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a b s t r a c t

The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse
reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic
activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost sam-
ples representative of five different compost facilities were scanned by DRS, and the raw reflectance spec-
tra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six
multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfacto-
rily identified the clusters by compost types, it could not separate different FDA contents. Furthermore,
the artificial neural network multilayer perceptron (residual prediction deviation = 3.2, validation
r2 = 0.91 and RMSE = 13.38 lg g�1 h�1) outperformed other multivariate models to capture the highly
non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Sav-
itzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for pre-
dicting compost enzymatic as well as microbial activity.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

While resource recovery and subsequent composting play a key
role in agriculture, horticulture, soil science, and waste manage-
ment; constant monitoring of compost quality is time consuming
and laborious. Microbial enzymatic activity which is an indicator
of overall microbial activity of compost, is currently estimated by
the non-specific fluorescein diacetate hydrolysis (FDA-HR) assay
(Ntougias et al., 2006). Furthermore, FDA-HR assay is also used to
predict the suppressive capacity of compost on plant pathogens
(Inbar et al., 1991). Nonetheless, the estimation procedure is
expensive, time-consuming, and strictly lab based. The visible,
near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS), an
emerging tool in precision agriculture, may be a promising alterna-
tive to estimate compost microbial activity in a rapid and cost-
effective manner.

The DRS approach consists of measuring reflectance values for a
given sample as a function of wavelength (k) over 350–2500 nm

region of the electromagnetic spectra. These reflectance values
(also, known as spectral signatures) mainly arise from atomic elec-
tronic transitions and vibrational stretching and bending of struc-
tural groups of molecular atoms. While the fundamental vibrations
of most organic molecules occur in mid-infrared (MIR) region, NIR
spectra are dominated by weak overtones and combinations of
fundamental vibrational bands. The active bonds in organic matter
in the VisNIR region (350–2500 nm) are the OAH, CAN, NAH, and
C@O groups (Malley et al., 2002). There is a growing body of liter-
ature on the use of near infrared spectroscopy (NIRS) for empirical
calibrations, to simultaneously predict compost physical, chemical,
and biological properties (Michel et al., 2006; Chakraborty et al.,
2013).

Machine learning is a data based procedure allowing computers
to ‘learn’ and ‘recognize’ the patterns of the empirical data
(Mitchell, 1997). Several prediction methods have been developed
in statistics and machine learning. Specifically, artificial neural net-
work (ANN) based models, tree-learning techniques, rule-learning
algorithms, and the traditional modeling approach such as
linear regression, are the most widely used (Wu et al., 2013).
Chemometric data reduction methods such as partial least squares
regression (PLS), principal component regression (PCR), stepwise
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multiple linear regression etc. have been used to calibrate VisNIR
spectra with several compost properties. The reported predictive
accuracy of DRS-compost studies suggested that this hyperspectral
technique by means of its rapidity, non-destructive analysis with
minimal sample pretreatment might replace standard laboratory
methods for some compost applications (McWhirt et al., 2012;
Chakraborty et al., 2013). Additionally, VisNIR DRS is field portable
and might remove the constraints of quantifying compost FDA-HR
in the lab.

Since there is a limited number of studies on the use of NIRS for
compost FDA-HR assay, more investigations on the applicability of
VisNIR DRS for compost FDA-HR assay involving a sample set hav-
ing diversified compost samples are warranted. The objectives of
this study are (i) to compare 35 different combinations of seven
spectral pretreatments and five state-of-the-art machine learning
algorithms to unravel the relationship between FDA-HR assay
and compost VisNIR spectra, and (ii) to determine whether ANN
model could assist in improving the DRS prediction accuracy. Since
conventional PLS-based sensors are complicated for field use, the
overarching goal of this study was to identify some other options
to conventional VisNIR-PLS models, which would aid in designing
a practical sensor configuration for a field person.

2. Materials and methods

2.1. Sample collection

This study included one hundred compost samples from five
full scale composting facilities (referred to as Dairy, Vermi, PDOM,
Dairybio, and Hostel) of Ramakrishna Mission Ashrama, Narendra-
pur, India (22�2602100N, 88�2304500E). To offset some spatial hetero-
geneity that may occur within a single pile, each sample
represented a mixture of three subsamples collected across the
same pile. For each subsample, a hole was made with a hand sho-
vel and samples near the top, middle, and bottom were collected
and mixed in a polyethylene bucket. Subsequently, samples were
placed in low-density polyethylene zip-lock bags and transported
to the laboratory inside a cooler box (�4 �C). Upon arrival at the
lab, the samples were sieved (10 mm), homogenized, air-dried at
45 �C, ball milled, and stored in plastic bags at room temperature
for VisNIR scanning and FDA-HR assay. A ‘‘fresh’’ aliquot of each
sample was kept in 4 �C and subsequently used for compost phys-
icochemical analyses (EC, water holding capacity, pH, moisture
content, organic carbon, and volatile solids) within one week of
sample collection. Note that, air-dried samples were preferred for
FDA-HR assay over ‘‘fresh’’ aliquot since Mondini et al. (2004) dem-
onstrated that the use of air-dried samples improves the consis-
tency and the applicability of the enzymatic methods for the
characterization of the composting process.

