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Fifty-five compost samples were collected and scanned as received by visible and near-IR (VisNIR,
350–2500 nm) diffuse reflectance spectroscopy. The raw reflectance and first-derivative spectra were used
to predict log10-transformed organic matter (OM) using partial least squares (PLS) regression, penalized
spline regression (PSR), and boosted regression trees (BRTs). Incorporating compost pH, moisture
percentage, and electrical conductivity as auxiliary predictors along with reflectance, both PLS and
PSR models showed comparable cross-validation r2 and validation root-mean-square deviation (RMSD).
The BRT–reflectance model exhibited best predictability (residual prediction deviation � 1.61, cross-
validation r2 � 0.65, and RMSD � 0.09 log10%). These results proved that the VisNIR–BRT model, along
with easy-to-measure auxiliary variables, has the potential to quantify compost OM with reasonable
accuracy. © 2013 Optical Society of America
OCIS codes: 280.1415, 300.6340, 130.6010.

1. Introduction

Compost is an inherently variable product produced
from a wide variety of organic source materials
known as feedstocks.Worldwide, it serves as ameans
of recycling many types of green wastes for use as soil
amendments and organic fertilizers. In the United
States, “Test Methods for the Examination of Com-
posting and Compost” (TMECC) provides the proce-
dures and methods for compost analysis at certified
labs as defined by the US Composting Council [1].
Organic matter (OM) is one of the major constituents
in compost and plays an important role in the ability

of compost to enrich soil and increase fertility in a
wide variety of ways. OM percentage directly
affects compost stability and market value. Cur-
rently, accurate quantitative analysis of OM must
be conducted in laboratories using wet combustion
[2] or dry combustion [3] methods, both of which
determine the amount of organic C in a sample that
is converted to OM percentage. Both methods must
be performed in a laboratory setting and are labor-
ious and time-consuming. The dry combustion meth-
od is very accurate and can be automated by
commercially available instruments. Dry combustion
requires air-drying, fine grinding the compost sam-
ple, and accurate quantification of compost moisture.
Therefore, though the analysis is accurate and auto-
mated, preparation for the method is labor intensive.
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Visible and near-IR diffuse reflectance spectro-
scopy (VisNIR DRS) is a tool that might eliminate
the need to dry and fine-grind compost for OM
analysis. In addition, VisNIR DRS is field portable
and might remove the constraint of quantifying
compost OM in the lab. It is a rapid, proximal sensing
tool that has shown promise in an assortment of
agronomic and waste management applications,
including quantification of multiple soil properties,
waste products, and environmental hazards [4–6].

The active bonds in OM in the VisNIR region (350–
2500 nm) are the O–H, C–N, N–H, and C═O groups
[7]. Models created from VisNIR DRS spectra have
predicted organic C from air-dried, ground soil
samples with root-mean-square deviations (RMSDs)
ranging from 0.9 g kg−1 to 3.81 g kg−1 on small, loca-
lized areas [8–10]. Organic C models built using lar-
ger geographic areas had RMSDs ranging from
2.2 g kg−1 to 12.7 g kg−1 [11,12] and standard errors
of prediction (SEPs) ranging from 1.34 g kg−1 to
4.4 g kg−1 [13–15]. Furthermore, in situ detection of
soil organic C was done with an SEP of 2.3 g kg−1 on
four test sites in Illinois [16]. A study revealed that
OM absorbs IR light from 400 to 4000 cm−1 in the
mid-IR range [17]. The spectra band 2930 cm−1 with
a baseline from 3010 to 2800 cm−1 is caused by C–H
stretching of the CH2 groups [18]. Another band used
was 1590 cm−1 to detect elemental C in marine sedi-
ment, but this band did not appear without intensive
grinding [19,20]. Some researchers have used wave-
lengths of 1744, 1870, and 2052 cm−1 to detect organ-
ic C [21], while others used 1736, 1766, and
2032 cm−1 [22].

