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a b s t r a c t

This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using
visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum
contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal
variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Addi-
tionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration
profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multi-
variate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r2 ¼ 0.87,
RMSE ¼ 0.580 log10 mg kg�1, and residual prediction deviation ¼ 2.78) outperformed all other models
tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r2 ¼ 0.65 and
RMSE 0.261 log10 mg kg�1) were comparable to those obtained using FD (PSR) model. Furthermore, MCR
ALS was able to recover pure spectra of n-hexane.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

While petroleum provides abundant energy, as well as eco-
nomic and manufacturing resources, its extraction, refinement and
transportation also present innumerable opportunities for spillage.
On April 20, 2010, the largest accidental marine oil spill in the
history of the petroleum industry occurred following a sea-floor oil
spill gusher from the Deepwater Horizon drilling rig explosion in
the Gulf of Mexico south of Louisiana. Although major cleanup ef-
forts have taken place and the Deepwater Horizon oil leak has been
stopped, the costs associated with lost jobs, contaminated food and
water, cleanup, restoration, and environmental damage has not
been fully determined (Camilli et al., 2010) and may not be for
many years. Quick quantification of total petroleum hydrocarbon
ultivariate curve resolution
sion; RF, random forest; SNV,
-infrared diffuse reflectance

ndorf).
(TPH) and polycyclic aromatic hydrocarbons (PAHs) in contami-
nated soils can reduce the costs involved with their management,
and devise effective contingency planning through early prediction.

Wide scale gas chromatography based quantifications of spilled
petroleum hydrocarbon in contaminated soils are time consuming,
lacks field-portability, sometimes show high variability (an order of
magnitude) in TPH results across commercial laboratories (Malley
et al., 1999), and need rigorous field sampling (Dent and Young,
1981). These techniques are exceedingly laborious and often
require extensive laboratory preparation (e.g., drying, grinding, acid
digestion, extraction, clean-up, and quantification) and analysis
which makes widespread characterization of spatial and temporal
levels of contaminants prohibitively expensive. Visible and near-
infrared (VisNIR) diffuse reflectance spectroscopy (DRS) is a
promising hyperspectral scanning technology that has become
popular for rapidly quantifying and identifying several soil prop-
erties at a time in the laboratory and in situ with minimum or no
sample pretreatments (Chang et al., 2001; Brown et al., 2006;
Viscarra Rossel et al., 2006; Vasques et al., 2009). Chakraborty
et al. (2010, 2012a, 2012b) demonstrated the effective use of Vis-
NIR DRS for rapidly quantifying hydrocarbon contamination in soils
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of Southern and Central Louisiana. Essentially, the CeH bond in
hydrocarbons causes diagnostic absorption bands (primarily over-
tones and combinations) in the VisNIR region (Aske et al., 2001),
making them excellent for both qualitative and quantitative anal-
ysis of contaminated soils. Similar studies by other researchers have
independently confirmed that reflectance spectroscopy is suitable
for on-site quantification of TPH and PAH (Graham, 1998; Forrester
et al., 2010; Schwartz et al., 2012; Okparanma et al., 2014).

Since it is hard to obtain totally selective signals for every ana-
lyte of interest in a multicomponent complex sample like petro-
leum contaminated soil, physical separation of the analyte of
interest by chromatography and/or other wet chemistry method or
their mathematical resolution using chemometric methods is a
critical preliminary step for their quantification (Naes et al., 2002).
Given that conventional PLS-based sensors are complicated for
field use (Ge et al., 2007), the overarching goal of this study was to
identify some other options to conventional VisNIR-PLS models,
which would aid in designing a practical sensor configuration for a
field person. In this work, we compared two different state-of-the-
art regression algorithms: penalized spline regression (PSR) and
random forest (RF) using VisNIR DRS spectra of petroleum
contaminated soils after two different spectral preprocessing
techniques [first derivative of reflectance spectra and standard
normal variate transformation (SNV) followed by detrending (DT)]
for rapid quantification of soil TPH.