2.2. Compost physicochemical characterization

In this study, AR grade (Sigma) chemicals were used without
further purification. All solutions were prepared with MilliQTM

(18.2 M O) water and sterilized by filtration (0.44 lm pore) or by
autoclave at 120 �C. Compost water holding capacity (WHC) was
estimated following modified ASTM method D 2980-71 (American
Society of Testing Materials, 1971). Electrical conductivity and pH
were determined following method 04.11-A 1:5 Slurry (USDA-
USCC, 2002) using a Mettler-Toledo pH meter (Mettler-Toledo
Inc., Columbus, OH, USA) and Systronics 306 EC meter (Systronics
India Ltd., Ahmedabad, India), respectively. Moisture content was
estimated via method 03.09-A (USDA-USCC, 2002) while total vol-
atile solid was estimated following Wu and Ma (2001). The organic
matter (%) of compost samples was analyzed following TMECC

method 0.50.7-A loss on ignition (LOI) (USDA-USCC, 2002). All
characterizations were done in four replicates. Details of WHC
and volatile solid estimation are elaborated in Supplementary
Material (SM).

2.3. Compost fluorescein diacetate hydrolysis assay

The FDA-HR assay is considered non-specific since it is sensitive
to the activity of several enzyme classes including lipases, ester-
ases, and proteases. Activity of these enzymes causes the hydro-
lytic cleavage of FDA (colorless) into fluorescein (fluorescent
yellow-green). In present study, the FDA-HR assay was carried
out following the method given by Schnurer and Rosswall
(1982). Briefly, 5 g of well-mixed, air-dried compost was mixed
with 50 mL potassium phosphate buffer (pH 6.7; 8.1 g KH2PO4,
and 1.3 g K2HPO4L�1) and 0.5 mL FDA (2 mg FDA mL acetone�1).
The mixture was incubated at 25 �C under continuous horizontal
shaking at 120 rpm. The reaction was stopped after 30 min by add-
ing 50 mL acetone and the extracts were filtered through What-
man-42 cellulose filter (GE healthcare, Little Chalfont, UK). The
extinction of the extracts was determined against a blank at
492 nm using a Fisher Scientific Evolution 60S UV–Visible Spectro-
photometer (Thermo Scientific Barnstead, Dubuque, IA). Moreover,
seven standards in the range of 1–6 lg fluorescein mL�1 were pre-
pared. Four analytical replicates and triplicate controls were used.
These FDA-HR (lg g�1 h�1) values were used as dependent vari-
ables in the subsequent modeling studies.

2.4. Spectral scanning and pretreatments

In the laboratory, the 100 compost samples were scanned using
a field portable ASD FieldSpec

�
VisNIR spectroradiometer (Analyt-

ical Spectral Devices, CO, USA) with a spectral range of 350–
2500 nm. The spectroradiometer had a 2-nm sampling interval
and a spectral resolution of 3- and 10-nm wavelengths from 350
to 1000 nm and 1000 to 2500 nm, respectively. Samples were al-
lowed to assume room temperature, evenly distributed in a opaque
polypropylene sample holder and scanned from top with an ASD
contact probe connected to the FieldSpec

�
with a fiber optic cable,

having a 2-cm-diameter circular viewing area and built-in halogen
light source (Analytical Spectral Devices, CO, USA). Full contact
with the sample was ensured to avoid outside interference. Each
sample was scanned four times with a 90� rotation between scans
to obtain an average spectral curve. Each individual scan was an
average of 10 internal scans over a time of 1.5 s. The detector
was white referenced (after each sample) using a white spectralon
panel with 99% reflectance, ensuring that fluctuating downwelling
irradiance could not saturate the detector. Raw reflectance spectra
were processed via a statistical analysis software package, R ver-
sion 2.11.0 (R Development Core Team, 2008) using custom ‘‘R’’
routines (Chakraborty et al., 2013) for direct extraction of
smoothed reflectance at 10 nm intervals.

This study used seven spectral pretreatment methods to pre-
pare the compost smoothed spectra for analysis, and six multivar-
iate algorithms to develop the predictive models. Spectral
pretreatments helped in reducing the influence of the side infor-
mation contained in the spectra. The pretreatment transformations
applied were- gap segment derivative (segment size = 7 and gap
size = 7) (GSD), Norris gap derivative across a seven-band window
(NGD), Savitzky–Golay first derivative using a first-order polyno-
mial across a ten band window (SG), standard normal variate
transformation (SNV), normalization by range (NRA), log (1/reflec-
tance) (ABS), and multiplicative scatter correction (MSC). All
pretreatment transformations were implemented in the Unscram-
bler X 10.3 software (CAMO Software Inc., Woodbridge, NJ). All
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seven spectra were included as candidate explanatory variables for
FDA-HR in subsequent modeling analyses.