Research at the Louisiana State University soils
laboratory uses VisNIR DRS in field applications
on agricultural soils. This tool is presently used to
quantify soil C [11], soil organic C [17,19], and soil
OM in marine sediments [23]. These works have
identified useful techniques, methodologies, and lim-
itations. It is conceivable that similar results could
be obtained by using VisNIR DRS to quantify OM
in compost. In fact, several studies have identified
the use of VisNIR DRS on raw manure, which is a
precursor of compost, and on compost itself with pro-
mising results [24,25]. Scientists used partial least
squares (PLS) regression to calibrate their results
on dairy manures and received very low RMSDs,
showing that VisNIR DRS seems to be a good predic-
tor of C and N in manure [26]. Moreover, a VisNIR–
PLS model was viable for determining crude ash in
handmade soil/manure mixes [27]. The accuracy of
VisNIR DRS in quantifying crude ash content in
feedyard manure was also explored [28]. Decent cor-
relation values using multiple linear regression
(MLR) statistics were obtained in [7] in determining
the nutrient content of hog manure and manure-
amended soils. Moreover, [29] used different mathe-
matical pretreatments to analyze 11 different
nutrients in manure. The best pretreatment method
was based on the lowest SEP and the highest
correlation value. They found that there was no

overarching calibration data with universal applica-
tion, but that VisNIR DRS was a potentially useful
tool. Likewise, [30] used PLS regression to calibrate
their findings on the nutrient content of pig manure.
Their R (correlation coefficient) values and range:
SEP ratios appeared to also support VisNIR DRS
as a potential option for rapid analysis of manure.
In addition, [31] used the MLR method and received
high multiple correlation coefficients for C and N in
compost made from tofu refuse. Scientists studied
raw, stockpiled, and composted beef feedlot manure
and found that VisNIR DRS was a viable rapid ana-
lysis tool for assessing nutrient availability, espe-
cially for C and N. This tool also appeared
promising for the analysis of the composting process
and temporal changes in nutrient content [32,33].

Because most of the studies done thus far apply
directly to the analysis of manure rather than com-
post, more investigations on the true applicability of
VisNIR DRS to compost nutrient analysis are war-
ranted. Researchers have reported the potentiality
of this technology in assessing microbial population,
N content, C content, pH, electrical conductivity
(EC), and OM content [32–35]. While correlating be-
tween predicted and measured values of compost ash
percentage, [34] reported an r2 of 0.85. Nevertheless,
most of the studies were limited in monitoring the
composting process rather than analyzing the mate-
rial once it had reached a finished state before sale.
Moreover, most VisNIR compost studies evaluated
only dried and milled samples from specific feed-
stocks and composting methods. Hence, further
study involving a sample set having a wide assort-
ment of physical and chemical properties (such as
moisture, pH, EC, OM percentage, etc.) is necessary.
Since strong influence of moisture on soil reflectance
in the shortwave-IR (1100–2500 nm) was identified
by [36], the interaction between compost moisture
and spectral assessment of compost quality needs
further illustration too.

This article is a continuation of the work in [35],
which demonstrated the feasibility of VisNIR DRS
for rapid measurement of OM content in dried
compost. In this study, we used a completely new
dataset with following objectives: (1) incorporate
boosted regression trees (BRTs) for predicting OM
in composts with variable moisture content and com-
pare the results to those of conventional VisNIR
models and (2) test the applicability of the technology
for in situ analysis by incorporating compost proper-
ties as auxiliary predictors along with spectral data.
Since conventional PLS-based sensors are compli-
cated for field use, the overall goal of this study
was to identify some other alternatives to conven-
tional VisNIR models, which would help in designing
a realistic sensor configuration for a field person.
Moreover, if VisNIR DRS proves to be a reliable
method for the quantification of OM without any
pretreatment, it could replace more time-consuming
dry combustion analysis and aid in compost assess-
ment in situ.
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2. Materials and Methods

A. Compost Samples and Standard Laboratory Testing

Fifty-five dairy manure compost samples were col-
lected from different producers in Erath County,
Texas, USA. Thermophyllic composting methods pre-
pared the various compost products in different wind-
rows. The time of recharging was generally a few
months. Each sample was hand-mixed well to ensure
maximum homogeneity and maintained in plastic
bags at 4°C. Subsequently, samples were tested ac-
cording to standard TMECC [1] laboratory proce-
dures. All samples were divided into four replicates,
and each replicate was tested independently for
OM (%). Moreover, moisture (%), EC (dsm−1), and pH
were evaluated to test the sample diversity, ensure
the applicability of the technology to diverse compost
products, and use them as auxiliary predictors along
with reflectance spectra. Later the resulting data
were averaged in a single dataset for individual
parameters. TheOM (%) of compost sampleswas ana-
lyzed following TMECCMethod 0.50.7-A loss on igni-
tion (LOI) using a Fisher Scientific Isotemp
programmable forced-draft muffle furnace (Thermo
Scientific Barnstead, Dubuque, IA). OM was com-
puted according to [35]

