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In general, linearity is assumed to hold in multivariate calibration, but this may not be true. Penalized signal
regression can be extended with an explicit link function between linear prediction and response, in the
spirit of single-index models. Like the vector of calibration coefficients, the unknown link function is being
estimated by P-splines. Application to simulations and three data sets shows that if a non-linearity is present,
it will be picked up by the model and prediction will be improved.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate calibration (MVC) has seen many new developments
in recent years. The beaten path of ridge regression, PLS (partial least
squares), and PCR (principal components regression) has been left by
adventurous souls in search of new ways of approaching an old
problem. Two of us (BM and PE) have pioneered the use of
smoothness penalties in one and two dimensions [13,14,7], which
was recently improved by PLS-derived variable weighting [12]. Others
have successfully explored support vector machines (SVM) [15] and
genetic algorithms (GA) [17]. In the race to improve MVC, some data
sets have become the test bench for comparing methods, e.g. the
Tecator data (with responses water, fat, and protein) and the Cargill
corn study (with responses moisture, oil, protein, and starch), among
others. The data sets usually have near-infrared (NIR) spectra for
regressors and are discussed in more detail in the coming sections.

From statistical perspective, MVC is a signal regression problem
with a rich set of ordered regressors, often equally-spaced digitizations
of a curve. In the chemometric community, the regressor “signals” are
usually optical spectra, and the response is often concentration of a
chemical analyte. In this paper, we refer to such as the MVC problem.

The central idea of advancedMVCs is the use of the so-called kernel.
The kernel replaces the familiar measures of distance and correlation,
which stem from linear algebra, by non-linear functions. The idea is
that a non-linear kernel in the linear space of the observations
corresponds to a linear regression or discrimination function in a
higher dimensional space. The higher-dimensional space is never
explicitly constructed: it is implied by the kernel function.

We conjectured that the surprising power of the SVM inMVC should
be explained by the fact that it implicitly deals with non-linearities.
Unfortunately, it doesnot tell usanythingabout the characterof thenon-
linearities. A method that explicitly models non-linear behavior would
provide more insight. In fact, one could view MVC as using an identity
link function, where such a model may be (slightly) misspecified. In
effect, there may exist a true, but “missing link” function (that is
nonlinear and monotone) [4]. In this paper we propose such a model
that can estimate the “missing link” and improve external prediction.

Our starting point is penalized signal regression (PSR), where the
prediction ŷi of a concentration is expressed through E(ŷi)=µi=∑ j xij
βj, where the vector xi is the measured spectrum, and the vector of
coefficients β is forced to be smooth [13]. We introduce a small
modification: µi= f(∑ j xij βj), where f(·) is a smooth (and possibly
monotone) function, to be estimated from the data. This model is
known as “projection pursuit” [10], generally without smoothness
demands on β. James and Silverman [11] generalized projection
pursuit though functional adaptivemodel estimation. Bai et al. [1] have
explored penalized single-index models with longitudinal data. To our
knowledge, projection pursuit has never been applied to MVC. We show
that it gives excellent predictions, highly competitive to, and sometimes
better than, the SVM. Moreover, the function f(·) explicitly shows the
type and the amount of the non-linearity.

2. Benchmark datasets

2.1. Tecator data

The data consists of 215 near-infrared absorbance spectra of meat
samples, recorded on a Tecator Infratec Food Analyzer. Each observa-
tion consists of a 100-channel absorbance spectrum in the wave
length range 850–1050 nm, contents of water, fat and protein. One
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goal is to predict the fat content of a meat sample on the basis of its
near infrared (NIR) absorbance spectrum. The dataset are split in a
training/monitoring/testing set of 129/43/43 samples. Tecator data,
which was originally used by Borggaardand Thodberg [2], is available
at http://lib.stat.cmu.edu/datasets/tecator. Fig. 1 shows 15 examples
in Tecator data. The level of greyness for each sample is proportional to
its fat content.

2.2. Cargill corn study

The second data set was taken from the Cargill study and contains
80 NIR spectra of corn samples measured on three different NIR
spectrometers (referred to as: m5, mp5 andmp6) for the prediction of
moisture, oil, protein and starch content, respectively. The spectra
weremeasured from 1100 to 2498 nm at a spectral resolution of 2 nm.
The data can be obtained at http://software.eigenvector.com/Data/
Corn/index.html. Fig. 2 shows 30 examples in corn data and
corresponding moisture, oil, protein and starch content. The corn
data are split in a training/testing set, each contains 39 samples.