Additionally, for further recovery of the compositional and pure
spectral profiles of constituents present in the unresolved mixture
of petroleum contaminated soils when no prior information is
available about the nature and composition of these mixtures, we
used multivariate curve resolution alternating least squares (MCR-
ALS) method. MCReALS, a soft modeling method, decomposes the
bilinear data set obtained from the two or higher way array of
spectroscopic data, into the pure component spectra and the rela-
tive concentration profiles (Kumar and Mishra, 2012). This method
has been shown to provide an improved resolution compared to
other methods and to allow quantitative determinations in the
analysis of complex mixtures using spectroscopic means (Azzouz
and Tauler, 2008). Thus far, MCR-ALS has been used to study
complex industrial processes, multiequilibria systems using spec-
troscopic titrations (fluorescence, UVevis absorption, etc.) and
many others (Saurina et al., 1995; Saurina and Hernández-Cassou,
2001). Terrestrial oil spill pollution does not receive enough
attention because it commonly involves small scales. Measurement
of oil spill contamination in soil is also complicated by mixed
spectral signatures consisting of contaminants, recovering vegeta-
tion, dead vegetation, and the signal from soils (Hese and
Schmullius, 2008). In this study, we used MCR-ALS for both quan-
titative and qualitative determination of n-hexane present in pe-
troleum contaminated soils using VisNIR reflectance spectra. We
Table 1
Location, soil series, and classification of soils evaluated for petroleum contamination us

Site Parish Soil series Classificationa

Alpine Jefferson Barbary Very-fine, smect
Mississippi River 1 Plaquemine Carville Coarse-silty, mix
Mississippi River 2 Saint Charles Cancienne Fine-silty, mixed
Sabine Cameron Creole Fine, smectitic, n
Sonat Vernon Ruston Fine-loamy, silic
Winn Dixie East Baton Rouge N/Ab Udarents
SV Vernon i. Caddo Fine-silty, siliceo

ii. Guyton Fine-silty, siliceo
iii Malbis Fine-loamy, silic
iv. Ruston Fine-loamy, silic

a Soil Survey Staff, 2005.
b Not applicable.
further introduced a correlation constraint to establish an alter-
nating least squares (ALS) multivariate model (Antunes et al.,
2002). The question is: How useful would such a model be when
there is a larger contribution of unknown physical contributions
and chemical interferents in the measured VisNIR spectra of the
analyzed soil samples?

Thus, the objectives of this study were to: (i) compare two
different multivariate data-mining tools with two different spectral
pretreatments for characterizing petroleum contaminated soils and
(ii) to examine whether MCReALS analysis can be used for the
simultaneous quantification and spectral profile recovery of n-
hexane in petroleum contaminated soils. To the best of our
knowledge this study is the first attempt to adopt VisNIR DRS in
combination with MCR-ALS for the determination of petroleum
hydrocarbons in contaminated soils. It is our hope, through this
paper, to raise awareness of a methodology that could be adapted
by many of the reclamation agencies and organizations involved,
directly benefiting people, wildlife, and the environment. We also
hope this study can provide some rudimentary, but important, in-
sights on the future utility of VisNIR DRS sensors for real time soil
petroleum contamination monitoring.

2. Materials and methods

2.1. Soil sample collection

Initially, a total of 46 samples (0e15 cm) were collected from multiple sites
[Sabine (SAB), Sonat (SON), Winn Dixie (WD), Mississippi River (MR), and Alpine
(ALP)] located in different parishes within Central and Southern Louisiana in August,
2008 (Table 1, Fig. 1). The sampling strategy was developed with information pro-
vided by the Louisiana Oil Spill Coordinators Office (LOSCO) to ensure maximum
TPH variability within the soil samples collected. Soil samples included both
contaminated and similar soils with no-known petroleum contamination. Samples
were placed on ice for transport to the laboratory and refrigerated at 4 �C in the
laboratory. Another 118 surface (0e15 cm) soil samples were collected from a crude
oil well blowout site (near the Sonat site, referred to as SV) located in Kisatchie
National Forest in Vernon Parish, Louisiana across an 80 ha area densely vegetated
by trees, shrubs, and grasses. The sampling locations at the blowout site represented
four soil series: Caddo silt loam (fine-silty, siliceous, active, thermic Typic Glossa-
qualf), Guyton silt loam (fine-silty, siliceous, active, thermic Typic Glossaqualf),
Malbis fine sandy loam (fine-loamy, siliceous, subactive, thermic Plinthic Paleudult),
and Ruston fine sandy loam (fine-loamy, siliceous, semiactive, thermic Typic
Paleudult) (Table 1). All soil samples were sealed in air-tight glass jars to prevent
hydrocarbon volatilization and preserve field-moisture status. Readers are referred
to Chakraborty et al. (2010) and Chakraborty et al. (2012b) for detailed information
regarding soil sampling. Additionally, we collected 20 sand samples from beaches
impacted by the Deepwater Horizon oil spill near Pensacola, Florida in the summer
of 2010. However, due to the compositional difference from soil matrix, sand sam-
ples were not included in multivariate analysis and only used for qualitative spectral
exploration.