OM � �1 − Ashw ∕dw� × 100; (1)

where OM is LOI organic matter (%), Ashw is sample
netweight (g) after ignitionat550°C, anddw is sample
netweight (g) after drying according toMethod 03.09-
A before ignition [1]. The analysis was run in tripli-
cate to obtain an average for each sample. Method
04.11-A 1.5 (slurry) [1] was employed for determining
compost pH and EC using an Orion 2-Star pH meter
(Thermo Scientific, Waltham, MA) and model
4063CC digital salinity bridge (Traceable Calibration
Control Company, Friendswood, TX), respectively.
Moisture was assessed via Method 03.09-A [1]. Of
the 55 samples, 10 samples were randomly selected
and sent to a certified testing lab to validate the accu-
racy of our laboratory results. For most parameters,
the lab-measured values fell inside the 95% confi-
dence interval set by the certified lab.

B. Scanning with VisNIR DRS

In the laboratory, the 55 compost samples were
scanned using a field portable ASD AgriSpec VisNIR
spectrometer (Analytical Spectral Devices, CO, USA)
with a spectral range of 350–2500 nm. The spectro-
meter had a 2 nm sampling interval and a spectral
resolution of 3 and 10 nm wavelengths from 350 to
1000 nm and 1000–2500 nm, respectively. The sam-
ples were left intact without sieving to preserve the
moist condition (as received). Samples were allowed
to assume room temperature and then scanned with
an ASD contact probe connected to the AgriSpec with
a fiber-optic cable, having a 2 cm diameter circular
viewing area and built-in halogen light source (Ana-
lytical Spectral Devices, CO, USA). The contact probe

was inserted into the plastic bag that held the raw,
unsieved compost, and full contact with the sample
prevented outside interference. Each sample was
scanned twice with a 45° rotation between scans to
obtain an average spectral curve. Each individual
scan was an average of 10 internal scans over a time
of 1.5 s. The detector was white referenced (every five
samples) using a white spectralon panel with 99%
reflectance, ensuring that fluctuating downwelling
irradiance could not saturate the detector.

C. Preprocessing of Spectral Data

Derivative spectroscopy was used to preprocess com-
post spectra for model development. Derivative spec-
tra remove the baseline shift arising from detector
inconsistencies, albedo, and sample handling [37].
If a spectrum is expressed as reflectance, R, as a
function of wavelength, λ, the derivative spectra
are calculated using

Zero order; R � f �λ� (2)

First order; dR ∕dλ � f 0�λ� (3)

Second order; d2R ∕dλ2 � f 00�λ�. (4)

Raw reflectance spectra were processed via a sta-
tistical analysis software package, R version 2.11.0
[38] using custom “R” routines [39]. These routines
involved (i) a parabolic splice to correct for “gaps” be-
tween detectors, (ii) averaging replicate spectra,
(iii) fitting a weighted (inverse measurement var-
iance) smoothing spline to each spectra with direct
extraction of smoothed reflectance, (iv) first deriva-
tives at 10 nm intervals, and, subsequently, (v) second
derivatives at 10 nm intervals. The resulting 10 nm
average reflectance and first-derivative spectra
were extracted and individually combined with the
laboratory-measured OM. These processed data
were used to build prediction models using PLS
regression, penalized spline regression (PSR), and
BRT algorithms.

D. Data Transformation and Principal Component
Analysis

The original compost OM was widely and non
normally (Shapiro–Wilk test, Lilliefors test, and
Anderson–Darling test p-values were <0.05) distrib-
uted from 10% to 57.4%, with a few extreme and
potentially influential values. Hence, the Box–Cox
transformation [40] was applied to the original OM
data using λ � 0 (log10-transformed) to bring the data
to a more normal distribution after stabilizing the
target variance, but without any monotonic transfor-
mation of predictor variables. Subsequently, eight
models using three multivariate algorithms were
compared for predicting compost OM (log10%) using
VisNIR spectra of 55 samples for two spectral
pretreatments.

Principal component analysis (PCA) was used for
dimensionality reduction. We further classified PCA
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scores into two clusters using k-means clustering
[41]. Agglomerative hierarchical clustering was used
with Ward’s criterion [42] to select the number of
clusters to help elucidate spectral features.