3. Recap: P-spline signal regression

Penalized signal regression (PSR) directly uses the ordinal
structure of the regressors (e.g. along wavelength) and intentionally

forces the regression coefficients to be smooth along the order index.
A standard regression approach is

μ = E Yð Þ = β0 + Xm×pβp×1; ð1Þ

where Y is the realization of the response (e.g. ethanol, water, or
isopropanol), X is the signal regressor matrix, β0 is the unknown
scalar intercept, and β is the unknown signal coefficient vector. In
chemometric applications, this regression problem is inherently ill-
posed since p≫m.

In short, PSR achieves smoothness in β through dimension
reduction by first projecting β onto a known (n dimensional) basis
of smooth functions, i.e. βp×1=Bp×nαn×1. A B-splines basis is used
because it is easy to compute and has excellent numerical properties
[3,5]. The basis B uses equally-spaced knots and is rich enough to
provide more flexibility than needed. The vector α is the unknown
vector of basis coefficients. We stress that PSR does not smooth the
spectra, but rather assumes that smoothing the vector of coefficients
does not adversely affect external prediction. In fact, PSR allows rough
spectra (such as with differenced spectra). With penalization, optimal
smoothing of spectra is not equivalent to optimal smoothing of the
coefficients. Details are discussed in Marx and Eilers [13].

The P-spline approach [6] avoids the difficulties of the optimal
placement and number of knots by: (a) projecting β onto a B-spline
basis using moderate number of equally-spaced knots, and (b) further

Fig.1. Fifteen sample curves for Tecator data (left), and the corresponding sample curves after second order differencing (right). The level of greyness for each curve is proportional to
its corresponding fat content.

Fig. 2. Thirty sample curves for corn data with corresponding moisture, oil, protein and starch content.
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increasing smoothness by imposing a difference penalty on adjacent
B-spline coefficients in the α vector. Denote the number of B-splines
as n (typically nbp). We re-express Eq. (1) as

μ = β0 + Um×nαn×1; ð2Þ

where U=XB. We now have a moderately sized regression problem,
using regressors U. As stated, smoothness and regularization comes
from a difference penalty on adjacent B-spline coefficients:

P = λ
Xn

k=d + 1

Δdαk

� �2
; ð3Þ

where Δd indicate the difference operator of order d. In matrix terms,
P=λα′D′dDdα, where Dd is a (n−d)×n banded matrix of contrasts
resulting from differencing adjacent rows of the identity matrix (In) d
times. The order of the difference penalty can also moderate
smoothing, i.e. increasing d translates into a wider footprint of the
penalty affecting more neighboring B-spline coefficients.

Only to simplify presentation, we set β0=0. An intercept is used in
all of the analyses to follow. The PSR estimator is derived from
minimizing

QP = jj y−XBα jj 2 + λ jj Ddα jj 2; ð4Þ

with respect to α. The penalized least squares solution simplifies as,

PSR U; y;λ;Dd;nð Þ = α̂ λ = U 0U + λD 0
dDd

� �−1
U 0y: ð5Þ

Eq. (5) can be easily adjusted for an intercept term by substituting
U1=(1,U) and difference matrix becomes Dd1=(0,Dd), and this is
exactly what we do for all of our data analyses. The non-negative
parameter λ tunes the penalty and can be chosen by minimizing a
cross-validation measure through grid search. Leave-one-out cross-
validation (LOOCV) involves leaving a single observation out from the
training set, fitting the model using the remaining observations, and
using the only omitted observation to compute whatever the loss
criterion we used. This is repeated such that each observation in the
sample is omitted once. Although LOOCV is often computationally
intensive, if the squared-error loss is used, LOOCV error can be
computed exactly and efficiently for PSR using

LOOCV λð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i=1

yi−ŷi
1−hii

� �2
vuut ; ð6Þ

where the hii are the diagonal elements of the “hat” matrix H, defined
as

H = U U 0U + λD 0
dDd

� �−1
U 0: ð7Þ

The term “hat” matrix is used because H turns y into predicted
values ŷ=Hy. In practice, we perform a linear grid search on log(λ)
for the optimal value of λ using the efficient gradient cleversearch(·)
function developed by Susanne Heim for R/S-PLUS.