2.2. Spectral scanning

An AgriSpec VisNIR portable spectroradiometer (Analytical Spectral Devices,
Boulder, CO) with a spectral range of 350 to 2500 nm (2 nm sampling resolution and
a spectral resolution of 3 and 10 nmwavelengths from 350 to 1000 nm and 1000 to
ing VisNIR DRS in Louisiana, USA.

Samples

itic, nonacid, hyperthermic Typic Hydraquents 12
ed, superactive, calcareous, hyperthermic Fluventic Endoaquepts 2
, superactive, nonacid, hyperthermic Fluvaquentic Epiaquepts 2
onacid, hyperthermic Typic Hydraquents 8
ious, semiactive, thermic Typic Paleudults 12

10
us, active, thermic Typic Glossaqualfs 32
us, active, thermic Typic Glossaqualfs 28
eous, subactive, thermic Plinthic Paleudults 34
eous, semiactive, thermic Typic Paleudults 24



Fig. 1. Soil sampling location in Louisiana, USA. A total of 164 soil samples were collected and used in regression analysis.
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2500 nm, respectively) was used to scan soil samples with a contact probe. The
contact probe had a circular viewing area (20 mm diameter) and its own halogen
light source. Each sample was scanned four times with a 90� rotation between scans
to obtain an average spectral curve. Prior to scanning, 2 h of warming was allowed to
stabilize instrument temperature and account for dark current drift. White reference
scans (with a Spectralon� panel having 99% reflectance) were taken every four
samples. The spectroscopic reflectance measurement for each soil sample was then
obtained by averaging the four raw scans.
2.3. Spectral preprocessing

We used both derivative spectroscopy and SNV-DT to preprocess soil spectra
preceding multivariate analysis. Derivative spectra remove the baseline shift arising
from detector inconsistencies, albedo, and sample handling (Demetriades-Shah
et al., 1990). Raw reflectance spectra were processed via a statistical analysis
software package, R version 2.11.0 using custom ‘R’ routines (R Development Core
Team, 2008). These routines involved (i) a parabolic splice to correct for “gaps”
between detectors, (ii) averaging replicate spectra, (iii) fitting a weighted (inverse
measurement variance) smoothing spline to each spectra with direct extraction of
smoothed reflectance, and (iv) 1st-derivatives (FD) at 10-nm intervals. The resulting
FD spectra were extracted and individually combined with the laboratory measured
TPH. The processed data was used to build prediction models using PSR and RF al-
gorithms. Barnes et al. (1989) proposed SNV-DT to remove multiplicative in-
terferences of scatter and particle size and to explain the difference in baseline shift
and curvilinearity in diffuse reflectance spectra. SNV, which is also known as z-
transformation or centering and scaling (Otto, 1998), normalizes each spectrum r to
zero mean and unit variance by subtracting the mean of this spectrum r0 and
dividing the difference by its standard deviation sr (Eq. (1)):

SNV ¼ ðr� r’Þ�sr (1)



Table 2
Descriptive statistics of measured TPH and n-hexane for 164 soil samples scanned
with VisNIR DRS.

Parameter n Max Min Mean Standard
deviation

mg kg�1

TPH 164 3.74 � 109 1.12 23,485,340 2.92 � 108

n-hexane 164 378 2.51 76.98 69.28
log10 mg kg�1

TPH (log10 mg kg�1) 164 9.57 0.05 3.90 1.44
n-hexane

(log10 mg kg�1)
164 2.57 0.04 1.70 0.43
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This is followed by a detrending step which is a 2nd-order polynomial fit to the
SNV transformed spectrum and subtracted from it to correct for wavelength-
dependent scattering effects (Buddenbaum and Steffens, 2012). Like FD spectra,
SNV-DT spectra of soil samples were also used for PSR and RF modeling. For MCR-
ALS, the reflectance spectra were transformed to absorbance (log 1/reflectance).