E. Partial Least Squares Regression Model

Chemometric PLS modeling has been successfully
applied to VisNIR data through spectral decomposi-
tion [43]. Full-spectrum multivariate PLS combines
the signal averaging advantages of PCA and classical
least squares [44]. In the present study, two PLS
models (both for reflectance and first derivative) with
leave-one-out cross validation were built using Un-
scrambler 9.0 (CAMO Software, Woodbridge, NJ).
Models with as many as 10 factors were considered,
and the optimummodel was determined by selecting
the number of latent factors (rotations of principal
components for a different optimization criterion)
with the first local minimum in cross-validation
RMSD (RMSDcv). Moreover, the significant wave-
lengths (p < 0.05) were plotted by “R” based on
Tukey’s jackknife variance estimate to identify
what portions of the spectra were important for com-
post OM predictions for each spectral pretreatment.

F. Penalized Spline Model

Penalized spline attempts to take advantage of the ad-
ditional structure from the order of regressors. Namely,
it forces the regression coefficients to be smooth (i.e.,
constraining the difference between the neighboring
regression coefficients) [45]. It is well suited for ill-
posed problems (dimensionality ≫ sample size) such
as signal regression problems. In the present study,
the cubic B-spline was used (using R version 2.11.0)
as the base function with 100 equally spaced knots.
The order of the penalty was set to the default value
of three. The optimal value for the penalty-tuning
parameter was selected by minimizing the leave-
one-out cross-validation error. The objective criteria
for measuring both PLS and PSR prediction accuracy
were cross-validation r2, RMSDcv, residual prediction
deviation (RPD), andmodel bias. Compost pH, EC, and
moisture content were included as auxiliary predictors
along with VisNIR spectra in both PLS and PSR to
search for possible “improvement” of model predict-
ability. In the case of PSR, two different models were
built: a simple model utilizing only the VisNIR spectra

(PSR) and another model incorporating auxiliary
predictors� VisNIR spectra (we termed it “auxiliary
PSR” or APSR).

G. Boosted Regression Tree Model

Friedman’s gradient BRTs [46], also known as multi-
ple additive regression trees, are a nonparametric
data mining method that has recently been applied
in soil science [39]. This model is very useful for
selecting important variables and detecting their in-
teractions, addressing missing values, minimizing
the influence of a few ultrapowerful variables, and
preventing overfitting. In BRTs, several hundred in-
dividual trees or stumps with a few terminal nodes
contribute a small portion of the overall model, and
the final model results summarize individual tree re-
sults as a whole, resulting in better prediction than a
single model or assembly, such as bagging or tradi-
tional boosting. In the present study, BRTs were im-
plemented using “auxiliary predictors� VisNIR
spectra” in TreeNet (Salford Systems, San Diego,
CA). To have a fair comparison with the PLS and
PSR, we used OM (log10%) as the target with leave-
one-out cross validation. A learn rate or “shrinkage”
of 0.01 was used to control the rate at which the mod-
el is updated after each training step and to prevent
overfitting. The subsample fraction was set to the de-
fault value of 0.5. Initially, 600 trees with six term-
inal nodes per tree were grown to capture higher
order interactions. However, the number of trees was
extended each time the “optimal” model was close to
the maximum grown and when the RMSD value con-
tinued decreasing. The minimum number of training
observations in terminal nodes was set to two.
Tree pruning was based on least square error. Impor-
tant predictors were selected based upon their
corresponding scores, and two variable dependence
plots were created to identify possible two-way
interactions.

3. Results and Discussion

A. Compost Properties and Spectra

The summary statistics of all measured compost
properties and their histograms are shown in Table 1
and Fig. 1, respectively. The OM was normally
(Kolmogorov–Smirnov p-value � 0.2) distributed

Table 1. Descriptive Statistics of Measured Properties for 55 Compost Samples Analyzed with VisNIR DRS

Correlation Matrix

Variable Mean Std. Dev. Min. Max.
First

Quartile Median
Third

Quartile OM (log10 %) Moisture (%) pH EC (dSm−1)

OM (log10 %)a 1.33 0.18 1.00 1.75 1.20 1.30 1.46 1.00 0.52c
−0.42c 0.41c

Moisture (%) 28.5 11.5 8.6 60.1 20.9 25.6 30.3 0.52c 1.00 −0.55c 0.19
pHb 8.6 0.5 7.3 9.6 8.3 8.7 9.1 −0.42c