A general recipe for PSR is given in (Marx and Eilers [13], Section 4).
In SISR we have two hyper-parameters (one each for f and β) and a
few (low integer) design parameters (the degree of the B-spline, the
order of the penalty, and the number of equally-spaced knots). To give
an idea of default design parameters, we typically use between 10 and
200 equally spaced cubic B-splines. We can vary the degree of the B-
splines (q=3 to q=0), but usually default with cubic. The order of
the difference penalty can vary (d=3 to d=0). For fixed d, optimal λ
is searched for systematically by monitoring, for instance, cross-
validation prediction error. Results of these optimum can be directly
compared over the various d=0,1,2,3. Given choice of d and λ, then

the p-dimensional signal coefficient vector can be constructed,
β̂λ=Bα̂λ.

4. Methodology

One problem with PSR is that prediction quality is limited to
estimated coefficients that are linear in the signal regressors, and this
may be one explanation as to why PSR sometimes has difficulties
competing with machine learning approaches, e.g. support vector
machine and neural networks, that use nonlinear features of the
signals. We take a novel approach which combines ideas of the
projection pursuit regression (see e.g. [10] with PSR). Our model has
the form µ= f(Uα), where the function f is unspecified and estimated
along with the coefficient vector α using some flexible nonparametric
smoothing method. This model is known as the single-index model,
which take only the first step of projection pursuit regression. The
basic appeal of single-index model is its simplicity. Consequently, a
modification of the PSR objective in Eq. (4) can be rewritten as

Q⋆
P = jj y− f Uαð Þ jj 2 + λ jjDdα jj 2: ð8Þ

We refer to this method as Single-Index Signal Regression (SISR),
where the penalty is implied as this is a generalization of PSR.

4.1. The model fitting algorithm

Given the B-spline coefficient vector α, the estimation of function f
becomes a one-dimensional smoothing problem, andwe can apply any
scatter-plot smoother to obtain its estimate. In this paper, we estimate
f using a (cubic) P-spline scatter smoother [6] for the following
reasons: 1. P-splines smoothers are easy to use and optimize. 2) Heavy
smoothing (with a second order penalty) leads to approximately
monotone linear f, which is expected by the thermodynamic proper-
ties. 3) The first derivative of f (denoted as f′), which is needed in our
algorithm, can be easily computed. Derivatives of smoothers with
equally spaced B-splines have the pleasant property that they are
equivalent to B(q−1)(Δα)/b, where q is the degree, Δ denotes the first
difference operator, and b is the step length on the equally spaced
knots. For simplicity reason, denote S(V,W,λ,d,n) as the operation of
fitting a cubic P-spline scatter smoother on V (the input variable) and
W (the response) using the penalty tuning parameter λ and d
difference order on n equally spaced knots.

Once given an estimate of f, the coefficient vector α can be
estimated using a (first-order) Taylor series approximation of the
function f (about the current estimate, α0). Specifically, if α0 is the
current estimate for α, then the current estimate of µ= f(Uα) can be
approximated by

f Uαð Þ≈f Uα0ð Þ + f 0 Uα0ð ÞU α − α0ð Þ: ð9Þ

Using Eq. (9), we have an approximation of QP
⋆

Q⋆
P≈ j jy− f Uα0ð Þ− f 0 Uα0ð ÞU α−α0ð Þ j j2 + λ j jDdα j j2

= j j ½y− f Uα0ð Þ + f 0 Uα0ð ÞUα 0�− f 0 Uα0ð ÞUα j j2 + λ j jDdα j j2

= j jy⋆−U⋆α j j2 + λ j jDdα j j2;

ð10Þ

where y⋆=y– f(Uα0)+ f′(Uα0)Uα0 and U⋆=diag{f′(Uα0)}U. Note
that Eq. (10) implies that given f, the optimal α that minimizes the
right-hand side of (10) can be obtained through a PSR(U⋆, y⋆,λ,Dd,n).

Hence, in our algorithm, we first carry out a PSR with target y on U
(Step 1). Then, given α, an estimate of f is obtained (Step 2). The two
steps, estimation of f and α are iterated until convergence of α̂. We set
the B-spline basis degree q=3 (cubic splines) as default value for
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both steps. Again only for simplicity of presentation, the intercept
term is suppressed (β0=0) in the algorithm.

