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Identification of the type of disease pattern and spread in a field is critical in epidemiological investigations
of plant diseases. For example, an aggregation pattern of infected plants suggests that, at the time of
observation, the pathogen is spreading from a proximal source. Conversely, a random pattern suggests a
lack of spread from a proximal source. Most of the existing methods of spatial pattern analysis work with
only one variety of plant at each location and with uniform genetic disease susceptibility across the field.
Pecan orchards, used in this study, and other orchard crops are usually composed of different varieties with
different levels of susceptibility to disease. A new measure is suggested to characterize the spatio-temporal
transmission patterns of disease; a Monte Carlo test procedure is proposed to test whether the transmission
of disease is random or aggregated. In addition, we propose a mixed-transmission model, which allows us
to quantify the degree of aggregation effect.

Keywords: hypothesis testing; lattice system; Monte Carlo; spatial; spatio-temporal analysis

1. Introduction

Identification of the type of disease pattern and spread in a field is critical in epidemiological
investigations [3]. Information about spatial attributes of plant pathogens and disease in plant
populations provides insight into disease progress and the determinants of disease spread. For
example, a random pattern of infected plants suggests that, at the time of observation, pathogen
movement is not limited to plants near already infected plants. Conversely, aggregations (clusters)
of infected plants suggest that the pathogen is spreading largely from infected plants to spatially
close plants within a field.
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2 B. Li et al.

Spatio-temporal analysis of disease spread in agricultural crops is, for the most part, performed
in fields in which the variety of plant in question is consistent throughout the planting (mono-
culture). A consistency in variety, and thus, a consistency in disease susceptibility to a particular
pathogen, allows for the use of point-pattern or geostatistical approaches for the analysis of dis-
ease spread within the field. In some crops, however, different varieties of a plant may be grown
in the same planting intermixed within rows and across rows, as is common with certain orchard
crops. This type of arrangement, for example, is typical of pecan (Carya illinoinensis) orchards.

The objective of this study was to develop a method that can be used to accurately determine
the pattern of disease movement within a planting of mixed varieties with differential disease
susceptibilities. The remainder of the article is organized as follows. Section 2 describes the
pecan data set and the primary question in this study. Section 3 briefly describes the current
methods on analysis of disease patterns and describes a major limitation which prevents us from
using them. Section 4 presents a Monte Carlo test based on a new test statistic. Section 5 extends
the method to a mixed-transmission model, which allows us to quantify the degree of aggregation
effect. Section 6 concludes the article.

2. Data description

For this paper, the term variety is used to refer to pecan selections of a specific genetic type.
Because pecan is a dichogamous, cross-pollinated tree in order to maintain the genetic character
of a variety, it is necessary to asexually propagate (clone) pecan trees through grafting. Grafting
involves vegetatively attaching tissue in the form of a scion, selected from the desired variety,
onto a pecan root source (rootstock). The tree that develops from the scion will thus be of the
same genetic type (variety) as the scion. Because they are clonally produced, trees grown by
grafting will produce nuts that are identical to the source of the scion, which is a commercially
valuable trait.

The orchard where the data were collected was planted in 1987. It was designed to include 20
variety/rootstock combinations (three varieties and five rootstocks) in 16 (4 by 4) blocks. Each
block had 20 trees (4 by 5) with one in each variety/rootstock combination and one non-grafted
tree of each rootstock. Each of the three pecan varieties varied in susceptibility to pecan bacterial
leaf scorch (PBLS) disease [14]. The trees were spaced 9.14 m within rows and 12.19 m across
rows. The data were collected from 2004 to 2006. Infection of each tree was evaluated visually
for disease symptoms. When symptoms were identified, infection was verified by serological
assay for the pathogen. Only trees that gave a positive serological test for the plant pathogen were
recorded as infected. For this study, one variety of high disease susceptibility was evaluated and is
hence referred to as susceptible variety “A” (SVA). Even though spacing within rows and across
rows was constant, the distance between trees of SVA was variable because of the intermixing of
the two other varieties, plus the non-grafted rootstock trees, and the randomized complete block
design of the orchard. Because rootstock type did not have any effect on disease susceptibility
of the varieties grafted to them, this paper considers all SVA trees in the orchard regardless of
rootstock.

