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Abstract. We suggest a two-phase boosting method, called “additive regres-

sion tree and smoothing splines” (ARTSS), which is highly competitive in pre-

diction performance. However, unlike many automated learning procedures,
which lack interpretability and operate as a “black box”, ARTSS allows us

to (1) estimate the marginal effect smoothly; (2) test the significance of non-
additive effects; (3) separate the variable importance on main and interaction

effects; (4) select variables and provide a more flexible modeling strategy. We

apply ARTSS to two public domain data sets and discuss the understanding
developed from the model.

1. INTRODUCTION

Boosting is one of the most powerful and successful learning ideas introduced
from the machine learning community. From statistics perspective, boosting can
be seemed as a stagewise additive modeling strategy, see e.g. Friedman, Hastie and
Tibshirani (2000). Boosting builds an additive model

f̂(x) =
M∑

m=1

βmb(x; γm),(1.1)

where b(x, γm) is a base learner parameterized with γm. Moreover, in the numeri-
cal optimization, stagewise additive expansion is closely related to steepest-descent
minimization in function space. A general gradient-descent boosting paradigm
was developed by Friedman (2001), together with a gradient tree boosting algo-
rithm, called “multiple additive regression trees” (MART). Empirical results have
shown that MART achieves highly accurate prediction performance comparing to
its competitors. However, since MART uses regression trees as its base learner,
the representation of the fitted model is extremely complicated. Thus we cannot
discern whether the approximated function is close to a simple one, such as linear
or additive, or whether it involves complex interactions among the variables.

2000 Mathematics Subject Classification. Primary 62-06; Secondary 62G08.

Key words and phrases. Boosting, Interpretation, MART.
This work was partially supported by the National Science Foundation under Grant CTS-

0321911.

1



2 BIN LI AND PREM K. GOEL

On the other hand, simple additive models estimate an additive approximation
to the multivariate regression function without interaction. The benefits of an addi-
tive approximation are at least twofold. First, since each of the individual additive
terms is estimated using a univariate smoother, the “curse of dimensionality” is
avoided, at the cost of not being able to approximate the interaction effects. Sec-
ond, estimates of the individual terms explain how the response variable changes
with the corresponding independent variable. Additive smoothing spline is one of
the most popular techniques for nonparametric function approximation. It provides
a smooth estimated function by imposing a roughness penalty in the reproducing
kernel Hilbert space, see e.g., Wahba (1990) and Gu (2002). Although the direct
extension of smoothing spline to the high order interactions is straightforward in
principle, but difficult in practice due to the prohibitive computational cost.

In this paper, we examine a two-phase boosting algorithm, named “Additive
Regression Trees and Smoothing Splines” (ARTSS), which fits an additive model
by using smoothing splines and/or stumps (single-split trees with only two terminal
nodes) in the first phase, followed by MART in the second phase. When the un-
derlying function is additive, ARTSS approximates the function (almost) entirely
in the first phase. Numerical results indicate that when the underlying function
is smooth, ARTSS is superior to MART in predictive performance. Moreover,
ARTSS provides additional interpretation and advantages against MART, i.e., (1)
better estimates of marginal effects for continuous variables; (2) indicates whether
or not the underlying function is (approximately) additive; (3) separate the variable
importance on main and interaction effects; (4) provide a more flexible modeling
strategy.

The rest of the paper is organized as follows. In Section 2, variants of boosting
algorithms involved in ARTSS are briefly described. In Section 3, the ARTSS
algorithm for regression is presented, followed by the numerical results from the
simulation study and a real application. In Section 4, the interpretation based on
ARTSS is presented. Extension of ARTSS to classification problem is described in
Section 5, followed by the applications on two real data sets in Section 6.

2. Boosting: Stagewise Additive Modeling

Given n observations of the form {yi,xi}n
1 = {yi, xi1, . . . , xip}n

1 , we consider
the fundamental problem of finding a function F (x) mapping p dimensional input
vector x to response variable y, such that over the joint distribution of all (y,x)
values, the expected value of some prespecified loss function L(y, F (x)) is minimized

F (x) = arg min
f(x)

Ey,xL(y, F (x)).(2.1)

Boosting approximates F (x) by an additive expansion in (1.1), where the expansion
coefficients {βm}M

1 and the parameters {γm}M
1 are jointly fit to the training data

in a forward “stagewise” fashion. One starts with an initial guess f̂0(x), and then
for m = 1, . . . ,M

(βm, γm) = arg min
β,γ

n∑
i=1

L(yi, f̂m−1(xi) + βb(xi; γ)),(2.2)

and

f̂m(x) = f̂m−1(x) + βmb(x; γm).(2.3)
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Note that the stagewise strategy is different from stepwise approaches that readjust
previously entered terms when new ones are added. The nature of stagewise fitting
contributes to a large extent for boosting’s resistent-to-overfitting property, see e.g.
Friedman et al. (2000).