Algorithm SISR

1. Initializations:
• Choose the tuning parameter values (λ1,λ2) for Step 1 and 2
• Choose number of knots (n1,n2)
• Choose penalty order (d1,d2)
• Choose the tuning parameter λ0 for the initial Step 1 (default
value is 106)

• Create U=XB
• Calculate α̂=PSR(U,y,λ0,d1,n1)

2. Cycle until convergence of α̂ 's
• Estimate f̂ and its derivative f̂ ′ from S(Uα̂ ,y,λ2,d2,n2)
• Obtain y⋆ and U⋆

• Update α̂=PSR(U⋆,y⋆,λ1,d1,n1)
3. Prediction: ŷnew= f̂ (xnewBα̂)

end algorithm

Remark 1. Using the large value of λ0 for the initial Step 1 provides
more chance for the algorithm to find the optimal α and f rather than
falls into a local minima when a small value of λ0 is used. An alter-
native way is to try several different initial values of λ0 to avoid the
solution falls into a local minima.

Remark 2. Denote ||α||2=∑k=1
n αk

2 , α cur (α pre) is the α vector for
the current (previous) iteration. The algorithm terminates when

αcur
= jj αcur jj� �

− αpre
= jj αpre jj� �

αcur = jjαcur jj b �;

where � is a prespecified convergence tolerance (default value is 10−3).
Note that αcur/||αcur|| scaled α vector to have unit L2 norm.

4.2. Model selection

In SISR, there are two penalty tuning parameters λ=(λ1,λ2). There
are two ways to find the optimal values for λ. (1) Given an

independent validation set, the optimal values for λ can be found by
minimizing the error on the validation set (sometimes referred to as a
monitoring set). (2) Otherwise, the optimal values for the tuning
parameters can be found by minimizing the cross-validation error.
Note that one advantage of using PSR is that the computation of
LOOCV error is inexpensive, i.e. no need to refit the model after
omitting one observation. However, in SISR, the cross-validation error
can only be calculated externally through refitting the model omitting
the validation set. To evaluate the external predictive performance, we
calculate the root-mean-square error of prediction (RMSEP) on an
independent test set:

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mtest

Xmtest

i=1

yi− ŷið Þ2
vuut ð11Þ

where mtest is the number of observations on the test set and ŷi is the
predicted response for the ith subject in the external test set.

5. Examples and simulation

5.1. Results for Tecator data

The model is fitted on the 129 training samples, while the optimal
value(s) for the tuning parameters are found by minimizing the
validation errors on the monitoring set. Hence, we bypass the
computationally expensive computing for the external LOOCV errors
in theTecator study. The secondorderderivative spectra (98 channels) is
used as the regressor X. Table 1 presents and compares the prediction
performance of different approaches from the literature together with
the newly proposed SISR approach and the corresponding parameters
for the PSR and SISRmethods.We see that the test error for SISR is about
25% lower than the one fromPSR.Note that onlyfive cycleswere needed
until convergence in SISR. Fig. 3 displays the estimated function f and the
coefficient curves β̂=βp×n α̂n×1 in SISR (grey solid) andPSR (black dash).
Note that (1) the estimated f̂ function is a monotonically increasing
and nonlinear function; (2) the coefficient curve in SISR is smoother
than the one in PSR.

5.2. Results for the corn study

Recently, Feudale et al. [9] have investigated the effects of various
orthogonal signal correction (OSC) algorithms on the modelling power
of PLS. In order to investigate the influence of OSC, Feudale et al. [9]
applied PLS to non-processed spectra, OSC-corrected spectra according
to the algorithms described by Wise and Gallagher (which is available
online) and Fearn [8], respectively, and on piecewise orthogonal signal
correction (POSC) corrected spectra as well Feudale et al. [9].

Table 1
Summary results for the Tecator experiment.