−0.55c 1.00 −0.18
EC (dSm−1)b 3.4 2.6 0.3 11.0 1.7 2.8 4.0 0.41c 0.19 −0.18 1.00

alog10-transformed compost OM.
bMeasured by Method 04.11-A 1.5 (slurry) [1].
cStatistically significant (p < 0.05) correlation coefficient.
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from 1.00 to 1.75 log10% with a mean of 1.33 log10%
and standard deviation of 0.18 log10%. Except
for pH, considerable variability was observed for
moisture content (8.60%–60.16%) and EC (0.36–
11.09 dSm−1). OM was positively correlated with
moisture (ρ � 0.52) and EC (ρ � 0.41) and negatively
correlated with pH (ρ � −0.42). A significant
negative correlation between moisture and pH
(ρ � −0.55) was also observed.

For better interpretation of the compost spectral
properties, the PCA scores were grouped into two
classes using the k-means algorithm. Moreover, the
average reflectance spectra across a 10-band window
for two clusters are shown in Fig. 2(a). In general, the
spectra of both clusters were similar, with very slight
absorption features identified near 1730–1850 nm
(methyl, 4υ1) and 2137 nm (polysaccharides, 4υ1),
as previously identified with VisNIR DRS by [47].
Cluster 2 absorption near 877 nm was attributed
to alkyl asymmetric–symmetric doublet (4υ1). The
strong dips near 1412 and 1908 nm in the spectra
of both clusters could also be suggestive of water (3υ1)
or carboxylic acid (3υ1, 4υ1). Note that one must use
caution in how this region is interpreted, since these
bands were broad and perhaps overlapping. A minor
negative peak near 410 nm for soil OC confirmed pre-
vious research findings by [48]. We also qualitatively
characterized compost reflectance spectra by inter-

preting negative and positive peaks associated with
the component of interest and interfering compo-
nents, respectively, at the specific wavelengths of
the first three PLS loading weight vectors [Fig. 2(b)].
The aim was to identify the underlying correlation
between spectral frequencies and compost OM
through loading weight vectors. A moderate negative
peak corresponding to the OC spectral signature was
apparent at 410 nm, particularly for the second- and
third-factor loadings. The first-factor loading weights
showed a negative contribution for the whole VisNIR
range, and the third-factor loading weights exhibited
pronounced negative contributions for wave bands
between 830 and 1430 nm from aromatics, with
minor negative contributions for 1550–1800 nm for
methyls. Positive contributions were found for
360–830 nm and >1870 nm. Conversely, the second-
factor loading weights showed positive contributions
for >830 nm, with minor interfering positive peaking
to varying magnitudes at ∼2030 nm (amides, 3υ1)
and 2275 nm (aliphatics, 3υ1), with negative contri-
butions for <830 nm. The shoulder at 2137 nm was
due to polysaccharides, such as cellulose, which are
part of the hard-to-decompose organic C. It is note-
worthy that the lack of high-intensity spectral bands
somewhat constrained the utility of qualitative ana-
lysis. That notwithstanding, it was obvious that even
if fundamental vibration of organic molecules occurs
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Fig. 1. (Color online) Histograms for measured compost properties used to calibrate PLS, penalized spline, and BRT models.
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in the mid-IR region, relatively muted absorption
features of their overtones and combination bands
due to the stretching and bending of N–H, C–H,
and C–O groups present in compost OM were iden-
tified by VisNIR DRS.

B. Model Predictions

Model stability and predictability were compared by
a combination of both model generalization capacity
(validation r2, validation RMSD, and bias) and the
RPD (ratio of standard deviation to RMSD) [49].
In the case of larger standard deviation, as compared
to the estimation error (RMSD), the model predict-
ability diminishes [50]. Given that the RPD-based
guideline is best applicable when there is an inde-
pendent validation set with leave-one-out cross

validation, these values are still suitable indicators
for describing the potential of the technology, parti-
cularly when considered with validation r2 and sup-
plementary error statistics like RMSD and bias.