2.5. Machine learning

Initially, five multivariate methods tested were partial least
squares (PLS), principal component regression (PCR), random forest
(RF), support vector regression (SVR), and penalized spline regres-
sion (PSR) (Breiman, 2001; Guyon et al., 2002). Two samples were
not included in the multivariate models due to missing values and
removed a priori. Two model evaluation approaches were taken:
(i) Initially, the whole dataset was randomly divided only once into
a�70% training set (n = 70) for calibration and a�30% independent
validation set (n = 28) to prevent overfitting and (ii) this step was re-
peated 50 times for more honest evaluation of the prediction perfor-
mance. Each time the five methods were applied on the training set
and validated by test samples. For the latter approach, the root mean
squared error (RMSE) of test set was extracted which resulted in
1750 [7(preprocessing) � 5(model) � 50(iteration)] RMSE on test
sets. Additionally, the average and standard deviation (SD) of RMSE
from 50 iterations were also extracted to measure the stability of
predictive models. For PSR, the cubic B-spline was used via R version
2.14.1 (R Development Core Team, 2008) as the base function with
100 equally spaced knots. The order of the penalty was set to the de-
fault value of three. The optimal value for the penalty-tuning param-
eter was selected by minimizing the leave-one-out-cross-validation
(LOOCV) error on the training set. Moreover, the ‘randomForest’
package was used in R to build the random forest model. The number
of trees in random forest was set to the default value of 500. The coef-
ficient of determination (r2), RMSE, residual prediction deviation
(RPD), and bias were used as rubrics for judging model generalizing
capability.

Subsequently, the best performing spectral pretreatment that
was selected by aforementioned models was combined with ANN
to test whether it can further improve DRS predictability (Ripley,
1996) (For more details on ANN, see SM). The principal component
analysis (PCA) approach was applied for dimensionality reduction
and qualitative VisNIR discrimination of the inherently different
compost samples for all spectral pretreatments. Fisher’s linear dis-
criminant analysis (LDA) was then applied on the selected leading
PCs, assuming equal prior probability for each group. To assess
classification results, kappa coefficients were computed (Thomp-
son and Walter, 1988). PCA was performed using R version 2.11.0
sing function ‘prcomp’.

3. Results and discussion

3.1. Compost physicochemical and biological properties

Compost samples varied in their physical, chemical, and biolog-
ical properties since composition of feedstock and compost

maturity varied among facilities (Table 1). EC was positively corre-
lated with compost pH (q = 0.88) and WHC (q = 0.94) while com-
post age was negatively correlated with moisture content
(q = �0.9) (Table SM-1). Notably, in compliance with the earlier
findings (Michel et al., 2006), the absence of significant linear
correlation between compost FDA-HR and other tested compost
properties (compost organic matter, volatile solids, WHC, pH, EC,
moisture content, and age) justified the exclusion of latter group
as auxiliary predictors in the subsequent VisNIR FDA-HR models.
Nevertheless, one must use caution while comparing and inter-
preting the compost properties due to unequal replicates for each
of the composts within the experimental design. The authors
acknowledge that the variability of number of compost replicates
somewhat constrained the global applicability of the dataset. How-
ever, this research was intended to investigate the viability of dif-
ferent spectral analysis techniques and ascertain which techniques
show the most promise for future investigations. Note that, the
variable enzymatic activity could not be explained by the
formation of stable humo-enzymatic complex which protects the
extracellular enzymes (Mondini et al., 2004), possibly due to lack
of correlation between FDA and compost organic matter. The test-
ing of compost humification degree (CEC/Total organic carbon)
was, however, beyond the scope of this study.

3.2. Principal component analysis and linear discriminant analysis

Despite the high dimensionality of the spectral data (215 spec-
tral channels from 350 to 2500 nm at 10-nm intervals), first three
PCs tended to explain almost 100% of the spectral variance for all
seven spectral pretreatments. Separate pairwise PC score plots
(PC1 vs. PC2) indicating five different compost types were used
to discriminate compost reflectance spectra and identify spectral
similarities within a single compost type for each spectral pretreat-
ment (Fig. 1). Any significant variation due to changes in spectral
treatment was not discernible and all plots appeared almost iden-
tical to each other. Moreover, all plots exhibited clear ‘‘compost
type-clustered’’ structure. This could be explained by the heteroge-
neity which resulted partly from compositional variability of raw
materials and partly from variable composting time. Notably, a
subtle chronological distribution of samples was observed on
PC2. The separation of the VisNIR profiles of 25-days-old PDOM,
45-days-old vermi, and 150–180-days-old Dairybio, Dairy, and
Hostel composts on this axis, may be explained by difference in
chemical composition with increasing compost age. In particular,
the alteration in the number of certain functional groups (OH, ali-
phatic CAH etc.) and varying contents of water, starch, cellulose,
pectin, and other spectrally active components perhaps signifi-
cantly influenced VisNIR spectra (Malley et al., 2005). Additionally,
the close clusters formed by two relatively older composts (Dairy
and Hostel) uphold the idea of decreasing compost heterogeneity
with maturation (Hsu and Lo, 1999). The first leading component
(PC1) distinguished the PDOM samples from vermi and dairy

Table 1
Average physicochemical and biological properties of compost samples.