2.4. Total petroleum hydrocarbon and n-Hexane analysis

The petroleum in soil samples were extracted using method 5520 D Soxhlet
extraction in a commercial laboratory (Clesceri et al., 1998), and TPH was quantified
by method 5520 F (Clesceri et al., 1998). Briefly, in the Soxhlet extraction, petroleum
was extracted at a rate of 20 cycles h�1 for 4 h using n-hexane or solvent mixture
(80% n-hexane/20% Methyl tert-butyl ether, v/v). For gravimetric determination of
TPH (method 5520 F), the extracted oil was redissolved in n-hexane and an
appropriate amount of silica gel was added. The solutionwas stirredwith amagnetic
stirrer for 5 min and filtered through a filter paper premoistened with solvent and
collected in a flask. The silica gel and filter paper were washed with 10 ml solvent,
and combined with filtrate. Solvent was recovered by distillation from flask in a
water bath at 85 �C. The flask was cooled in a desiccator for at least 30 min and
weighed.

Volatile n-hexane in contaminated soil samples was quantified using super-
critical fluid extractionwith a sorbent trap as described by Yang et al. (1995). Briefly,
10 g of soil sample was used to fill the HP 7680T supercritical fluid extractor’s
stainless steel extraction cell and was extracted at 340 atm and 80 �Cwith SFC-grade
CO2 at a flow-rate of 1.5 ml/min for 30 min. Collection traps were filled with 1 ml of
trappingmaterial (Porapak Q, 60/80mesh) and extractionwas continued for 30min.
1, 3, 5-triisopropylbenzene was used as the internal standard. Extracts were
analyzed by an HP 5890 GC coupled with an FID detector. Both TPH and n-hexane
analysis were done in triplicate.

2.5. Multivariate total petroleum hydrocarbon predictive models

It is known that classical least squares modeling approaches usually fail on high-
dimensional multivariate calibration problems because the size of the regressors is
larger than the sample size. Unlike most other approaches, the PSRmodel makes use
of the ordered structure among the regressors (Eilers and Marx, 1996) and is well-
suited for ill-posed problems (the dimensionality is much larger than the sample
size) such as signal regression problems. In this study, the cubic B-spline was used
(using R version 2.14.1) as the base function with 100 equally spaced knots. The
order of the penalty was set to the default value of three. The data was randomly
split into training (120 samples, w73% of the whole data) and test sets (44 samples,
27%). The optimal value for the penalty-tuning parameter was selected by mini-
mizing the LOOCV error on the training set. Since, the original TPH values were
widely and non-normally (1.22e3.74 � 109 mg kg�1) distributed, BoxeCox trans-
formation (Box and Cox, 1964) was applied to the original TPH data using l ¼ 0
(log10-transformed) to bring the data to a Gaussian distribution. The log10-trans-
formed TPH values were used for both PSR and RFmodels as the dependent variable.
In this study, the random forest package was used in R to build the random forest
model (Breiman, 2001). The number of trees in random forest was set to the default
value of 500. The coefficient of determination (r2), bias (systematic error), and RPD
were used as rubrics for evaluating the quality of RF and PSR in real-world situations.

2.6. Multivariate curve resolution alternating least squares

We used MCR-ALS to quantify n-hexane present in petroleum contaminated
soils via VisNIR DRS spectra using MATLAB 2009a (The Mathworks, MA, USA). The
algorithm started with a data matrix, M which contained the different individual
spectra measured for the different soil samples in the rows, while the columns
represented absorbance values at each spectral wavelength. Subsequently, principal
component analysis (PCA) was done to estimate the possible number of compo-
nents. Comparable to BeereLambert law (Skoog et al., 1995), the aim of MCR is to
establish a bilinear relation between the experimental data, the concentrations, and
the pure spectra as follows (Azzouz and Tauler, 2008) (Eq. (2)):

M ¼ CST þ E (2)

where M (A, B) denotes the matrix of experimental data, of dimensions A soil
samples (spectra) by B wavelengths; C (A, K) represents the matrix of concentration
profiles of the different K analytes present in the contaminated soil samples; ST (K, B)
stands for the spectramatrix, whose K rows contain the pure spectra associatedwith
the K species present in the samples; E (A, B) is the matrix associated to the
experimental error. See Azzouz and Tauler (2008) for details on the resolution of
experimental spectral data matrix M. We followed purest variable based initial
estimation of spectral or concentration profile for each species to start the iterative
ALS process (Windig and Stephenson,1992;Windig,1992; Azzouz and Tauler, 2008).
The unconstrained least squares solutions for estimating spectral profiles and con-
centration profiles followed Eqs. (3) and (4), respectively (Azzouz and Tauler, 2008).