2.1. Gradient Descent Boosting and MART. In gradient descent boost-
ing (Friedman, 2001), it solves (2.2) approximately for any differentiable loss func-
tion L(y, f(x)) in two phases, based on the pseudo-responses

ỹim = −
[
∂L(yi, f(xi))

∂f(xi)

]
f(x)=f̂m(x)

.(2.4)

First, the basis function b(x; γ) is fit by the least square

γm = arg min
γ,δ

n∑
i=1

[ỹim − δb(xi; γ)]2.(2.5)

Second, given b(x; γm), the optimal value of the expansion coefficient βm is deter-
mined

βm = arg min
β

n∑
i=1

L(yi, f̂m−1(xi) + βb(xi; γm)).(2.6)

In MART, the base learner b(x; γ) is a H terminal node regression tree. At each it-
eration m, a regression tree partitions the x space into H-disjoint regions {Rhm}H

h=1

and predicts a constant γhm in each region. The detailed algorithm for MART is
the following.

MART Algorithm (Friedman 2001)

(1) f̂0(x) = arg min
γ

n∑
i=1

L(yi, γ).

(2) Repeat for m = 1, 2, . . . ,M :
(a) ỹi = −

[
∂L(yi,f(xi))

∂f(xi)

]
f(x)=f̂m−1(x)

, i = 1, 2, . . . , n.

(b) {Rhm}H
1 = H-terminal node tree based on {ỹim,xi}n

1 .
(c) γhm = arg min

γ

∑
xi∈Rhm

L(yi, f̂m−1(xi) + γ).

(d) f̂m = f̂m−1 + ν · γhmI(x ∈ Rhm).
(3) End algorithm.

The ν in the above is the “shrinkage” parameter between 0 and 1 and controls
the learning rate of the procedure. Empirical results have shown (see e.g., Friedman,
2001) that small values of ν always lead to better generalization error. The choice
of M , i.e., when to stop the algorithm, is based on monitoring the estimation
performance on a separate validation set. In this paper, MART is run by using the
gbm package in R, produced by Greg Ridgeway.
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2.2. Boosting with Componentwise Smoothing Spline. Bühlmann and
Yu (2003) proposed L2Boost, boosting with squared error loss, with component-
wise cubic smoothing splines as base learners. The functional class for the cubic
smoothing splines, known as Sobolev space, is defined on the interval [a, b] as

W2 = {f : f ′ absolutely continuous and
∫ b

a

[f ′′(x)]2dx < ∞}.(2.7)

The smoothing spline solution is the f̂λ(x) minimizing

1
n

n∑
i=1

[yi − f(xi)]2 + λ

∫ b

a

[f ′′(x)]2dx.(2.8)

If all the independent variables are continuous, componentwise boosting with smooth-
ing splines builds an additive model with univariate smoothing splines as the base
learners. Bühlmann and Yu (2003) showed that L2Boost (boosting with L2 loss)
with componentwise smoothing splines achieves optimal convergence rate in one-
dimensional case, and also adapts to higher-order smoothness.

2.3. Boosting with Subsampling. It has been shown that the both pre-
diction accuracy and execution speed of boosting can be substantially improved
by incorporating randomization into the procedure, see Breiman (1999) and Fried-
man (2002). Breiman (1999) proposed a hybrid bagging-boosting procedure, called
“adaptive bagging”, to fit the additive expansions in (1.1), i.e., fit the base leaner
βmb(x; γm) in each iteration based on the bootstrapped training samples. Friedman
(2002) proposed a slightly different approach, called stochastic gradient boosting, to
incorporate randomness into the procedure. Specifically, at each iteration a subsam-
ple of the training data is drawn at random without replacement from the training
set to fit the base learner. An R implementation of MART in gbm package con-
tains the stochastic gradient boosting algorithm on half of the subsample as the
default procedure.

3. Additive Regression Trees and Smoothing Splines in Regression

In ARTSS, two phases are employed to approximate F (x). The first phase
approximate the additive function FA(x) = c +

∑p
j=1 FA(xj) that minimizes the

loss function over the joint distribution of all (y,x) by using boosting with compo-
nentwise smoothing splines and/or stumps. The second phase tryies to recover the
difference between F (x) and FA(x) by using MART. Thus, the base learners in the
first phase of ARTSS are one dimensional, i.e., componentwise smoothing spline for
continuous variable and stump otherwise, whereas the base learners in the second
phase are regression trees. Throughout the paper, squared error loss is used for the
regression problem. The ARTSS algorithm is outlined as follows.