Composta Compost
method

n Age
(days)

pH EC
(Sm�1)

WHCb

(gk g�1)
Moisture content
(gk g�1)

Volatile solids
(gk g�1)

Organic matter
(%)

FDA-HR
(lg g�1 h�1)

Dairy Passive
windrow

61 180 5.8 0.34 1043 547 659 22.3 603.3

Vermi Vessel 11 45 6.3 0.42 1254 645 543 20.24 666.3
PDOM Vessel 16 25 6.8 0.40 1123 754 608 19.85 678.2
Dairybio Channel 6 150 5.9 0.37 1065 532 641 25.40 705.4
Hostel Vessel 6 180 7.2 0.46 1267 568 754 19.30 691.2

a Dairy, fully decomposed mixture of dairy yard waste and dairy manure for 5–6 months; Vermi, vermicompost with Eisenia foetida; PDOM, partially decomposed organic
matter containing mixture of chopped plant litter and dairy manure slurry; Dairybio, mixture of biogas plant slurry and dairy manure; Hostel, compost from a mixture of
kitchen waste, dairy manure, and virgin soil.

b WHC, water holding capacity.

S. Chakraborty et al. / Waste Management 34 (2014) 623–631 625
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samples. Conversely, some dairybio samples were mixed with
dairy samples due to their compositional resemblance (Table 1).
Both PDOM and vermi samples tended to have low scores along
PC 2 and spectral diversity was relatively low in these two compost
samples. No obvious outlier among the samples was seen. Results
of LDA classification closely followed results of visual PC plot
inspections (Table 2). Indeed, for compost type classification, LDA
was 100% accurate in classifying compost types for all spectral pre-
treatments except SNV and MSC. For MSC and SNV, LDA correctly
classified all but three and five samples, respectively by compost
type. Therefore, it can be confirmed that this hyperspectral sensing
offers both the power of PCA as a means of discriminating VisNIR

reflectance spectra of heterogeneous compost types and exhibiting
a clustering tendency for compositional similarity with great sen-
sitivity. Nevertheless, no clear trend for FDA was obvious from
the plot, perhaps due to lack of correlation between compost age
and FDA (Table SM-1). Thus, the postulations of Cayuela et al.,
2008, who reported that FDA can unambiguously discriminate
compost samples with different ages, may not be generalized.

3.3. Qualitative characterization of compost reflectance spectra

Given that, PC loadings can be interpreted as correlations be-
tween the variables (wavelength) and the components of interest

Fig. 1. Pairwise principal component (PC) plot for PC1 vs. PC2 of seven spectral pretreatments.

Table 2
Confusion matrix showing classification of compost samples using the Fisher’s Linear Discriminant Analysis (LDA). The first two principal components (PC) scores of the seven
pretreated spectra were used as the explanatory variable. The weighted kappa coefficients are also given. The bold values are correctly classified samples.

GSD (j = 1) NGD (j = 1) ABS (j = 1)

Dairy PDOM Hostel Vermi Dairybio Dairy PDOM Hostel Vermi Dairybio Dairy PDOM Hostel Vermi Dairybio

Predicted dairy 61 0 0 0 0 61 0 0 0 0 61 0 0 0 0
Predicted PDOM 0 16 0 0 0 0 16 0 0 0 0 16 0 0 0
Predicted hostel 0 0 6 0 0 0 0 6 0 0 0 0 6 0 0
Predicted vermi 0 0 0 9 0 0 0 0 9 0 0 0 0 9 0
Predicted dairybio 0 0 0 0 6 0 0 0 0 6 0 0 0 0 6

Overall accuracy 100% Overall accuracy 100% Overall accuracy 100%

NRA (j = 1) MSC (j = 0.94) SG (j = 1)

Predicted dairy 61 0 0 0 0 61 0 3 0 0 61 0 0 0 0
Predicted PDOM 0 16 0 0 0 0 16 0 0 0 0 16 0 0 0
Predicted hostel 0 0 6 0 0 0 0 3 0 0 0 0 6 0 0
Predicted vermi 0 0 0 9 0 0 0 0 9 0 0 0 0 9 0
Predicted dairybio 0 0 0 0 6 0 0 0 0 6 0 0 0 0 6

Overall accuracy 100% Overall accuracy 96.9% Overall accuracy 100%

SNV (j = 0.91)

Dairy PDOM Hostel Vermi Dairybio

Predicted dairy 61 0 0 0 0
Predicted PDOM 0 16 0 0 0
Predicted hostel 0 0 6 0 1
Predicted vermi 0 0 0 7 2
Predicted dairybio 0 0 0 2 3

