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Visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) is a rapid, non-destructive

method for sensing the presence and amount of total petroleum hydrocarbon (TPH) contamination in

soil. This study demonstrates the feasibility of VisNIR DRS to be used in the field to proximally sense

and then map the areal extent of TPH contamination in soil. More specifically, we evaluated whether a

combination of two methods, penalized spline regression and geostatistics could provide an efficient

approach to assess spatial variability of soil TPH using VisNIR DRS data from soils collected from an

80 ha crude oil spill in central Louisiana, USA. Initially, a penalized spline model was calibrated to

predict TPH contamination in soil by combining lab TPH values of 46 contaminated and

uncontaminated soil samples and the first-derivative of VisNIR reflectance spectra of these samples.

The r2, RMSE, and bias of the calibrated penalized spline model were 0.81, 0.289 log10 mg kg�1, and

0.010 log10 mg kg�1, respectively. Subsequently, the penalized spline model was used to predict soil

TPH content for 128 soil samples collected over the 80 ha study site. When assessed with a randomly

chosen validation subset (n ¼ 10) from the 128 samples, the penalized spline model performed

satisfactorily (r2 ¼ 0.70; residual prediction deviation ¼ 2.0). The same validation subset was used to

assess point kriging interpolation after the remaining 118 predictions were used to produce an

experimental semivariogram and map. The experimental semivariogram was fitted with an exponential

model which revealed strong spatial dependence among soil TPH [r2 ¼ 0.76, nugget ¼ 0.001 (log10 mg

kg�1)2, and sill 1.044 (log10 mg kg�1)2]. Kriging interpolation adequately interpolated TPH with r2 and

RMSE values of 0.88 and 0.312 log10 mg kg�1, respectively. Furthermore, in the kriged map, TPH

distribution matched with the expected TPH variability of the study site. Since the combined use of

VisNIR prediction and geostatistics was promising to identify the spatial patterns of TPH

contamination in soils, future research is warranted to evaluate the approach for mapping spatial

variability of petroleum contaminated soils.
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Environmental impact

Hydrocarbon contamination is commonplace in soils due to spilla

petroleum hydrocarbon (TPH) contaminant levels is cumbersome,

This paper presents a case study using visible near infrared diffuse re

Coupled with global positioning system georeferencing, kriging inte

TPH which could be used to more precisely target remediation effo

This journal is ª The Royal Society of Chemistry 2012
Introduction

Petroleum contamination of soil is a widespread problem that

occurs frequently with adverse environmental and human health

consequences.1–3 Accidental release of crude oil and refined oil

products from oil drilling rigs (such as the BP Deepwater

Horizon), automobiles, immense oil tanker accidents (such as

Exxon Valdez, Erika, and Prestige), and pipeline and storage
ge and production mishaps. However, quantification of total

often requiring extensive soil sampling and laboratory analysis.

flectance spectroscopy for rapid, on-site quantification of TPH.

rpolation was employed to produce spatial variability maps of

rts and document the temporal success of remediation.
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Fig. 1 The location, field boundary of the study site, and locations of

collected soil samples in Louisiana, USA.
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tank leakages, endanger local and regional ecological systems.4

The extent of environmental contamination by petroleum

spillage depends on the capability of soil to filter, retain, biode-

grade, and release petroleum.5 Vapor pressure and solubility of

crude oil and other organic fractions (n, iso, and cycloparaffins,

napthene, and aromatics) also influence the dynamics of petro-

leum distribution in soil. Remediation specialists are constantly

challenged by the need to measure spatial variation of total

petroleum hydrocarbons (TPH) within and across a spillage area

for site specific remediation practices.6 Soil TPH contamination

maps are generated using a large number of soil samples and

traditional, laboratory-based soil chemical analyses. However,

such soil analyses are laborious, costly, time consuming, and

inadequate when high spatial and temporal resolution of TPH

content are warranted.7 Consequently, there is a persistent need

for the development of innovative, low-cost, and reproducible

analytical package for mapping spatial variability of petroleum

contaminated soils.

Visible near-infrared diffuse reflectance spectroscopy (VisNIR

DRS) can be used for detecting and mapping inland oil spills.

This proximal optical sensor has already demonstrated its

potential as a viable alternative to the laborious field sampling

and expensive lab analysis for on-site quantification of TPH.