ARTSS Algorithm in Regression

Phase 1.
(1) f̂0(x) = mean{yi}n

i=1.
(2) Repeat for m = 1, 2, . . . ,M :

(a) Set the current residual ri = yi − f̂m−1(xi), i = 1, . . . , n.



ADDITIVE REGRESSION TREES AND SMOOTHING SPLINES 5

(b) {π(i)}n
1 = bootstrap sample of {i}n

1 .

(c) (γm, jm) = arg min
γ,j∈{1,...,p}

n∑
i=1

[rπ(i) − b(xπ(i)j ; γ)]2.

(d) f̂m = f̂m−1 + ν · b(xjm
; γm).

(3) ri = yi − f̂M (xi), i = 1, . . . , n.
Phase 2.
Apply MART on {xi, ri}n

1 .

3.1. Regularization in ARTSS. It is well known that regularization is an
important issue in boosting. In general, there are at least three ways for regulariza-
tion. (1) Control the complexity of base learners. For the regression trees, we can
control the complexity by restricting either the number of terminal nodes or the
depth of trees. For the smoothing splines, we can constrain the degree of freedom,
i.e., trace of the smoother matrix. Bühlmann and Yu (2003) showed the effect of
controlling the degree of freedom for the cubic smoothing splines on generalization
squared error. Their results suggest that using the small values for the degree of
freedom achieves better generalization error than using large values. In this paper,
we fix the degree of freedom to be three (same as the one they used). In MART,
the optimal (in terms of prediction) complexity of trees depends on the underlying
function F (x), and can be chosen based on an independent validation set. (2) Con-
trol the learning rate ν of the boosting procedure. It is well known that using small
ν never hurts but usually improves prediction accuracy substantially. In this paper,
ν is fixed at 0.05. (3) Control the number of iterations M in boosting procedure.
The stopping criterion for both the first and second phases in ARTSS is based on
monitoring the estimation performance on a separate validation set.

3.2. Data Splitting Strategy in ARTSS. In ARTSS fitting, a separate val-
idation set is needed to set the tuning parameters, such as the number of iterations
in each phase. There are two approaches to split the data. First, one can allocate a
subset of data as the validation set, where the rest as the training set. Second, one
can implement k-fold cross validation strategy in ARTSS fitting. Namely, partition
the training set into k subsets of (approximately) equal size, and fit the ARTSS
model k times, each time leaving out one of the subsets from training, but using
only the omitted subset to tune the parameters. The final model is the average
of these k fitted models. This approach is especially useful for small data sets. In
this paper, without specifying a validation set, the five-fold (k = 5) cross validation
strategy is used in ARTSS fitting.

3.3. Numerical Results. Although the main objective of this paper is in
interpretation, prediction is always considered to be one of the most important
criteria to evaluate a data mining method. It is well known that characteristics
of problems will affect the prediction performance of a method. Two of the most
important characteristics of any problem affecting performance are the underlying
true function F (x) and the joint distributions of input variables. In order to gauge
the value of any estimation method, it is necessary to accurately evaluate its per-
formance over different situations. This is most conveniently accomplished through
Monte Carlo simulation, where data can be generated according to a wide variety
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of prescriptions, and resulting performance accurately calculated. The procedure
used here to generate test functions is based on the random function generator
described in Friedman (2001). Two settings are considered here so that the under-
lying true function is (i) non-additive (with interaction) and (ii) additive (without
interaction).

The following true model is used to generate simulated data:

y =
20∑

l=1

algl(zl) + σε, ε ∼ N(0, 1),(3.1)

where σ was chosen to have signal-to-noise ratio (SNR) equal to two, i.e., σ2 =
var(y)/5. The coefficients {al}20

1 are randomly generated from a uniform distribu-
tion between -1 and 1. Each gl(zl) is a function of a randomly selected subset, of
size pl, of the p-input variables x. Specifically,

zl = {xπl(j)}
pl

j=1,(3.2)

where each πl is a random permutation of the integers {1, . . . , p}. In the non-
additive setting, the size of each subset pl is itself random, pl = b1.5+uc, where btc
denotes the integer part of t, with u being drawn from an exponential distribution
with mean equal to two. In the additive setting, pl ≡ 1. Each gl(zl) is an pl-
dimensional Gaussian function

gl(zl) = exp(−1
2
((zl − µl)T Vl(zl − µl)),(3.3)

where each of the mean vectors {µl}20
1 is randomly generated from the same dis-

tribution as that of the input variables x. The pl × pl covariance matrix Vl is also
randomly generated. Specifically, Vl = UlDlUT

l , where Ul is a random orthogonal
matrix (uniform on Harr measure) and Dl = diag{d1l, . . . , dpll}. The square root
of the eigen values are randomly generated from a uniform distribution between 0.1
and 2.0. The joint distribution of x is multivariate normal distribution with mean
zero and covariance matrix Σ, where Σ(a, b) = ρ|a−b|. ρ is randomly generated
from a uniform distribution between -0.5 and 0.5. In this study, p is fixed at ten.