Overall accuracy 94.9%

626 S. Chakraborty et al. / Waste Management 34 (2014) 623–631
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(enzymes) to identify the underlying correlation, the PC1 loadings
(Fig. SM-1) qualitatively characterized SG spectra by interpreting
negative and positive peaks associated with the component of
interest and interfering components, respectively (Chakraborty
et al., 2013). Considering that real molecules do not behave totally
harmonically, minor positional changes in the spectral features
from the exact anticipated position were possible. Briefly, mild po-
sitive contribution (negative peak) at 350–550 nm (visible region)
indicated the VisNIR sensitivity towards compost color (Ben-Dor
et al., 1997). Additionally, strong positive contributions at
�1400 nm (2t2 + t3) and �1900 nm (t2 + t3) for OH in water mol-
ecules with minor positive contribution from near 2250 to
2500 nm for methyl (3t1) were evident (Viscarra Rossel and Behe-
rens, 2010). Strikingly, the latter region may contain 2337 nm (3rd
overtone of COOA stretching of CH3 of protein) which was previ-
ously assigned responsible for hydrolysis of FDA (Michel et al.,
2006). Since the compost samples were air-dried prior to the spec-
tral scanning, one can expect that the reflectance values, especially
at 1400 and 1900 nm actually translated the adsorbed water mol-
ecules on the highly hygroscopic compost. That notwithstanding, it
is likely that the water feature around 1400 nm might have over-
lapped with other OH groups in cellulose molecules (Elvidge,
1990), carboxylic acid (4t1) (Viscarra Rossel and Beherens, 2010)
or with CH2 groups in lignin molecules (McLellan et al., 1991).
Therefore, precise assignment of this feature was complicated.

3.4. Multivariate modeling

Initially, among the five multivariate algorithms (PLS, PSR, PCR,
RF, and SVR), FDA-HR was estimated with the greatest accuracy by
RF. For a single random split, lab-measured versus RF predicted
FDA-HR calibration models showed close out-of-bag prediction r2

(similar to LOOCV prediction on each of the training points), rang-
ing from 0.73 to 0.8 for all spectral pretreatments except ABS and
MSC (0.66 for each) (Fig. 2). In terms of calibration, NRA provided
the best results, with an r2 of 0.8. In general, RF models with all
spectral pretreatments showed underestimation at lower FDA-HR
values and overestimation at higher values. Model predictions for
the compost FDA-HR in validation set are summarized in Table 3.

Not shown, the range of values in the validation set was encom-
passed by the range of the calibration set. The prediction quality
was judged by generalization capability (validation r2, validation
RMSE, bias, and RPD) of the test set. Given that RPD is the ratio
of standard deviation and RMSE, model predictability decreases
when validation set standard deviation (SD) is comparatively lar-
ger than estimation error (RMSE). Chang et al. (2001) categorized
the accuracy and stability of their spectroscopy models based on
the RPD values of validation set. The RPD >2.0 were considered sta-
ble and accurate predictive models; RPD values between 1.4 and
2.0 indicated fair models that could be improved by more accurate
predictive techniques; RPD values <1.4 indicated poor predictive
capacity. In this study, successful prediction of FDA-HR contents
with RPD ranging from 2.01 to 2.30 for RF and SVR models sup-
ported the findings of Michel et al. (2006) that NIRS is a promising
tool for estimating microbial activity in compost samples. How-
ever, the prediction was more accurate with higher validation r2

ranging from 0.79 to 0.8 and lower RMSE (16.55–17.14 lg g�1 h�1)
for RF models with all spectral pretreatments except NRA (r2 = 0.74
and RMSE = 18.65 lg g�1 h�1) and SNV (r2 = 0.70 and RMSE =
20.23 lg g�1 h�1). Norris Gap Derivative (which in turn a special
case of GSD with segment size s = 1) and SG use a smoothing of
the spectra prior to calculating the derivative for decreasing the
detrimental effect on the signal-to-noise ratio. This effect perhaps
helped in increasing subsequent model’s generalization capability.
Additionally, MSC corrects differences in the base line and in the
trend with an added benefit of producing transformed spectra sim-
ilar to the original spectra which collectively leads to easier optical
interpretation. The wide range found for FDA-HR values (543–
730 lg g�1 h�1) in the tested samples perhaps contributed to the
satisfactory results too, because the consistency of a NIR spectro-
scopic model is by and large restricted to the range of parameter
values. Compost samples from the curing phase were not included
in the predictive model. During curing, compost products wait out-
side the pit for packing and commercialization. Moreover, they
experience minimal compositional and spectral changes, in con-
trast to the significant differences seen in composting days. Conse-
quently, such difference can add to the VisNIR estimations. On the
contrary, one reason for the underperformance of RF model using

a

e f g

b c d

Fig. 2. Lab-measured vs. random forest regression (RF) predicted FDA-HR (lg g�1 h�1) using training set for (a) GSD, (b) NGD, (c) ABS, (d) NRA, (e) MSC, (f) SG, and (g) SNV
pretreatment (one random split). The solid line is the regression line, and the dashed line is a 1:1 line.