C ¼ M
�
ST

�þ
(3)
ST ¼ CþM (4)

Note that, (ST)þ and Cþ are the pseudoinverse matrices of the spectra matrix ST

and C matrix, respectively. Initial estimates needed to start the ALS procedure
described by these two abovementioned equations were obtained by SIMPLISMA
(SIMPLe-to-use Interactive Self Modeling Analysis) algorithm (Windig and
Stephenson, 1992). A series of constraints like non-negativity concentration
constraint, non-negativity spectra constraint, and correlation constraint were
imposed. For details on these constraints, see Sajda (2006) and Kumar and Mishra
(2012).

2.7. Principal component analysis

PCA was applied for qualitative VisNIR discrimination of the prepared samples
according to the variable locations for both derivative spectra and SNV-DT spectra.
The cumulative proportion of variance explained by the leading principal compo-
nents (PC) was used to extract optimum PCs. Furthermore, pairwise scatterplots of
the first three PCs were produced to provide visual assessment on how different
groups were separated in the PC space. PCA was performed using R version 2.11.0
(function: prcomp).

3. Results and discussions

In the present study, log10-transformed TPH contents of 164
analyzed soil samples ranged from 0.05 to 9.57 log10 mg kg�1. These
values were used as the dependent variable for subsequent RF and
PSR modeling (Table 2). Usually, scientists collect soil and other
environmental samples from the petroleum spill site and subse-
quently analyze for TPH using several standard methods. However,
these methods neither measure the entire hydrocarbons in a
sample, nor do they measure identical subsets of hydrocarbons
when methods are compared (Baugh and Lovergreen, 1990).
Consequently, reported TPH is a method-dependent entity in all
media (McKenna et al., 1995). Moreover, owing to varying magni-
tudes of volatility and dissolution ability of petroleum constituents,
the results of TPH analyses are believed to be controlled by elapsed
time since spill as well as the fuel type. Considering the above-
mentioned limitations, we measured n-hexane as an alternative to
TPH. Notably, n-hexane was positively but non-significantly
correlated with TPH content (r ¼ 0.8). Maximum average TPH
content was obtained from the MR site (74,131 mg kg�1) followed
by the SON (22,387 mg kg�1), WD (6606 mg kg�1), SV
(4850 mg kg�1), ALP (4265.8 mg kg�1), and SAB (4073.8 mg kg�1)
sites. Conversely, maximum average n-hexane concentration was
achieved from the SAB site (213.8 mg kg�1) followed by the MR
(85 mg kg�1), ALP (65 mg kg�1), SON (63.5 mg kg�1), WD
(52.4 mg kg�1), and SV (42.6 mg kg�1) sites. However, we refrained
from comparing and interpreting the spatial variability of the TPH
and n-hexane within and among sites due to an unequal number of
samples for each site within the experimental design. Indeed,
almost 72% of the samples (n ¼ 118) were collected from SV site.
Researchers have reported that the collection of a sufficient number
of petroleum contaminated samples and crude oil with different
compositions and quality indices is not an easy task and sometimes
involves legal proceedings (Balabin and Safieva, 2007; Chakraborty
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et al., 2012a). We acknowledge that the unevenness in the number
of soil samples somewhat constrain the global applicability of the
dataset. Nevertheless, this research was intended to investigate the
viability of different spectral analysis techniques, and ascertain
which techniques show the most promise for future investigations.
Low molecular weight alkanes like n-hexane tends to volatilize
following a spill and do not have a great tendency to leach and
migrate into subsurface soils or groundwater due to their hydro-
phobicity and affinity for organic carbon (CRC, 1986). Thus, we feel
that other indicators like benzene, toluene, ethylbenzene, and
xylene (BTEX) should be individually analyzed and combined with
VisNIR spectra for subsequent multivariate analysis. The testing of
crude oil composition (BTEX and PAHs) was, however, beyond the
scope of this study.