PBLS is caused by the plant pathogenic bacterium Xylella fastidiosa [15], which causes a wide
range of economically important plant diseases, including diseases of grape, peach, plum, almond,
pecan, oleander, oak, maple, elm and coffee [9]. PBLS causes defoliation in pecan throughout the
summer and fall months. Severely infected trees can have about 60% more defoliation at the end
of the year than non-infected trees, and a kernel weight loss of near 16% [15]. It is known that
X. fastidiosa can be transmitted in two ways in pecan: (1) graft-transmission through scions and
rootstock and (2) insect vectoring [16]. The pathogen transmission method involved in disease
spread in the work discussed here was apparently through insect vectoring, although the specific
species of insects involved were not identified. Primarily, we would like to know if there is an
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indication of aggregation of infected SVA trees near the previously infected trees, or if disease
spread in this mixed variety orchard largely fits a random pattern within the SVA trees.

3. A brief review of existing methods

Various methods of spatial pattern analysis are used to characterize the spatial position of diseased
plants within fields. Most can be categorized as either point-pattern or geostatistical approaches.

The point-pattern approach aims to quantify the pattern of diseased individuals within sampling
units by describing each observation as a discrete ‘point’ in the landscape [17]. It includes doublet
analysis [18,19], ordinary runs analysis [6,7], binomial dispersion index [10], Ripley’s K function
[13], 2-D distance class model [8], etc. In these methods, the null hypothesis is usually that the
infected plants are randomly distributed. A key assumption under the null hypothesis is that each
observation should have the same probability of being infected.

A major limitation of point-pattern methods is that they fail to recognize the degree of depen-
dency among neighboring observations. On the other hand, geostatistical methods take into
consideration both the random and systematic characteristics of spatially distributed variables
and quantify spatial dependence by measuring the variation among samples separated by the
same distance. Among these are the semi-variogram approach [4,5] and the spatio-temporal auto-
correlation analysis [11,12], etc. One of the fundamental assumptions of geo-statistical methods
is that the mean measure of interest is constant with respect to location, such as the probability
of being infected.

The methods listed above are concerned with only one variety of plant at each location. Thus,
there is no variation in disease susceptibility at a given location. The pecan orchard used in
this study, however, is composed of different varieties with different levels of susceptibility to
the disease.

The auto-logistic models proposed by [1,2] can be applied to test the null hypothesis that the
infected trees are randomly distributed with more than one variety of plants at each location and
with non-uniform disease susceptibility across the field.

4. A Monte Carlo test for randomness

Based on the primary question posed in Section 2, we consider the following null and alternative
hypotheses.

Null hypothesis: Infected SVA trees are randomly distributed.
Alternative hypothesis: Infected SVA trees exhibit an aggregation pattern.
First, we propose a new test statistic that characterizes the spatial pattern of PBLS. Then, a

Monte Carlo test procedure is described and applied to the data set together with the test result
and conclusions. Finally, we examine the properties of the test through a simulation study with a
known underlying data generation mechanism.

4.1 Test statistic

A link is defined as two adjacent diseased trees in any direction. It starts from a previously infected
tree (of any variety), and ends at a newly infected SVA tree. As an illustration, the distribution of
PBLS in 2005 is shown in Figure 1. The links created in 2005 are shown as arrows. For example,
there are two links that start from a previously infected non-SVA (2, 12) and end at two newly
infected SVAs (2, 11; 3, 12). The empty spots in Figure 1 are the trees which died before 2005.

Let Ts(P, N) be the number of links generated in year s with two arguments: P is the index set
of previously infected trees, and N is the index set of newly infected SVAs in year s. For example
in 2005, T 2005(P, N)=9 (Figure 1). Notice that P includes all the previously infected non-SVAs
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Figure 1. PBLS distribution plot in 2005. Black lower (upper) case ‘a’ (‘A’) represents SVA infected before
(in) 2005. Grey lower case ‘a’ is SVA not infected in 2005. Black (grey) ‘o’represents non-SVA (not) infected
before 2005. Each arrow represents a link generated in 2005.

(black ‘o’s in Figure 1) and SVAs (black and lower case ‘a’s), where N includes all the SVAs
infected in 2005 (black and upper case ‘A’s).

The total number of links generated from 2004 to 2006, i.e. T∗ =T 2004 +T 2005 +T 2006, is used
as the test statistic for the test of randomness (against aggregation). Note that the value of Ts will
be a large number if there is an aggregation pattern of infected SVAs.

4.2 Test procedure

The data consist of different varieties of trees with different susceptibility to PBLS. Therefore,
the exact distribution of the test statistic T∗ under the null hypothesis is difficult to determine.
Hence, we propose to use a Monte Carlo technique to generate a large number of artificial data
sets under the null hypothesis. For each generated data set, the corresponding T∗ is calculated.
The histogram of T∗s from all generated data sets can be used as an empirical approximation of
the underlying distribution of the test statistic T∗ under the null hypothesis. Let C be the index
sets of all SVAs and Ds be the index set of non-SVAs infected in year s. Let P0 be the index set of
all trees (both SVAs and non-SVAs) infected before 2004. The details of the simulation procedure
are as follows.