S. Chakraborty et al. / Waste Management 34 (2014) 623–631 627
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NRA and SNV data could be the use of only 70 calibration samples.
Although model generalization capability for PLS, PSR, and PCR was
less than those of RF and SVR models, former models can be clas-
sified as moderately successful with RPD values ranging from
1.75 to 1.95 (Chang et al., 2001).

Plots of observed vs. RF predicted FDA-HR for all spectral pre-
treatments are presented in Fig. 3. In general, RF predictions of
FDA-HR for all pretreatments closely approximated the 1:1 line
and had less average bias (�3.01 lg g�1 h�1) than their PLS
(�3.72 lg g�1 h�1), PCR (�3.34 lg g�1 h�1), and PSR (�4.17 lg g�1

h�1) counterparts except for SVR model (�2.75 lg g�1 h�1) (Table 3).
However, all model biases were negligible than corresponding MSEs
and thus accounted for a very trivial part of the overall lack of fit.
Hence, model inaccuracy could be primarily attributed to a lack of
correlation with regression line near unity.

Fig. 4 shows the training (blue1 dotted line) and test (red line)
errors (RMSE) on different values of mtry, which is the size of the
candidate subset for each splitting. The vertical dashed line is the

optimal mtry value that minimizes the test error. Except for NRA
and SNV, the prediction performance was somewhat insensitive to
the mtry value. The test error was used as an estimate of the predic-
tion performance for the model on a new dataset, while training
error was substantially below the test error. The ABS, MSC, and SG
based parsimonious models used only 1 mtry (model factors) and
clearly outperformed NRA (7 mtry), NGD (100 mtry), GSD (150 mtry),
and SNV (150 mtry) based models. This, together with RPD values
(2.24–2.30), may suggest stable, effective VisNIR models with
suitable spectral transformations those can distinguish compost
FDA-HR for different types of compost and predict the microbial
activity.

While comparing the average and standard deviation (SD) of
RMSE from 50 iterations of test set, the RF model again outper-
formed other four multivariate models with lowest average RMSEs
for most of the spectral pretreatments; and low range of SDs of
RMSE (3.53–3.73 lg g�1 h�1), indicating greater stability (Fig.
SM-2). On contrary, RF (NRA) model showed least stability exhib-
iting SD of RMSEs of 4.57 lg g�1 h�1, and thus not recommended.

3.5. Significant wavelengths selected by multivariate algorithms

The significant wavelengths of all four models except SVR are
plotted in Fig. SM-3. Since SVR does not select variables and it uses
inner product of data points, it was difficult to get the coefficient
for each channel. For PLS and PCR, the absolute value of the coeffi-
cients were averaged for each channel (over seven spectral treat-
ments), since the size of the coefficients are often regarded as the
significance of that variable (wavelength here). For PSR, the scaled
absolute values of the coefficient were averaged over seven data-
sets. Scaling was done by dividing the coefficient by its standard
deviation. RF automatically produced the variable importance for
each channel which was averaged over seven spectral datasets.
Noticeably, visual inspection suggests that the predictive informa-
tion contained in the compost spectral curves is actually concen-
trated in a subset of important wavelengths. Additionally,
overlapping region of significant wavelengths revealed that almost
all algorithms captured the crucial absorbance signatures
[1364 nm (CAH combination band of CH3 groups), 1774 nm (1st
overtone of CAH stretching of cellulose), 1896 nm (2nd overtone
of C@O stretching of CH2O groups), 2193 nm (Amide), and
2337 nm (3rd overtone of COOA stretching of CH3 of protein)].
These signatures were previously assigned responsible for either
hydrolysis of FDA (Michel et al., 2006) or for other protein contain-
ing compounds (Curran et al., 1992). Further close investigation of
the 1360–2340 nm spectral subset region (after truncating from
the whole 350–2500 nm spectrum) for two end members (SG
and SNV, based on validation performance) of RF models
(Fig. SM-4) revealed that RF scores at the abovementioned spectral
signatures (�1364 nm, �1770 nm, �1896 nm, �2200 nm, and
�2340 nm) were comparatively higher in SG than SNV, possibly
resulting in better generalization capacity of SG based model. Cast
in this light, it was evident that complementary to other report
(Kooistra et al., 2003), pretreatments of spectral data boosted the
accuracy of regression models.

3.6. Artificial neural network for improving prediction accuracy

The ANN models using the SG spectra considerably improved
the prediction accuracy and produced the smallest validation
RMSE for FDA-HR (Table 4). Interestingly, while using 7 neurons
in each hidden layer, MLP 214-7-1 network did not showed over-
fitting and produced the best prediction (RPD = 3.20, r2 = 0.91,
RMSE = 13.38 lg g�1 h�1) of all the models tested. The validation
r2 for MLP 214-9-1 and MLP 214-8-1 were similar with values of
0.89 and 0.88, respectively. Notably, MLP 214-4-1 showed worst

1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.