Spectral data from five randomly selected beach sand samples
are displayed in Fig. 2 to show the appearance of the spectral fea-
tures in the contaminated samples. In general, the spectra of similar
types of samples (contaminated and clean sand) were similar while
increasing crude oil concentration caused higher absorbance,
reflecting less light than non-contaminated or reference samples
(Weindorf et al., 2011). Changes in the reflectance pattern in the
visible region (350e700 nm) possibly appeared from color associ-
ated changes when crude oil was mixed with clean sand. The same
trend was observed by researchers in case of other soil matrices
(Mouazen et al., 2005; Okparanma and Mouazen, 2013). Sand
contaminated with heavy oil and clean sand exhibited the highest
and least absorbance, respectively, with intermediate reflectance
for sand containing tar balls. Interestingly, in the reflectance curves
of the contaminated sands, spectral absorption minima of crude oil
Fig. 2. VisNIR diffuse reflectance spectra of five sand samples after t
was appeared around 1714 and 1758 nm in the first overtone region
of the NIR band, possibly arising from CeH stretching modes of
terminal CH3 and saturated CH2 groups linked to TPH (Okparanma
et al., 2014). Although the locations of abovementioned signatures
were a bit shifted from the exact anticipated positions (1712 nm,
1752 nm, respectively), it was natural in the sense that real mole-
cules do not behave totally harmonically. These signatures, how-
ever, were absent in case of clean sand samples. Overall, VisNIR DRS
appeared to be successful in identifying the variability in crude oil
content in a sand matrix owing to differential absorbance.

The upper and lower panels of Fig. 3 show the pairwise PC plots
among the first three leading components on the FD data and SNV-
DT data, respectively. Based on these two panels, the PC plots for
both spectral pretreatments showed a similar pattern and appeared
like mirror images of each other. Moreover, all plots exhibited clear
location-clustered structure. This could be explained by the spec-
tral heterogeneity which resulted partly from soil matrix variability
(from Typic Hydraquents to Typic Paleudults) and partly from
variable crude oil composition (Chakraborty et al., 2010). For
example, the first leading component (PC1) separated the SV
samples from the ALP, SAB, MR, and WD samples. Samples from
SON were mixed between the two groups since SON samples
belonged to the Ruston fine sandy loam series fromwhere some of
the SV samples were collected later. Only SV samples tended to
have very low to very high scores along PC2, showing greater
spectral diversity. The first three leading PCs constituted over 97%
of the spectral variation. No obvious outlier among the samples was
seen. Therefore, it can be concluded that this hyperspectral sensing
demonstrates both the power of unsupervised PCA as a means of
he 2010 Deepwater Horizon spill, Pensacola beach, Florida, USA.



Fig. 3. The upper and lower panels exhibit pairwise PC plots of the first three components for FD spectra and SNV-DT spectra, respectively.
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discriminating VisNIR reflectance spectra of oil contaminated soils
and a tendency for regional similarity of contaminated soils.
Interestingly, considering site wide average n-hexane content, a
subtle distribution of samples was observed on PC1 of the FD
spectra (Fig. 3, upper left plot). The separation of the VisNIR profiles
of the SAB and SV sites with the highest (213.8 mg kg�1) and lowest
(42.6 mg kg�1) average n-hexane contents, respectively was
obvious.

Applied to the quantification of log10-transfomed TPH, VisNIR
DRS produced significant and strong correlations to traditional lab
analysis for both PSR and RF models (Figs. 4 and 5). Fig. 4a shows
the FD (PSR) predicted TPH contents against the lab measured
values using the whole dataset. The overall r2 (including both the
training and test sets) was 90%. The non-unity regression line value
(see Brown et al., 2006) was only 2%, suggesting that VisNIR-FD
(PSR) did not substantially over or underestimate soil TPH. The
Fig. 4. Figures showing a) FD (PSR) predicted vs. lab measured TPH contents using the whole
curve at each waveband. The gray-shaded area is the 90% confidence interval.
summary error statistics on the 27% test dataset for both spectral
preprocessing is presented in Table 3. Moreover, Fig. 4b shows the
estimated regression coefficients together with the 90% confidence
interval band for the FD (PSR) model. Two spikes on the coefficient
plot with different signs were observed: one was w1200 nm and
the other was w2200 nm which could contain the 2298-nm
(stretch þ bend) signature correspond to combination and over-
tone bands primarily of saturated CH2 or CH3 of crude oil as re-
ported by Mullins et al. (1992).