In the experiment, we compared the prediction performance of ARTSS with
MART and MARS (multivariate adaptive regression splines) proposed by Friedman
(1991). MARS is run by using the mda package in R. To compare the prediction
performance, we use the comparative test error, defined by

ci,j =
MSEij

min{MSEi,l}l=1,2,3
, i = 1, . . . , 100, j = 1, 2, 3(3.4)

over 100 replications for each method. This quantity facilitates individual com-
parisons by using the error of the best method for each data set to calibrate the
difficulty of the problem. The training set for each replication contains either 300
or 1000 observations, while testing set consists of 2000 observations.

Figure 1 shows the comparative test errors for ARTSS, MART and MARS
over 100 replications each in non-additive and additive setting. Simulation results
shown in Figure 1 imply that: (1) ARTSS achieves better prediction performance
than MART and MARS under both additive and non-additive settings; (2) the
benefit of using ARTSS as compared to MART is larger under the additive (small
sample size) case than the non-additive (large sample size) case.

In addition, we consider the often-analyzed dataset of ozone concentration in
the Los Angeles basin, which has been also been considered by Breiman (1998) in
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Figure 1. Boxplots of comparative test errors for ARTSS, MART and
MARS. Training sets in the upper (lower) panel contain 1000 (300)

observations.

connection with boosting. There are nine input variables and the sample size is
330. Besides ARTSS, MART and MARS, here we also consider smoothing splines
(without interaction), which is run by gss package in R, L2Boost with stumps,
and additive ARTSS (ARTSS with only the first phase). We estimate the testing
error by randomly splitting the data into 300 training and 30 testing observations
and simulating 50 such random partition. Table 1 displays the mean and standard
deviation (in parenthesis) of the test MSE over 50 runs. We conclude that ARTSS
with/without the second phase is better than MART and L2Boost with stumps, and
have comparable performance to cubic smoothing spline and MARS. This is because
ARTSS, MARS and smoothing splines fit smooth surface rather than a non-smooth
surface from regression trees. Furthermore, since the sample size is not large, it may
not be possible for MART to reliably estimate models with large number of trees.
A referee pointed out the different results between ARTSS and cubic smoothing,
although both conduct additive smoothing splines. This may because the ARTSS
tends to fit a sparse model, e.g. most of the ARTSS models (without second phase)
didn’t include variable ‘humidity’ and ‘Inversion base temperature’ among 50 runs
on Ozone data. Like MART, due to the small sample size, ARTSS may not reliably
estimate model with large number of trees in the second phase.
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Method MSE (×10−2)
Additive ARTSS 11.79 (3.05)
ARTSS 11.73 (3.05)
MART 14.06 (4.49)
L2Boost with stumps 15.06 (4.35)
MARS 12.56 (3.05)
Cubic smoothing splines 11.63 (2.86)

Table 1. Comparison of Test Set MSEs for Ozone Data.

3.4. Computational Consideration. Consider the n observations with p
predictors. The computation for the univariate smoothing splines can be of the
order O(n), see e.g. Hutchison and de Hoog (1985). On the other hand, the
computation for trees is of the order O(pnlogn). In general, ARTSS has the same
order of computation as MART.

3.5. Asymptotic Property of ARTSS. Stone (1985) showed that under
a common smoothness assumption the additive spline estimates achieve the same
optimal convergence rate as they do in one-dimensional case. This indicates that the
ARTSS estimate f̂(x) without the second phase also enjoys the optimal convergence
rate. Note that this estimate converges to FA(x), the closest additive function
in terms of squared error loss, but not the target function F (x) itself. On the
other hand, Bühlmann (2002) showed the consistency results in both regression
and classification for L2Boost with tree-type basis functions under some regularity
conditions. Note that this result doesn’t require the target function to be smooth,
and even the predictor can be finite categorical variable. Combining the consistency
result from Stone (1985) with that of Bühlmann (2002) implies the consistency of
ARTSS under some smoothness and regularity conditions.

