva-

tive spectra were plotted in Fig. 6. Th e circles and squares repre-

sent contaminated and noncontaminated samples, respectively.

Th e supervised classifi cation results of contaminated 

versus noncontaminated soils using the Fisher’s LDA method 

were presented in Table 5. Th e fi rst three and six PC scores 

of the fi eld-moist intact fi rst-derivative spectra were used as 

the explanatory variable. Th e classifi cation results were quite 

promising. Using three PCs, the overall classifi cation accuracy 

was 76% (35 out of 46 were correct); and when six PCs were 

used, the overall accuracy was 91%.

Th us, PCA results indicated that the soil spectra were highly 

correlated and a three-dimensional representation could cap-

ture the intrinsic data structure fairly well. Contaminated and 

noncontaminated samples could be reasonably separated by 

the fi rst three PCs or fi rst six PCs, which was an indication 

that the spectral method may be useful for distinguishing con-

tamination qualitatively.

Conclusions
Th e present feasibility study with varying degrees of TPH 

contamination indicated that petroleum hydrocarbon could 

be predicted from the soil spectra in the visible–near-infra-

red range without any prior sample preparation. Among all 

models investigated, TPH was estimated by the fi eld-moist 

intact fi rst-derivative PLS model with greatest accuracy. In 

validation mode, this model explained 64% of the variabil-

ity of the validation set. Nevertheless, random loss of TPH 

due to air drying was a major constraint responsible for the 

poor predictive abilities of air-dried models. Furthermore, 

the use of a small sample set in the BRT failed to produce 

robust models with good generalization capacity. It is note-

Fig. 4. Regression coeffi  cients (black) of the fi rst-derivative partial least squares model of each visible and near-infrared diff use refl ectance spec-
troscopy scan of contaminated soils from Louisiana. The magnitude of the regression coeffi  cient at each wavelength is proportional to the height 
of the bar. Signifi cant wavebands (p < 0.05) as indicated by Tukey’s jackknife variance estimate procedure are shown as thick, red bars. All plots are 
on the same x axis. Values of all the y axes are not shown, but all y axes are on the same scale.
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worthy that no signifi cant eff ect of variable water contents 

was observed.

A fair RPD value (1.70) for fi eld-moist intact fi rst-deriva-

tive PLS model identifi ed the scope for model improvement. 

In particular, continued research is recommended with a 

larger sample set along with other approaches such as wave-

let analysis, random forest, support vector, and spatial vari-

ability analysis evaluating VisNIR DRS prediction effi  cacy 

on a larger diversity of soils and a wider assortment of soil 

properties.

Summarily, provided that soil petroleum contamination is 

costly and time consuming to estimate, the prospect of using 

VisNIR DRS as a proximal soil sensor of petroleum contami-

nation appears promising. If specifi c wavelengths related to 

various hydrocarbon signatures can be more precisely defi ned, 

remote sensing of hydrocarbon contamination plumes may be 

possible from airborne or satellite platforms.
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