The prediction accuracy and model parsimony
for three different data mining algorithms are pre-
sented in Table 2. Among eight models tested, the
first-derivative-based BRT model yielded the lowest
validation r2 (0.11) and was not acceptable for any
applications. Predictions by reflectance-based PLS
and APSR models were almost identical with cross-
validation r2 of 0.51 and 0.52 and RMSD of
0.13 log10% and 0.12 log10%, respectively. Not shown,
both PLS and APSR obtained satisfactory accuracy,
with a coefficient of determination ranging from 0.7
to 0.8 using the whole dataset. For the PLS algo-
rithm, the reflectance-based parsimonious model
used four latent factors, whereas the first-derivative
model used six latent factors. The significant regres-
sion coefficients (based on Tukey’s jackknife variance
estimate, p < 0.05) of the PLS–reflectance and
PLS–first-derivative models are plotted in Fig. 3.
Noticeably, both the number and intensity of signifi-
cant wavelengths changed from reflectance to first-
derivative models, specifically in the ∼550–950,
1100–1400, 2100–2200, and 2300–2400 nm regions,
which could contain the spectral signatures of
aromatics [825 nm (4υ1) and 1100 nm (3υ1)],
amine [751 nm (4υ1) and 1000 nm (3υ1)], alkyl
asymmetric–symmetric doublets [853 nm (4υ3),
877 nm (4υ1), 1138 nm (3υ3), and 1170 nm (3υ1)], poly-
saccharides [2137 nm (4υ1)], methyls [2307–2469 nm
(3υ1)], carbohydrates [2381 nm (4υ1)], and water
[940 nm (2υ1 � υ3), 1135 nm (υ1 � υ2 � υ3), and
1380 nm (υ1 � υ3)], as compiled by [47]. Thus, it
was evident that higher spectral preprocessing
smoothed out spectrally significant regions for model
predictions. Notwithstanding that preprocessing
transformations of the spectral data boost the accu-
racy of regression models, some researchers estab-
lished better results with raw reflectance [50,51].
The remaining discussion of models for compost
OM concerns the reflectance of the VisNIR spectra.

We had difficulty predicting OM based upon Vis-
NIR spectra alone in the PSR models (both reflec-
tance and first-derivative), which explained very

Fig. 2. Plots showing (a) VisNIR reflectance spectra of the two
spectral clusters indicating spectral signatures of OM fractions
and (b) the first three PLS regression factor loading weight vectors
(i, ii, and iii) centered on zero for compost OM analyzed with
VisNIR spectroscopy.

Table 2. Multivariate Model Results for 55 Compost Samples across the United States Evaluated for OM Using VisNIR DRSa

PLS PSR APSR BRT

Reflectance First-Derivative Reflectance First-Derivative Reflectance First-Derivative Reflectance First-Derivative

Latent factors 4 6 — — — — — —

Cross-
validation r2

0.55 0.47 0.40 0.36 0.52 0.48 0.65 0.11

RMSDcv
(log10%)

0.12 0.13 0.14 0.14 0.12 0.13 0.09 0.1

RPD 1.51 1.38 1.30 1.26 1.45 1.39 1.61 1.16
Bias
(10−15 log10%)

−0.23 −0.40 −0.62 0.49 0.11 0.24 −0.15 −0.7

aPLS, partial least squares; PSR, penalized spline regression; APSR, auxiliary penalized spline regression; BRT, boosted regression
tree; RMSDcv, root mean squared deviation of cross validation; RPD, residual prediction of deviation.
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little of the variability. Plots of actual versus APSR-
and PLS-predicted OM and fitted regression coeffi-
cient curves on the spectrum are presented in Fig. 4.
In the APSR model, predictions of OM more closely
approximated the 1∶1 line and had less bias
(0.11 × 10−15 log10%) than their PLS counterparts
(Table 2). However, both model biases were very neg-
ligible. Thus, they accounted for a very trivial part of
the overall lack of fit for cross validation. Note that
the PLS model was less precise at both lower and
higher concentrations and had a tendency to under-
estimate for high OM values, as specified by a regres-
sion slope value (<1) that was lower than that of
APSR. However, the improvement was not impress-
ive, since APSR also showed a lower regression slope
value (<1) and subsequent underestimations of high
OM values. Nonetheless, it should not be discounted
as a feature of PLS and APSR, and a few of these
underestimations could be due to the relative scar-
city of estimated high OM values (a few samples
with >1.4 log10% OM). Both PLS and APSR showed
overestimation of low values too, with compara-
tively better predictions at middle-range values
(1.2–1.4 log10%). Several PLS predictions fell beyond
10% of the reference data and showed signs of resi-
dual heteroscedasticity, which was further confirmed

Fig. 3. (Color online) Regression coefficients (black) of the (a) re-
flectance and (b) first-derivative-based PLSmodel of compost sam-
ples. The magnitude of the regression coefficient at each
wavelength is proportional to the height of the bar. Significant
wave bands (p < 0.05) as indicated by Tukey’s jackknife variance
estimate procedure are shown in red. All plots are on the same x
axis.