Algorithm 1 Monte Carlo procedure

(1) Initialize the set P=P0.
(2) (a) Randomly select eight non-infected SVAs (without replacement) from C to P as N;

(b) calculate T2004(P, N); (c) update P ← P ∪ D2004 ∪ N .
(3) (a) Randomly select 22 non-infected SVAs (without replacement) from C to P as N;

(b) calculate T2005(P, N); (c) update P ← P ∪ D2005 ∪ N .
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Figure 2. The empirical distribution (histogram) of T∗ based on 10,000 runs of simulations.

(4) (a) Randomly select 10 non-infected SVAs (without replacement) from C to P as N;
(b) calculate T2006(P, N).

(5) T∗ =T2004 +T2005 +T2006.

The minus operator is the (asymmetric) set difference operator, i.e. X − Y = {x ∈ X|x /∈ X ∩
Y }. Namely, X −Y is the set of all elements from X but not in Y. For example, if X ={1, 2, 3} and
Y ={2}, then X −Y ={1, 3}. Notice that 8/22/10 are the observed numbers of SVAs infected in
2004/2005/2006, respectively. The empirical distribution of the test statistic T∗, based on 10,000
runs of simulations described above, is shown in Figure 2. The observed total number of links
created in 2004–2006 from the original data set T ∗

obs is equal to 26.
Note that in this study, we assume that non-randomness can only be caused by an excessive

aggregation. Hence, the test is one-sided. The p-value, which is the proportion of T∗s that are
greater than or equal to 26, is equal to 0.1928. If we fix the significance level at 0.05, we fail to
reject the null hypothesis that the infected SVAs are randomly distributed. Based on the empirical
distribution shown in Figure 2, the rejection region (at significance level 0.05) is {T∗ ≥29}. This
is because that proportions of T∗ ≥ 29 and T∗ ≥ 28 are 0.0435 and 0.0754, respectively.

4.3 Simulation studies

The purpose of the simulation study is to investigate the type I error and the power of the proposed
test under various situations. The simulated data are based on the 50 by 50 lattice system. Each
point can be viewed as a tree (i.e. there are 50×50=2500 trees in the simulated orchard).Among
all 2500 trees, 25% of them are SVA while the rest are non-SVA trees. The mixing of SVA and
non-SVA trees is random. Like the pecan study, the simulated data have 3 years infection data
after the initialization.

The initial infected SVAs and non-SVAs are randomly selected from the binomial process with
p=0.09 and 0.01, respectively. These probabilities are approximately equal to the proportion of
infected SVA and non-SVA trees in the pecan study.
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6 B. Li et al.

Table 1. Results for the simulation study.

pS
1 pS

2 pN
1 pN

2 Proposed Auto-logistic

Case 1 0.20 0.00 0.04 0.00 1.00 1.00
Case 2 0.20 0.05 0.04 0.01 1.00 1.00
Case 3 0.20 0.10 0.04 0.02 0.60 0.46
Case 4 0.20 0.15 0.04 0.03 0.16 0.12
Case 5 0.20 0.20 0.04 0.04 0.04 0.06

After initialization, the uninfected SVA trees adjacent to or not adjacent to infected trees have
a probability of pS

1 or pS
2 of getting infected, respectively. For the uninfected non-SVA trees, trees

adjacent to or not adjacent to infected trees have a probability of pN
1 or pN

2 of getting infected,
respectively. Note that if pS

1 = pS
2 and pN

1 = pN
2 , the disease transmission pattern is random, while

if pS
2 = 0 and pN

2 = 0, we have an aggregated disease transmission pattern.
Five different transmission patterns (cases 1–5) are considered. For each case, 50 simulated data

sets were generated. Table 1 shows the proportion of rejection of the null hypothesis at α = 0.05,
for the proposed method and the auto-logistic model [1,2] under various situations based on 50
replications. Note that in case 1, the disease can only be transmitted from adjacent previously
infected trees, while in case 5 the disease is randomly transmitted. In cases 2–4, the disease
transmission pattern is mixed while the disease transmission pattern becomes less aggregated and
more random. We see that in both cases 1 and 2, the powers of both the proposed test and the auto-
logistic model to detect the aggregation pattern are 100%. In case 5, the type I error of the proposed
test is 0.04, which is close to the pre-defined 5% level. In cases 3 and 4, the power of the proposed
test is 0.60 and 0.16, respectively, which is slightly higher than the auto-logistic approach.