4. Interpretation in ARTSS

In many applications, it is highly desirable to be able to interpret the derived
approximation f̂(x). This includes gaining an understanding of those particular
input variables that are most influential in contributing to its variation, and the
nature of the dependence of f̂(x) on those influential inputs. Moreover, sparseness
and hierarchical structure are two popular assumptions in statistical model fitting.
By the two-phase nature of ARTSS fitting, these two assumptions can be naturally
implemented in ARTSS.

4.1. Estimate Marginal Effect. As defined at the beginning of Section 3,
FA(x), the “best” additive function, is sum of a constant c plus

∑p
j=1 FA(xj),

subject to the constraints that EFA(xj) = 0 for 1 ≤ j ≤ p. Moreover, we defined
the marginal effect of xj as FA(xj). Thus, if the underlying function F (x) is
additive, then the marginal effect is the same as the corresponding component in
F (x). In ARTSS, the estimate of marginal effect for xj , f̂A(xj), is simply the sum
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of all the additive terms due to xj in the first phase

M∑
m=1

ν · b(xjm
; γm) · 1(jm = j).(4.1)

Friedman (2001) introduced partial dependence to describe the dependence of
response variable on a subset of variables. Given any subset xs of the input variables
indexed by s ⊂ {1, . . . , p}. The partial dependence is defined as

Fs(xs) = Ex\s
[f(x)],(4.2)

where Ex\s
[·] means expectation over the joint distribution of all the input variables

with index not in s. Although FA(xj) is defined different from Fj(xj), they coincide
with when the underlying function f(x) is additive or all the input variables are
independent. In practice, partial dependence can be estimated from the data by

F̂s(xs) =
1
n

n∑
i=1

f̂(xs,xi\s),(4.3)

where {xi\s}n
1 are the data values of x\s. By the nature of tree-based methods, the

data-sparse region does not have a chance to split and is fitted by a constant no
matter what the underlying function is. We call this the “low probability effect” on
tree-based methods.

To illustrate, we simulate data from an additive model with two input variables

y = −2x1 + x2 + σε, ε ∼ N(0, 1),

where σ is chosen to have SNR=2. The input variables (x1, . . . , x5) are generated
from the multivariate normal distribution with mean zero and covariance matrix
Σ, where Σ(a, b) = 0.3|a−b|. Two scenarios with different sample sizes are consid-
ered. Case 1: the model is fitted on a training set with 50 observations and an
independent validation set with 50 observations is used to determine when to stop
the algorithm. Case 2: both training and validation sets have 500 observations.
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Figure 2. Low probability effect on MART. The upper (lower) row
shows the estimated partial dependence in Case 1 (2). The black dot
lines are the estimated marginal effects defined in (4.1). The gray solid
lines are estimated partial dependence.
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Ideally, both ARTSS and MART should recover the additive linear structure for
the underlying true function. Figure 2 compares the estimated marginal effects of
x1 and x2 from ARTSS and MART, and shows the low probability effect in MART.
Based on Figure 2, we conclude that (1) the estimated marginal effects by ARTSS
approximate the underlying truth well; (2) the estimated partial dependence defined
in (4.2) is very close to the corresponding estimate of marginal effect defined in
(4.1), because the underlying function is additive and ARTSS approximates the
underlying function almost entirely in the first phase; (3) MART fail to recover the
linear partial dependence faithfully, e.g., in the sparse area |xj | > 2, j = 1, 2, the
estimated partial dependence is constant; (4) due to the curse of dimensionality,
we expect the low probability effect to be even more common and severe in high-
dimensional problems. On the other hand, since ARTSS estimates the marginal
effect in the first phase, it will be less affected in high dimension.

4.2. Test Significance of Non-additive Effect. Consider an “ANOVA”
expansion of a function

f(x) =
∑

j

fj(xj) +
∑
j,k

fjk(xj , xk) +
∑
j,k,l

fjkl(xj , xk, xl) + . . . .(4.4)

The first sum consists of functions that each depends on only one input variable.
The particular functions {fj(xj)}p

1 in ARTSS provide the “closest” approximation
to f(x) under the additive constraint. The rest sums consists of functions that each
depends on more than one input variables. In ARTSS, these sums are approximated
in the second phase by using MART. In order to test the significance of non-additive
effect, we present an approach based on Friedman and Popescu’s work (2005).

Consider the model is fitted on the training set, while a validation set is used
to determine where to stop the algorithm. First, a collection of artificial data sets
{xi, ỹi} are generated from the training and validation data sets as follows.