Methods λ d n Validation error Test error

PLS – – – 2.83 2.86
PCR – – – 2.82 2.92
PSR 2.64×10−8 3 100 2.74 1.85
SISR (3.36×10−6, 0.161) (3,2) (100,20) 1.73 1.39

Fig. 3. Estimated function f̂ (left) and estimated spectra coefficient curves β̂ (right) for SISR (grey solid) and PSR (black dash).
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In addition, Üstün et al. [17] applied GA/SO-SVR on the corn data.
Here, we employed the same data pre-treatment and training and test
set selection has been performed as described in Feudale et al. [9].
Üstün et al. [17] proposed a sophisticated machine learning method
using support vector regression (SVR), which usually includes four
tuning parameters. In order to find these optimal tuning parameters,
they suggested to use genetic algorithm (GA) combined with simplex
search algorithm. Note that the genetic algorithm needs six additional
tuning parameters, which need “expert's knowledge” to choose a
reasonable setting. Similarly, it is well-known that it is very difficult to
fine tune the parameters and model structures (such as number of
hidden neurons and layers) in the neural network.

Since no validation set is assigned in corn study, we chose the
optimal tuning parameters in SISR (λ1,λ2) based on minimizing the
LOOCV errors. Table 2 presents the prediction results and correspond-
ing parameters for SISR on the corn data set. Table 3 displays and
compares the prediction performance of different approaches from
the literature together with our newly proposed SISR approach. The
last row of Table 3 uses SISR with first differenced spectra. We find
mixed gains and losses when using the differenced spectra instead of
the raw spectra. Since the results from the previous literature use non-
differenced spectra, we suggest using the raw spectra SISR results to
ensure a fairer comparison.

Fig. 4 displays the estimated function f̂ in SISR, and the estimated
coefficient curves for water in SISR (grey solid) and PSR (black dash).
Unlike the Tecator example, here the estimated f̂ is essentially a 45

degree line. This can be seen by the different size of the λ2 in two
examples. The λ2 in Tecator study is 0.616, while in corn example λ2 is
100 for water. Recall the d2=2, and large λ2 produces linear f̂ . Hence,
in this case, the SISR defaults back to the simpler, yet extremely
competitive, PSR method of Marx and Eilers [13]. As expected, the
coefficient curve β̂ for SISR is very close to the estimates from PSR.

5.3. Results of the mixture experiment

Another well-known test bench data set for MVC is the three-
component (ethanol, water, iso-propanol) mixture experiment
[18,19]. The mixture data contains 19 mixtures, and each mixture
has measured spectra under five temperature conditions: 30, 40, 50,
60, and 70 °C (±0.2 °C). Unlike the previous the Tecator and corn
examples, LOOCV is used for optimization of tuning parameters,
rather than using an independent validation data set. We also did
apply SISR on these mixture data, however the prediction error is
more or less par with standard PSR. Thissen et al. [15], Üstün et al. [17],
and Li and Marx [12] show summaries of the best prediction
performance of all available algorithms, as well as present the details
as to how the data are split for training models and external pre-
diction. Table 4 displays the external prediction errors (RMSEP) of the
mixture data on various methods, now including our SISR approach.
The P-spline based approaches (PSR, SISR, VPSR, and polynomial) each
used 150 equally-spaced and a third order difference penalty for the
spectra coefficient vector. To estimate f in SISR, 20 equally-spaced
knots were used with a second order difference penalty. For repro-
ducibility, theoptimal (λ1,λ2,LOOCV)were {(10−7,1000, 0.01038), (10−7,
100, 0.00497), (10−7, 0.1, 0.01201)} for ethanol, water, and iso-propanol,
respectively.

We believe that the relatively uncompetitive results of SISR are
partially due to the nature of the experiment design: For each
component there is “effectively” only five unique “levels” (0, 16, 33,
50, 66%). As such, the estimated function f for each of the three
components looked very much like smooth version of a step function.
Poor prediction of f that is based on onlyfive unique levels of y translates

Table 2
Results for SISR in the corn study.

Methods λ Number of cycles LOOCV error Test error

Water 1.0×10−7, 1.0×102 3 0.0081 0.0098
Oil 1.0×10−5, 1.0×105 2 0.0469 0.0791
Protein 3.2×10−5, 3.2×102 2 0.1135 0.1227
Starch 1.0×10−7, 3.2×104 2 0.1142 0.1714

Table 3
Comparison of the prediction errors of various approaches for the corn study.