5. Mixed-transmission model

Spread of PBLS may be random within an orchard or through proximal spread from point sources
creating aggregates. Hence, it is useful to develop a mixed-transmission model, which is able
to account for both aggregation and random disease patterns simultaneously. Let pagg be the
proportion of infected SVAs in an aggregation pattern. Then, to carry out the simulation based on
the mixed-transmission model, we only need to modify the part a’s in Steps 2–4 of the simulation
procedure in Section 4.2 as follows. Given pagg, a Bernoulli trial (with probability pagg of being
a ‘success’, otherwise a ‘failure’) is executed before selecting a non-infected SVA. If ‘success’,
we randomly pick a non-infected SVA which is adjacent to a previously infected tree. Otherwise,
we randomly pick a non-infected SVA (without the location constraint). Within a step, if a non-
infected SVA is selected twice, then we will repeat the selection until a new non-infected SVA
is selected.

Based on the mixed-transmission model, the null and alternative hypotheses in Section 4 can
be rewritten as H0 : pagg =0 versus H1 : pagg =1. Since pagg can be any real number between 0
and 1, the simple alternative hypothesis is changed to a composite hypothesis, i.e. H1 : pagg > 0.
Note that for a fixed significance level, for instance α = 0.05, the conclusion of the test (with
composite H1) is the same as the one with the simple H1, because the null hypothesis does not
change. However, by using the mixed-transmission model, we are able to (1) quantify the strength
of the aggregation effect or local dependence where other point-pattern methods fail to estimate
pagg; and (2) visualize the gradual change of power as pagg changes.

We simulate the mixed-transmission model at pagg ranges from 0 to 1 with a step length 0.05
(pagg ∈ {0, 0.05, . . . , 0.95, 1}). For each value of pagg, 10,000 runs of simulations were carried out.
The power is the proportion of T∗s that are greater than or equal to 29 (the rejection region is
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Figure 3. The power curve (left) and likelihood function (right).

based on the empirical distribution of T∗ at pagg =0). To estimate pagg, the maximum-likelihood
estimate (MLE) is used. The likelihood function is defined as the conditional probability of having
26 links (T ∗

obs = 26) given the value of pagg. The left panel of Figure 3 shows the power curve that
is monotonically increasing. We see that the power is over 0.8 (0.99) when pagg is above 0.5 (0.7).
The right panel of Figure 3 shows the likelihood function. We see that the likelihood function
reaches its global maximum when pagg is 0.2, i.e. the MLE of pagg, with approximately 12% of
the T∗s being equal to 26.

Sensitivity analysis is the study of how model output varies with changes in model inputs.
An important parameter in the study is the number of runs in the Monte Carlo simulation. To
check whether 10,000 runs is sufficient, we repeat the experiments three times. Figure 4 shows
the empirical distributions of T∗ under the null hypothesis (left) and the likelihood functions
(right) in the three additional (grey) and original (black) experiments. We see that the empirical
distributions are close to each other in all four experiments. The p-values in the three repeated
experiments are 0.1952, 0.1790 and 0.1846. Similarly, the likelihood functions are also clustered
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Figure 4. The empirical distributions of T∗ under the null hypothesis (left) and the likelihood functions
(right) in three repeated (grey) and original (black) experiments.
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8 B. Li et al.

together. However, we have a split vote in MLE (two are 0.20 and two are 0.25). This is probably
due to the coarse grid on pagg; and the underlying pagg may fall between 0.20 and 0.25.

6. Conclusion

Characterization of the spatial pattern of diseased plants can facilitate the determination of the
influence of biological and environmental factors on disease dispersal processes. In this paper,
we proposed a Monte Carlo method that allows us to (1) test for randomness of infected plants
against aggregation patterns; and (2) quantify the degree of dependence among neighboring
plants. Unlike most of the existing methods, it can be applied to data with mixed varieties with
different disease susceptibility, non-uniform plant spacing and even missing values. In this study,
since we are only interested in testing whether the PBLS disease transmission pattern among
SVA is random or aggregated, we did not jointly model and test all the varieties. However, the
proposed test procedure can be directly extended to jointly test both SVA and non-SVA trees. The
proposed method potentially can be applied to other studies in a broad range of epidemiology and
sociology problems. Sometimes, we are interested in the disease pattern in one or more particular
directions, e.g. diagonal direction. Then, in our approach, we only need to modify the definition
of link. Namely, the link can only end at adjacent newly infected SVAs in the diagonal direction
of a previously infected tree.
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