ỹi = f̂A(xi) + (yp(i) − f̂A(xp(i))), i = 1, . . . , n.(4.5)

Here {p(i)} represents a random permutation of the integers {1, 2, . . . , n} (n is
number of observations in the training and validation set), and f̂A(x) is the main
effects estimate from the first phase (ARTSS without second phase). Note that
every data set generated in (4.5) contains no interaction effects, and f̂A(x) is the
underlying true function. In addition, the joint distribution of predictor variables is
same as that of the original data. Then, for each artificial data set and the original
data, we apply ARTSS and calculate P2, the proportion of reduction in validation
error from Phase 2:

P2 =
reduction of the validation error in Phase 2

total reduction of the validation error
.(4.6)

The collection of these P2 values can be considered as a reference distribution under
the null hypothesis that the underlying function is additive. Finally, an empirical
p-value, the proportion of artificial data sets that resulted in P2 greater than that
for the original data, provides a test statistic for the significance of non-additive
effects.

As an illustration, we did the following simulations. The data is simulated from
the true model

y = f(x) + σε, ε ∼ N(0, 1),(4.7)
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where σ was chosen to obtain specified values of two-to-one SNR. Two examples
are presented here. In each example, it consists of a training set and an indepen-
dent validation set. The joint distributions of input variables are the same in two
examples. The first five input variables are continuous variables generated from
the uniform (0, 1) distribution, whereas the rest five are categorical variables, all of
which have four categories, denoted as 1 ∼ 4, with equal probabilities.

Example 1: Additive case. The data set consists of 200 observations in both
training and validation set. The underlying function f(x) is

f(x) = 10(x1 − 0.5)2 − x2 + sin(2πx2)− 3x3

+ 1.5I{(x6 = 3) ∪ (x6 = 4)},(4.8)

where I{A} is an indicator function, equal to one when A holds, otherwise zero.

Example 2: Non-additive case. The data set consists of 1000 observations in
the training set and has the same amount in the validation set. The underlying
function is

f(x) = exp(−x1 − x2 + 2x3) + 3(x4 − x5) + 2I{(x6 ≥ 3) ∩ (x7 ≤ 2)}.(4.9)
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Figure 3. Validation MSE for ARTSS (solid/dash corresponds to the
first/second phase) and MART (dot).

Figure 3 shows the decreasing patterns in validation errors for ARTSS and
MART on two examples. In the first example, where the underlying function is
additive, the first phase of ARTSS contributes all the reduction of validation errors.
In the second phase, the validation errors even increase slightly before stopping. In
the second example, we see an obvious dip from the second phase, which accounts for
about 9% of total reduction in validation error. This agrees with the non-additive
nature of the underlying function. By applying the proposed test procedure based
on 100 random permutations, we have the empirical p-value for Example 1 is 0.28,
whereas zero in Example 2.

4.3. Relative Variable Importance. In general, there are at least three
ways to measure the importance of input variables. The first is causality, which
can only be inferred if the data set comes from a well-designed experiment. A second
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approach is based on face value interpretation, i.e., to look at the variables that are
important in determining the face value of the estimated function F̂ (x), (see e.g.,
Breiman 2001). Face value interpretation method tends to ignore the dependence
structure among predictors. The third way is based on the out-of-sample predictions
with/without a certain variable. This is commonly addressed by fitting the model
multiple times using different subsets of predictors, and comparing the prediction
accuracy on a test set (see e.g., John, Kohavi and Pfleger 1994).

By the two-phase procedure in ARTSS, we can measure the relative variable
importance (RVI) on main (mRVI) and interaction (iRVI) effects, separately. Here
we suggest a way to measure the mRVI based on the first phase in ARTSS. Although
our approach is also based on out-of-sample predictions, it doesn’t require fitting the
model multiple times employing different subsets of the input variables. To measure
the RVI on interaction effect, we use Friedman (2001) approach of estimating RVI
in MART.

Let v0 be the validation error for the initial estimate and vm be the validation
error at the mth iteration in the first phase of ARTSS, m = 1, . . . ,M . We measure
the mRVI for xl as follows.

mRV I(xl) =
∑M

m=1 1(jm = l)(vm−1 − vm)∑M
m=1(vm−1 − vm)

.(4.10)

From (4.10), we see that mRVI of xl is essentially the proportion of reduction in
validation error accounted by xl in the first phase.