Methods Water Oil Protein Starch

PLS 0.0190 0.0742 0.1732 0.2946
PLS Wise OSC 0.0189 0.0741 0.1733 0.2946
PLS Fearn OSC 0.0190 0.0742 0.1732 0.2946
PLS/POSC 0.0433 0.0555 0.1211 0.2759
GA/Sim-SVM 0.0100 0.0654 0.1190 0.1806
PSR 0.0098 0.0719 0.1226 0.1581
SISR 0.0098 0.0791 0.1227 0.1714
SISR (differenced) 0.0130 0.0770 0.1071 0.1877

Fig. 4. Estimated function f̂ (left) and estimated spectra coefficient curves β̂ (right) for SISR (grey solid) and PSR (black dash).

Table 4
Comparison of the prediction errors of various approaches for the mixture data.

Methods Ethanol Water Isopropanol

PSR 0.0129 0.0057 0.0112
SISR 0.0165 0.0049 0.0137
VPSR 0.0096 0.0053 0.0111
Polynomial 0.0089 0.0031 0.0059
TRSP 0.0071 0.0039 0.0063
LS-SVM 0.0067 0.0038 0.0065
GA/Sim-SVM 0.0048 0.0024 0.0041
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into poor external prediction, especially when the estimated f needs to
be interpolated or extrapolated. We do not recommend SISR when the
response only has a few numbers of fixed levels as in this mixture
experiment. We suggest that the researcher first check the number of
levels for the response y, and if there are onlya small numberof different
values, SISR should not be applied.

5.4. Simulation

In order to gain insight into the nature of our method, we applied
SISR on a simulated regression example based on Tecator data with
known underlying generating mechanism. The original Tecator
spectra (100 channels) are used as the regressor X. We simulate data
from the true model

yi = log10 x 0iβ
� �

+ � i; � i ∼ N 0;σ2
� �

; ð12Þ

where the coefficients β follows the cosine curve and σ is set at 0.03.
We use the same data splitting scheme from Section 1 and ran five
random replications of the simulation. We would expect the
estimated f̂ from SISR to be near the logarithm function. The left
panel in Fig. 5 shows estimated functions f̂ (grey) and the shifted
logarithm function (black), which is the true underlying f. The right
panel shows the estimated coefficient curves (grey) and the scaled
underlying cosine function (black).We see a snapshot of evidence that
SISR can successfully identify the underlying f and β.

6. Discussion

We have shown how to estimate non-linear relationships in
multivariate calibration, by combining the single index model with
penalized signal regression. In simulations, single-index signal
regression (SISR), as we call it, recovered a curved relationship
reliably. In real data sets the results weremixed. In the Tecator data set
a non-linear effect, pointing towards saturation, was discovered and
prediction was improved. In the corn data set no curvature and no
improvement were found, and SISR defaulted to PSR. In the mixture
data the model suffered from the relative sparsity of the design points,
and we were not able to reliably estimate a non-linearity.

It is clear that our proposal is not the last word on non-linearities in
multivariate calibration. Compared to simplicity of kernel methods,
inspired by support vector machines, where one plugs in common
alternatives to inner products of vectors, SISR takes more work and is
less robust. But when it works and a true non-linearity is found and
explicitly modeled, and it can give insights into the physical and
chemical process underlying the measurements. In contrast kernel
methods are just black boxes.

Our model is related to the problem of estimating an unknown link
function in generalized linear models [4]. In the present case the
response is assumed to have a normal distribution. Penalized signal
regression has also been used for binary classification [13]. The
response then is assumed to follow a Bernoulli distribution with
probability πi and the linear predictor is η=log(π/(1−π))=Xβ. To use
SISR in this application, themodel would have to be changed to log(π/
(1−π))= f(Xβ)=η, with f(·) the smooth andmonotone “missing link”
that is to estimated. Tibshirani et al. [16] have worked on a related
problem. For other distributions, like Poisson or Gamma, the linear
predictor would have to be transformed in a similar way.

Much interesting and useful research is waiting. Prediction
intervals and uncertainty could be explored using bootstrap
approaches. An obvious generalization is SISR on “images”, two-
dimensional spectra or other data matrices [14]. In principle it also
look possible to put the nonlinearity in another place: instead of ηi= f
(∑j xijβj), a non-linear response in each spectroscopic channel could
be assumed: ηi=∑j f(xij) βj). These are challenges we are studying
now and we hope to report on them in due times.

Although kernel methods are black boxes, they seem to perform
quite well. It seems possible to combine the single-index idea with
kernels. Related to this the question is whether or not certain non-
linearities imply certain types of kernels.
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