Table 3
Summary validation statistics of the models (one random split) obtained for compost
FDA-HR by the different multivariate methods (except ANN) associated with their
respective pretreatment transformations.

Modela Pretreatmentb Validation

r2 RPDc RMSE
(lg g�1 h�1)

Bias
(lg g�1 h�1)

RF GSD 0.79 2.24 17.12 �2.73
NGD 0.79 2.25 17.08 �3.46
ABS 0.79 2.24 17.12 �2.12
NRA 0.74 2.01 18.65 �2.80
MSC 0.79 2.24 17.14 �2.12
SG 0.80 2.30 16.55 �3.60
SNV 0.70 1.9 20.23 �4.30

PLS GSD 0.66 1.75 21.89 �3.89
NGD 0.68 1.82 21.10 �4.01
ABS 070 1.85 20.76 �4.50
NRA 0.71 1.90 20.21 �2.76
MSC 0.72 1.93 19.90 �3.79
SG 0.67 1.76 21.74 �3.80
SNV 0.72 1.95 19.70 �3.32

PCR GSD 0.67 1.78 21.47 �4.14
NGD 0.67 1.79 21.36 �3.45
ABS 0.70 1.85 20.76 �4.62
NRA 0.72 1.92 20.00 �1.27
MSC 0.72 1.93 19.81 �3.18
SG 0.67 1.77 21.62 �4.35
SNV 0.68 1.81 21.11 �2.43

PSR GSD 0.69 1.83 20.88 �5.56
NGD 0.69 1.83 20.87 �5.78
ABS 0.70 1.86 20.55 �4.83
NRA 0.71 1.89 20.26 �1.59
MSC 0.72 1.92 19.95 �4.01
SG 0.69 1.85 20.63 �4.62
SNV 0.72 1.94 19.70 �2.80

SVR GSD 0.80 2.27 16.85 �1.60
NGD 0.79 2.26 16.94 �2.28
ABS 0.76 2.09 18.35 �4.42
NRA 0.77 2.13 17.92 �2.62
MSC 0.77 2.11 18.11 �4.24
SG 0.79 2.24 17.06 �2.68
SNV 0.73 1.99 19.22 �1.45

a RF, random forest; PLS, partial least squares regression; PCR, principal compo-
nent regression; PSR, penalized spline regression; SVR, support vector regression.

b GSD, gap segment derivative; NGD, Norris gap-derivative; ABS, log(1/reflec-
tance); NRA, normalization by range; MSC, multiplicative scatter correction; SG,
Savitzky–Golay first derivative using a first-order polynomial across a ten band
window; SNV, standard normal variate.

c RPD, residual prediction deviation.
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generalization capacity among MLP models with RPD of 2.10.
Considering training performance, the MLP 214-7-1 and MLP
214-9-1 networks produced similar training r2 (0.92). However, it
should be noted that just because the training r2 were compara-
tively low in the rest three networks did not essentially implied
badly trained networks. In fact it could be an indication of conser-
vative networks, which did their best to avoid fitting (modeling)
the noise, which is crucial. Additionally, the scatterplots of pre-
dicted vs. measured FDA-HR values for best five networks showed
that most points did not lie exactly on the 1:1 line (Fig. 5). Perhaps
the networks have recognized some noise on the target values and

have avoided modeling them as true signals, which is a preferred
outcome.

3.7. VisNIR DRS and FDA-HR assay

Overall, the example presented here demonstrated that VisNIR
DRS could be utilized as a rapid and useful tool for estimating
FDA-HR. Spectral pretreatment and subsequent state – of-the-art
ANN approach helped to gain insights into the correlation between
spectral signatures and compost FDA-HA variability. Practically, it
is not easy to visually extract and efficiently scrutinize spectral

a

e f g

b c d

Fig. 3. Lab-measured vs. RF predicted FDA-HR (lg g�1 h�1) using validation set for (a) GSD, (b) NGD, (c) ABS, (d) NRA, (e) MSC, (f) SG, and (g) SNV pretreatment (one random
split). The solid line is the regression line, and the dashed line is a 1:1 line.