Fig. 4. Predicted versus measured OM (log10%) for reflectance-based (a) auxiliary penalized spline (APSR) and (b) PLS models for 55
compost samples. The solid line is the regression line, and the dashed line is a 1∶1 line. The fitted regression coefficient curves on the
spectrum for reflectance-based (c) APSR and (d) PLS models are also shown.
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when PLS residuals were plotted against the fitted
values (not shown). Conversely, APSR model resi-
duals were nearly homoscedastic, providing more
credibility to this model. Moreover, while comparing
the fitted coefficient curves, the APSR curve was
smoother across the spectrum than PLS, indicating
better stability in the former (Fig. 4). The gray-
shaded band shows the 95% confidence interval for
the coefficients and can be used to identify the region
that has a coefficient significantly different from
zero, and the impact of this region on the response.
For example, the 400–600 and 1500–1700 nm regions
were both away from zero. However, the former con-
tributed a negative effect on the OM concentration,
while the latter had a negative effect. The APSR
estimator was more stable than that of nonpenalized
PLS, since the APSR neighboring coefficients were
hand-in-hand connected and PLS ignored the order
of the regressor channels.

The BRT–reflectance model obtained the best fit
among all the models, with the highest RPD of
1.61, highest cross-validation r2 (0.65), and lowest
cross-validation RMSD (0.09 log10%), indicating good
generalization potential and room for further im-
provement by incorporating a larger dataset with
parameterization. According to [10], RPD values
between 1.4 and 2.0 indicate fair models that could
be improved by more accurate predictive techniques.
This result showed comparable accuracy to OMmod-
els developed using VisNIR produced elsewhere
[13,52]. The optimal model was found to be 578 trees
with 6 nodes per tree. Increasing the tree number
(>600) and nodes per tree (6–9) did not radically
change the model predictability; however, it did seem
that using a complex model with 10 nodes per tree
somewhat increased the MSD, leading to minor over-
fitting. The notable improvement in validation sta-
tistics in BRT as compared to PLS and APSR
suggested the presence of a nonlinear and contingent
relationship between VisNIR reflectance and com-
post composition. Such results were expected, given
that BRT incorporates a complex, nonlinear relation-
ship between target and predictor variables while
PLS fits a linear relationship [39]. Cast in this light,
Treenet produced two variable-dependence plots for
OM with three auxiliary predictors (pH, EC, and
moisture) (Fig. 5) to find any two-way interaction.
Since optimum moisture content (30%–60%, wet
weight basis) is essential for proper composting
and may help in dissolving soluble salts [53], there
might be a correlation between compost moisture
and EC. This perhaps explains the interaction be-
tween compost moisture and EC for identifying com-
post OM. Laboratory estimation of compost pH, EC,
and moisture content are quite straightforward and
cheap, making these very practical auxiliary
variables for incorporating into VisNIR models of
compost OM and improving the overall prediction
accuracy.

We also plotted the relative importance of BRT
model predictor wavelengths, selected by Treenet

(Fig. 6). The 100 most important wave bands were
mainly concentrated around the 350–1450 nm re-
gion, with a pronounced presence at 350–550 nm
(visible region), indicating the VisNIR sensitivity to-
ward compost color. Interestingly, both PLS and BRT
had important wavelengths roughly in the same re-
gions, as shown by the relatively large BRT scores
around 1000 (amine, 3υ1), 1150, and 1250 nm.
Although the locations of 1150 and 1250 nm were
a bit shifted from the exact anticipated positions
(1138 and 1170 nm, respectively), it was natural in
the sense that real molecules do not behave totally
harmonically [54]. The BRT model also had a signif-
icant wavelength near 1900 nm, which is the region
of spectral signature of the OH of water or carboxylic
acids. However, it was not feasible to select the pre-
cise spectral signature with confidence, due to the

Fig. 5. (Color online) Two-variable dependence plots of compost
OM (log10%) for (a) EC versus moisture, (b) EC versus pH, and
(c) pH versus moisture. Blue and red shades (bottom and top of
data shown) represent lowest and highest concentration of OM,
respectively.
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large number of overlapping absorptions in the Vis-
NIR range [55,56]. Testing the probable decrease in
predictability due to the masking effect of the water
signature was beyond the scope of this project and
requires more investigations before drawing stron-
ger conclusions. Moreover, another inherent problem
for selecting the exact spectral signature by BRT
might be spectral redundancy, as indicated by [39].
Treenet handles missing wave bands by substituting
“surrogate splitters,” backup rules that closely imi-
tate the action of primary splitting rules (wave
bands) without substantially affecting the prediction
accuracy, creating diagnostic problems.