Figure 4 displays the estimated RVI in Example 1 and 2. In Example 1, we
see that x1, x2, x3 and x6 dominate the main effects. However, x4 and x7 are
also selected in the first phase, but their mRVIs are very close to zero (note that
their mRVIs are even negative). In Example 2, only the first seven variables have
positive mRVI. Among them, x4 and x5 have the largest mRVI. However, their
iRVI is smaller than the other five variables. This agrees with the fact that x4 and
x5 are additive, while the other five are non-additive in the underlying function.
Note that it is important to know the sensitivity of the inference with respect to
the tuning parameters, including the number of iterations in both phases. Figure 5
shows the estimated mRVI paths as a function of number of iterations (starting
with the 21st iteration) in Example 1 and 2. We see that the estimate of mRVI
have stabilized much sooner than the end of the Phase 1. We expect to conduct
further studies on sensitivity to other parameters.

4.4. Variable Selection. Like stagewise regression, ARTSS tends to select
only a small subset of variables in the first phase, when the true model is sparse.
However, variables not in the true model can also be selected with small or even
negative mRVI. In order to reduce the false discovery rate (FDR), we can select the
variable via thresholding on mRVI, e.g., using τ/p as the threshold where 0 ≤ τ ≤ 1.
Although we don’t have any theoretical justification for selecting the threshold value
as of now, heuristically, using the suggested threshold can guarantee to have at least
1 − τ percent of the mRVI retained after thresholding. In this paper, we set τ at
0.1.
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Figure 4. (Left) The mRVI in Example 1. (Right) The mRVI
(black) and iRVI (gray) in Example 2.
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Figure 5. The mRVI paths in Example 1 and 2.

To illustrate, we simulated 100 replications of the data from the following true
model.

y =
20∑

j=1

aj · xj · 1(j ∈ S) + σε, ε ∼ N(0, 1),(4.11)

where aj
iid∼ Unif(0.5 ≤ |a| ≤ 1), S is a randomly selected subset of {1, . . . , 20}

with size |S|, and σ is chosen to have SNR=2. The size of S itself is random,
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|S| = b1.5 + uc, with u being drawn from an exponential distribution with mean
equal to five. Thus, the expected number of selected input variables into S is
between six and seven. The joint distribution of x is twenty dimensional mul-
tivariate normal distribution with mean zero and covariance matrix Σ, where
Σ(a, b) = ρ|a−b|. ρ is randomly generated from a uniform distribution between
-0.5 and 0.5. Within each replication, all the parameters related to (4.11) are ran-
domly generated with sample size 500. We apply five-fold cross-validation, and take
the average as our estimate of mRVI. Table 2 shows the FDR and NDR (nondis-
covery rate) in simulation. The results indicate that thresholding on mRVI makes
the selected variables closer to the underlying true model (without suffering from
the NDR). Interestingly, it is known that thresholding LASSO estimators achieves
consistency in variable selection, see e.g., Li and Goel (2006). This seems to be
what is happening here too. Since measuring the mRVI is done in the Phase 1 of
ARTSS, we can choose the variables into the second phase based on mRVI, i.e., the
hierarchical structure can be naturally incorporated in ARTSS.

Before Thresholding After Thresholding
FDR 0.66 0.0025
NDR 0 0

Table 2. FDR and NDR in Simulation Study

5. ARTSS in Classification

Consider the two-class classification problem, i.e., yi ∈ {−1, 1}, i = 1, . . . , n.
The ARTSS for classification is based on the gradient boosting algorithm described
in Section 2.1. Instead of squared error loss, negative log-likelihood for the binomial
model is used as the loss function:

L(y, f̂) = log(1 + exp(−2yf̂)), where f̂(x) =
1
2
log

[
Pr(y = 1|x)

Pr(y = −1|x)

]
.(5.1)

More specifically, within each iteration of Phase 1, the pseudo-responses are com-
puted based on the above loss function. Then, a variable and its corresponding
basis function is selected by the least-squares function minimization on the pseudo
responses. The detailed algorithm for ARTSS in classification is the following.

ARTSS Algorithm in Classification

Phase 1.

(1) Initialize f̂0(xi) = 1
2 log

(
1+ȳ
1−ȳ

)
.

(2) Repeat for m = 1, 2, . . . ,M :
(a) Set the pseudo-responses ỹi = −

[
∂L(yi,f̂m−1(xi))

∂f̂m−1(xi)

]
, i = 1, . . . , n.

(b) {π(i)}n
1 = bootstrap sample of {i}n

1 .
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(c) (a∗, j∗) = arg min
a,j∈{1,...,p}

n∑
i=1

[ỹπ(i) − h(xπ(i)j ;a)]2;.

(d) f̂m(x) = f̂m−1(x) + νh(xj∗ ;a∗).

(3) ỹi = −
[

∂L(yi,f̂M (xi))

∂f̂M (xi)

]
, i = 1, . . . , n.

Phase 2.
Apply MART on {xi, ỹi}n

1 .