a

e f g

b c d

Fig. 4. Changes in RMSE (lg g�1 h�1) on different values of the tuning parameter (Log10mtry) for the RF models for (a) GSD, (b) NGD, (c) ABS, (d) NRA, (e) MSC, (f) SG, and (g)
SNV spectral pretreatment.
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variations directly from the raw reflectance spectra (Ben-Dor et al.,
1997). Moreover, for biological materials such as compost, the
spectral scattering properties are highly complex, very soft, or
model-free. Therefore, spectral pretreatment is obligatory to re-
move scatter from the pure VisNIR reflectance spectra as well as
to enhance and assign maximum spectral information (strong
and weak). Since the popularity of neural network methodology
is rapidly growing in environmental science, the well-trained
ANN networks could serve wide environmental users. The better
results were obtained from SG since it is one of the filters which
can smooth out the reflectance signal without much destroying
its original properties. Results also demonstrated that the selected
FDA-HR related spectral signatures could be selectively used to im-
prove model parsimony and developing on the move VisNIR sensor
system for in-situ compost characterization. Although ANN model
remained superior to other five models, it was by no means

exhaustive and perhaps requires large dataset before drawing a
stronger conclusion. One advantage of this study was to use differ-
ent composts to predict enzymatic activity, contrary to enzymatic
measurements of a same compost windrow. In precision agricul-
ture, the development of field-based electro-optical sensors based
on conventional PLS model is always challenging since it involves
hundreds of filter-detector pairs with variable central wavelengths
and a constant bandwidth of 10 nm and an extra circuit block to
combine these detectors’ output signals into 18 synthetic signals
(Chakraborty et al., 2013). Given the intricacy of the analytical pro-
cedures that ANN (SG) can entail, it is recommended that SG which
is based on local least-squares polynomial approximation, be inte-
grated into commercial machine learning related softwares. Taking
all the above collectively, this study clearly recognized the poten-
tial of the VisNIR-ANN model with SG pretreatment as a viable
alternative to the VisNIR-PLS for rapid and low-cost estimation of

Table 4
Summary statistics of the ANN models obtained for compost FDA-HR with SG spectra.

Net name Training r2 Validation r2 Validation RMSE (lg g�1 h�1) RPDb Training algorithm Error function Hidden activation Output activation

MLP 214-7-1a 0.92 0.91 13.38 3.20 BFGS 18c SOSd Identitye Logisticg

MLP 214-9-1 0.92 0.89 15.02 2.90 BFGS 15 SOS Identity Identity
MLP 214-8-1 0.91 0.88 15.13 2.88 BFGS 13 SOS Tanhf Tanh
MLP 214-5-1 0.84 0.83 17.52 2.50 BFGS 15 SOS Identity Exponentialh

MLP 214-4-1 0.83 0.81 18.19 2.10 BFGS 15 SOS Identity Logistic

a MLP, multilayer perceptron (number of inputs, number of neurons in the hidden layer, and the number of outputs). For example, the model name ‘‘MLP 1-2-1’’ indicates a
multilayer perceptron network with 1 input, 2 neurons in each layer, and 1 output.

b RPD, residual prediction deviation.
c BFGS, Broyden–Fletcher–Goldfarb–Shanno.
d SOS, sum of squares.
e Identity, identity function. With this function, the activation level is passed on directly as the output of the neurons.
f Tanh, hyperbolic tangent function which is a symmetric S-shaped (sigmoid) function, whose output lies in the range (�1, +1).
g Logistic, logistic sigmoid function which is an S-shaped (sigmoid) curve, with output in the range (0, 1).
h Exp, negative exponential activation function.

Fig. 5. Lab-measured vs. ANN predicted FDA-HR (lg g�1 h�1) using validation set with SG pretreatment for five best MLP networks. The solid line is the regression line, and
the dashed line is a 1:1 line.
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compost FDA-HR as an addition to the certified methods for com-
post enzymatic activity and disease suppressive capacity analysis.

4. Conclusion

In this study, 100 compost samples from five full scale compost-
ing facilities were collected and scanned by DRS, and the raw
reflectance spectra were preprocessed using seven spectral trans-
formations for predicting compost FDA-HR with six multivariate
algorithms. Although principal component analysis for all spectral
pretreatments satisfactorily identified the clusters by compost
types, it could not separate different FDA contents. Visual interpre-
tations from PC plots were quantitatively confirmed by LDA which
was 100% accurate in classifying compost types for all spectral pre-
treatments except SNV (94.9%) and MSC (96.9%). Random Forest
models outperformed PLS, PSR, PCR, and SVR models with higher
validation r2 ranging from 0.79-0.8 and lower RMSE (16.55–
17.14 lg g�1 h�1) with all spectral pretreatments except NRA
(r2 = 0.74 and RMSE = 18.65 lg g�1 h�1) and SNV (r2 = 0.70 and
RMSE = 20.23 lg g�1 h�1). Furthermore, the ANN multilayer per-
ceptron after Savitzky–Golay pretreatment was able to increase
the DRS prediction accuracy (RPD = 3.2, validation r2 = 0.91 and
RMSE = 13.38 lg g�1 h�1) by capturing the highly non-linear rela-
tionships between compost enzymatic activity and VisNIR reflec-
tance spectra. This suggest that the combination of VisNIR DRS
and machine learning tools could help reduce biochemical analysis
frequency for compost microbial activity analysis and support
decision making for quality control of end products, substantially
saving labor and cost for this purpose. Obviously, more fundamen-
tal investigations as to how compost enzymes influences optical
properties are warranted and improvement could be made by
increasing sample numbers or with an advanced spectral treat-
ment, such as wavelet decomposition.
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