C. Practical Concern

Although the BRT model remained superior to PLS
and APSR, it was by no means exhaustive and per-
haps requires large data sets with a wide assortment
of compost compositions before stronger conclusions
can be drawn. The 55 values contained in the model
may have been too limiting to produce the best empiri-
cal VisNIR compost characterization. Interestingly,
[57] concluded that BRTalso works very well for small
datasets, since it helps in variable selection through
recursive feature elimination where redundant
predictors may degrade performance by increasing
variance. Complex spectral interaction with back-
ground materials, as expected, was prohibitive in
assigning precise wave bands and thus requires re-
fined spectral preprocessing, such as discrete wavelet
transformation and subsequent waveband-scale tiling
so that the central wavelengths and scales of wavelet
regressors become readily perceptible, facilitating
physical interpretation of the model. Testing models
for the prediction of specific organic functional groups
was not performed, as wet chemistry determinations
of fractions of OM (lignins, proteins, and other biopo-
lymers) are themselves hampered by technical hur-
dles. Thus, a side-by-side comparison of spectral and
analyte data is often not practical [58]. The preference
of sample pretreatments is chiefly based on technol-
ogy cost, prediction accuracy, and amount of samples.
The fact that unprocessed compost samples yield an
acceptable VisNIR–BRT predictive model would be

more important when considering a VisNIR sensor
system for in situ compost characterization. While
other studies [27,28] showed better performances in
air-dried samples, [39] found no discernible differ-
ences between accuracies of more (oven-dried) and
less preprocessed (air-dried) models. Furthermore,
[4,43] did not find any added advantage in more pre-
processed models in other VisNIR applications. Note
that most VisNIR compost studies utilized only dried,
milled samples from specific feedstocks and compost-
ing methods. Most studies did not analyze compost as
received. The difficulty is that diverse studies demon-
strate diverse results, since the nature of the target
function strongly controls the performance of the dif-
ferent prediction approaches. In precision agriculture,
the development of electro-optical sensors based on
PLS models is always problematic, since it involves
hundreds of filter–detector pairs with variable central
wavelengths and a constant bandwidth of 10 nm and
an extra circuit block to combine these detectors’ out-
put signals into 18 synthetic signals, undoubtedly
complicating the sensor design for field use [59]. Sum-
marily, our study clearly identified the potential of the
VisNIR–BRT model as a viable alternative to the
VisNIR–PLS model for rapid and low-cost estimation
of compost OM as an addition to the certified methods
for compost analysis.

4. Conclusions

Using a rapid, cost-effective sensing method to char-
acterize organic constituents in compost has many
benefits. This pilot study utilized 55 compost sam-
ples and suggested an alternative approach to con-
ventional models for estimating compost OM from
spectral reflectance in the VisNIR range. OM is a
quality parameter of compost and was estimated
with reasonable accuracy by BRT (RPD � 1.61). In
contrast, PLS (RPD � 1.51) and APSR (RPD � 1.45)
had intermediate predictive power. However, it was
difficult to get high prediction accuracy with first-
derivative spectra. Since OM is a costly and laborious
property to measure, the VisNIR model could offer a
good estimate of it in a cost-effective way. Auxiliary
compost properties that can bemeasured quickly and

Fig. 6. Plot showing relative importance of BRT model predictor wavelengths. The magnitude of the score at each wavelength is propor-
tional to the height of the bar.
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easily improved OM predictive models when used
along with the spectra. More improvement could
be achieved by increasing sample numbers or with
an advanced spectral treatment, such as wavelet
as an alternative to “black-box” first-derivative mod-
eling. Clearly, more fundamental investigations as to
how compost OM influences optical properties are
warranted. Our study showed good potential as an
impetus toward future VisNIR–BRT-based compost
studies. Composts are very complex, and real-time
compost OM characterization is expected to be
complex as well. Our future research will be directed
toward developing a general model, so that precise
spectral features linked with compost OM can be
identified and modeled as appropriate, reflecting di-
vergent compost compositions.

The authors gratefully acknowledge Tarleton
State University for access to the compost samples
used in this study and Dr. C. Morgan of Texas Agrilife
Research for use of the VisNIR DRS used in this
study.
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