6. Applications to Real Data

In this section, ARTSS procedure is further illustrated on two public domain
data sets. In both examples, we split the data set into two parts, training and
validation set. The model was fitted on the training set and evaluated on the
validation set.

6.1. California Housing Data. This data set, available at the Carnegie-
Mellon StatLib repository (http://lib.stat.cmu.edu/datasets/), was originally used
by Pace and Barry (1997). It consists of aggregated data from each of 20,640
neighborhoods (1990 census block groups) in California. The response variable is
the median house value in each neighborhood measured in units of $100,000. There
are eight continuous input variables: median income (denoted as Med), house age
(Age), average number of rooms per person (Rms), average number of bedrooms per
person (Bdrm), population (Pop), average occupancy in each house (Occ), latitude
of the location of each neighborhood (Lat) and longitude (Lon). Since Rms, Bdrm,
Pop and Occ have some extremely large outliers, these variables are winsorized
at 99.5 percentile, i.e., all the observations above 99 percentile are set to their 99
percentile value. The logarithm transformation is applied to the response variable
(see Pace and Barry, 1997) before the analysis. One third of data was randomly
selected as the validation set, and the model was trained on the remaining two
third.

Figure 6(a) shows the validation error for the ARTSS and MART. We see an
obvious dip in the second phase, which accounts about 9.6% of total reduction in
validation error. Based on the validation set, ARTSS achieves R2 = 82%, whereas
MART achieves R2 = 81%. Pace and Barry (1997) applied a sophisticated spatial
autoregression method and achieved R2 = 85% for the training set. To test the
significance of non-additive effect, we did the permutation test described in Section
4.2. All the one hundred P2 generated from randomly permutated data sets are
much smaller than observed P2, based on the original data. Panel (b) shows the
RVI on main and interaction effects. We see that median income is the most relevant
predictor in main effects, whereas the spatial variables (longitude and latitude) are
the two most relevant predictors in interaction effects. Panel (c) and (d) show the
estimated marginal effects for income and occupancy, respectively. Not surprisingly,
the estimated marginal effect of income increases linearly at low level, and stabilized
at high level.

Based on the RVI on main and interaction effects, we decide to keep the in-
come, occupancy, latitude and longitude in the main effects, and consider only the
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Figure 6. (a) Validation MSE for ARTSS (solid/dash corresponds
to the first/second phase) and MART (dot). (b) The relative variable
importance on main (black) and interaction (gray) effects. (c) and (d)
Estimated main effects for median income and average occupancy.

interaction between longitude and latitude. However, house age is commonly con-
sidered as an important factor on house value. Thus, we enforce the house age into
the main effects. Then we applied ARTSS on fewer variables (five in the first phase
and two in the second phase). The new (sparse) model achieves R2 = 80% on the
validation set. Figure 7 shows the estimated contour plot on the joint values of lon-
gitude and latitude from the sparse model. It represents the effect of location after
accounting for the effects of the other variables, i.e., an extra premium one pays for
location. We see that the premium is larger near the Pacific coast especially in the
Bay Area and Los Angeles-San Diego regions than the one in the northern, central
valley, and south-eastern desert regions of California.

6.2. Spam Data. This data set, available at UCI Machine Learning Repos-
itory (http://www.ics.uci.edu/∼mlearn/ MLSummary.html), consists of informa-
tion from 4,601 email messages, in a study to try to predict whether the email was
junk email, or “spam”. The response variable is binary, with values email (coded
as -1) or spam (coded as 1), and there are 57 continuous predictors as follows.
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• 48 quantitative predictors - percentage of words in the e-mail that match
a given word.

• 6 quantitative predictors - percentage of words in the e-mail that match
a given character.

• The average length of uninterrupted sequences of capital letters (denoted
as average).

• The length of longest uninterrupted sequence of capital letters (longest) .
• The total number of capital letters in the e-mail (total).

A validation set of size 1,536 was randomly chosen, leaving 3,065 observations in the
training set. Applying ARTSS to this data resulted in a validation error rate (0-1
loss) 5.0%, whereas MART achieved 5.7%. Figure 8(a) shows the validation errors,
defined in (4.9) for ARTSS and MART. The second phase accounts 21.9% of total
reduction in validation error, which, as expected, indicates the strong evidence of
interaction effects. In the first phase of ARTSS, only 28 predictors were selected,
out of where 12 have mRVI less than 1%. Figure 8(b) shows the iRVI and mRVI
for some leading predictors. We see the imbalance of variable importance on main
and interaction effects. Panel (c) and (d) show the marginal effects of log-odds of
spam on two important predictors.
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