In this study, the number of trees in RF was set to the default
value of 500. The data splitting scheme was the same as the one
described in the PSR model section to obtain a fair comparison. The
training/out-of-bag (OOB)/test errors (in RMSE) on different values
of mtry (random subset), which is the size of the candidate subset
for each splitting, are illustrated in Fig 5a. The vertical dashed line is
the optimal mtry value that minimizes the OOB error. It was
dataset (with dotted 1:1 line) and b) the fitted penalized splines (P-splines) coefficient



Fig. 5. Figures showing a) changes in RMSE (log10 mg kg�1) on different values of mtry for FD (RF) and b) FD (RF) predicted vs. lab measured TPH contents using the whole dataset
(with dotted 1:1 line).
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apparent that the prediction performance was quite insensitive to
the mtry value. Moreover, the OOB error was very close to the test
error. Hence OOB error was used as an estimate of the prediction
performance for the model on a new dataset, while the training
error was substantially below the test error. On the other hand,
Fig. 6 illustrates the RMSE on different values of the tuning
parameter l (on log10 scale) for FD (PSR) model. The vertical dash
line is the optimal value for l which minimizes the LOOCV error
(blue dash line) (in the web version). It was clear that the selected
tuning parameter value was very close to the optimal value that
minimized on the test set (red line). Conversely, the training error
monotonically decreased with the size of l. Furthermore, Fig. 5b
shows the FD (RF) predicted vs. lab measured TPH values using the
whole dataset. The overall r2 (including both the training and test
sets) was 88%. Nevertheless, while comparing the prediction per-
formances of both models based upon the 27% test set, the FD (PSR)
model outperformed all other models tested, providing the highest
coefficient of determination (0.87) along with the highest RPD
(2.78) and lowest RMSE (0.528 log10 mg kg�1), indicating the
robustness and accuracy of the model (Table 3). Accuracy and sta-
bility of different multivariate models were evaluated according to
the RPD-based rubrics by Chang et al. (2001). Summarily, consid-
ering regression models using both the complete dataset and test
set, the FD (PSR) model outperformed all other models. The influ-
ence of the two different spectral pretreatments on the VisNIR
prediction of soil TPH was rather small. Even if researchers have
reported the advantages of spectral pretreatments before subse-
quent modeling (Ben-Dor et al., 1997), in this study those trans-
formations were not very useful. While spectral pretreatments
might have emphasized the information contained in the spectra,
the powerful PSR algorithm did not seem to depend on that.
Another reason of little impact of spectral pretreatment could be
the very broad absorption features which appeared in the VisNIR
region (Kooistra et al., 2001).

Since VisNIR DRS is sensitive to changes in the matrix material
scanned, especially moisture (as it relates to OeH bonding and
Table 3
Summary statistics for PSR and RF models using a 27% test set with FD and SNV-DT
spectra for predicting soil TPH.

Model r2 RPDa RMSE
(log10 mg kg�1)b

Bias
(log10 mg kg�1)

FD (PSR) 0.87 2.78 0.528 0.009126
SNV-DT (PSR) 0.80 2.21 0.664 0.02886
FD (RF) 0.58 1.56 0.954 �0.09446
SNV-DT (RF) 0.58 1.57 0.948 �0.0009141

a RPD, Ratio of standard deviation and RMSE.
b RMSE, Root mean squared error of prediction.
color) (Bishop et al., 1994; Zhu et al., 2010), bringing the soil sam-
ples to standard water content (field capacity) before scanning was
found to be crucial for obtaining consistent results. Notwith-
standing that under laboratory controlled conditions soil can be
scanned under uniform moisture content, maintaining unique
water content in the field is not easy. Thus, in this study we relied
on findings of several researchers where it was reported that NIR
spectra calibrated using field soil samples can be used for field
prediction of soil properties (Christy, 2008; Kusumo et al., 2008;
Bricklemyer and Brown, 2010). Scientists suggested that incorpo-
rating an extensive range of moisture content in the calibration set
could reasonably handle the issue of moisture variation (Minasny
et al., 2011).

In this work, we compared MCR-ALS and PSR with cross-
validation in the analysis of contaminated samples using VisNIR
DRS for generating both qualitative and quantitative information of
the n-hexane present in the samples. The FD data was used for PSR
while no data pretreatment was done for MCR-ALS. Model pre-
diction performance indicated that multivariate generalization ca-
pacity worsened for n-hexane compared to TPH. However, FD (PSR)
slightly outperformed MCR-ALS with a higher coefficient of deter-
mination (0.70) and better RMSE (0.241 log10 mg kg�1), while the
latter produced an r2 of 0.65 and an RMSE of 0.261 log10 mg kg�1

(Fig. 7). Interestingly, this trend again upheld the idea that cross-
validation models developed by pre-processed spectra had better
quality than raw reflectance models (Okparanma et al., 2014). For
both algorithms, we can see that the prediction deteriorates
significantly and also has a bias, a tendency to under-predict with
Fig. 6. Changes in RMSE (log10 mg kg�1) on different values of the tuning parameter l
(on log10 scale) for the FD (PSR) model.



Fig. 7. Figures showing a) FD (PSR) predicted vs. lab measured n-hexane contents (with dotted 1:1 line) and b) MCR-ALS predicted vs. lab measured n-hexane contents for the using
the whole dataset.
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increasing n-hexane content. Apparently, achieving a high cali-
bration performance was difficult perhaps due to highly volatile
nature of n-hexane and because of the substantial contribution of
unknown physicochemical interferents (e.g., PAHs, soil texture, soil
organic matter) in the measured VisNIR spectra of the analyzed soil
samples. We believe that an intensive discussion on these practical
difficulties would require the study of a larger number of samples
with a better control of such interferents. Nonetheless, n-hexane
determination using MCR-ALS showed some potential and was
close to the optimal one achieved through FD (PSR). While the n-
hexane prediction accuracy using both algorithms was not as high
as that obtained for other constituents of petroleum contaminated
soils (Okparanma et al., 2014), the results were encouraging,
considering the magnitude of difficulties inherent to MCR-ALS to
correctly resolve and quantify components contributing insignifi-
cantly to the measured spectra and also to the fact that neither
sample nor spectral pretreatment was performed using MCR-ALS.
While comparing the VisNIR spectra of n-hexane as resolved by
MCR-ALS and reported elsewhere (Analytical Spectral Devices,
2001), the former produced very similar curves and clearly iden-
tified the characteristics bands at w1150 nm, 1450 nm, and
w1850 nm (Fig. 8). However, one must use caution these plots are
interpreted, since these bands were broad and perhaps over-
lapping. In general, the presence of octane in hexane (Fig. 8b)
perhaps caused a deviation in the form of the bands located below
1100 nm. Note that the peaks from the study all appeared to be
shifted relative to the literature peak pattern. While the patterns
were very similar, the first peak from the study appeared to be
shifted a bit to the left, while the second and third peaks were
shifted to the right. This was expected since real molecules do not
behave totally harmonically (Bishop et al., 1994), suggesting that
interpretations of soil VisNIR spectra can be difficult particularly
Fig. 8. Plots exhibiting a) pure spectra of n-hexane estimated by MCR-ALS and b) s
when the target species is present in only small amounts in the soil.
Although MCR-ALS was able to calculate pure spectra of all chem-
ical species in the contaminated soil, we presented only n-hexane
since detailed compositional characterization with reference
methods was beyond the scope. Summarily, in this work, it was
shown that the MCReALS can be used for the simultaneous
extraction of the pure synchronous profile at various wavelengths
from the VisNIR DRS. However, it is also true that the obtained
results may not be as accurate as in the synthetic mixtures.

4. Conclusions

A fast and convenient soil analytical technique is needed for
post-spill soil quality assessment and formulating an effective
restoration plan. VisNIR DRS is a simple and non-destructive
analytical method that can be used to predict several soil proper-
ties simultaneously. This study utilized a total of 164 petroleum
contaminated soil samples from central and southern Louisiana for
scanning via VisNIR spectrometer and correlating diffuse reflec-
tance data and soil TPH values. The results showed that the de-
rivative spectroscopy was a better pretreatment as compared to the
SNV-DT pretreatment. The PSR model using FD spectra out-
performed all models tested, producing 87% of the variability of the
independent validation set. Unsupervised PCA also qualitatively
separated contaminated soils location-wise. Visual interpretations
from PC plots revealed subtle separation of samples based on
average site wise n-hexane contents. Hence, VisNIR DRS showed
the potential to be used as a post-spill rapid soil contamination
monitoring tool. Furthermore, the predictive ability of MCR-ALS for
a specific analyte (n-hexane, in this study) in the presence of in-
terferences in crude oil contaminated soil samples showed poten-
tiality and produced comparable results (r2 ¼ 0.65 and RMSE 0.261
pectra of hexane taken from the literature (Analytical Spectral Devices, 2001).
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log10 mg kg�1) to the FD (PSR) model (r2 ¼ 0.70 and RMSE 0.241
log10 mg kg�1) alongwith simultaneous recovery of pure spectra. In
this present feasibility study, we have presented a preliminary
contribution to this problem and further intensive research is rec-
ommended to confirm the results here obtained.
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