Chakraborty et al. reported the feasibility of VisNIR DRS for

predicting soil TPH with a validation r2 of 0.64, RMSE of 0.341

log10 mg kg�1, and residual prediction deviation (RPD) of 1.70.8

Forrester et al. used a partial least squares (PLS) cross-validation

approach for infrared spectroscopic identification of TPH with

an r2 of 0.81 and RMSE of 4653 mg kg�1.9 Moreover, Chakra-

borty et al. evaluated three types of clustering analysis (linear

discriminant analysis, support vector machines, and random

forest) and three multivariate regression methods (stepwise

multiple linear regression, MLR; partial least squares regression,

PLSR; and penalized spline) for pattern recognition and devel-

oping TPH predictive models.10 Using VisNIR DRS for TPH

measurement provides multiple benefits over traditional

sampling/labwork: (1) results are returned to the investigator,

on-site instantly, (2) the process is non-destructive allowing for

sample preservation for future comparisons, and (3) minimiza-

tion or elimination of traditional laboratory analyses saves

considerable money over long periods of deployment.

While VisNIR DRS-based TPH predictions have been shown

to be feasible for future use, spatial dependence among soil TPH

contents has not received much consideration because of the

current expense of measuring TPH in soils. In case of a field

campaign that has a high spatial resolution of soil sampling, the

spatial autocorrelation among soil TPH contents in a geographic

space is likely and the spatial dependence can be used to create a

map of contamination. A successful combination of geostatistics

with VisNIR DRS could identify spatial correlation among soil

TPH contents, faster than traditional soil physicochemical anal-

ysis. In precision agriculture, several researchers have proposed

the combination of VisNIR DRS and multivariate geostatistics

for improved spatial prediction of soil properties.11,12 Hengl et al.

reported a basic framework for spatial variability mapping of soil

properties based on hybrid regression-kriging.13

Because of rapidity in prediction and incorporation of geo-

statistics, VisNIR spectroscopy could greatly enhance the spatial

variability mapping of soil petroleum contamination. We
J. Environ. Monit.
combined two techniques: penalized spline regression and geo-

statistics. A penalized spline model to predict TPH contamina-

tion in soils was created and used to predict soil TPH content

over a particular spill location. Predictions from the model were

used to produce an experimental semivariogram and point

kriging map. The objective of this study was to combine a soil

TPH prediction model based on VisNIR spectroscopy with point

kriging to identify the spatial distribution of TPH contamination

at an 80 ha spill site. Through this objective, we demonstrate the

feasibility of using VisNIR spectroscopy to proximally sense and

map soil TPH contamination by testing the accuracy of that TPH

prediction model for the site, modeling the spatial distribution of

TPH contamination at the site, and estimating the accuracy of

the TPH contamination map with 10 TPH measurements from

the study site.

Materials and methods

Study area and soil sampling

The field chosen for mapping was a crude oil well blowout site

located in Kisatchie National Forest in Vernon Parish, central

Louisiana, USA (30� 590 230 0 N, 93� 10 4800 W) (Fig. 1). One

hundred and twenty-eight surface (0–15 cm) soil samples were

collected within an 80 ha area that is densely vegetated by trees,

shrubs, and grasses. The soils and sampling locations at the site

are represented by four soil series: Caddo silt loam (fine-silty,

siliceous, active, thermic Typic Glossaqualf), Guyton silt loam

(fine-silty, siliceous, active, thermic Typic Glossaqualf), Malbis

fine sandy loam (fine-loamy, siliceous, subactive, thermic Plinthic

Paleudult), and Ruston fine sandy loam (fine-loamy, siliceous,

semiactive, thermic Typic Paleudult).14 A sampling scheme was

designed in ArcGIS 9.3 by combining both grid and random

sampling.15 Sampling points were uploaded into a hand-held

GPS receiver and geo-located in the field for sampling (location

error approx.�6 meters). All soil samples were sealed in air-tight

plastic bags to prevent hydrocarbon volatilization and preserve

field-moisture status before VisNIR scanning.

Calibration dataset for VisNIR prediction

Forty-six soil samples (including both contaminated and

uncontaminated samples) were collected from six locations, each

from a different parish within southern and central Louisiana;8
This journal is ª The Royal Society of Chemistry 2012
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one of the six locations was the Kisatchie National Forest site.

The sampling scheme was developed with the prior knowledge of

oil spill locations supplied by the Louisiana Oil Spill Coordina-

tors Office (LOSCO) to guarantee maximum TPH variability

within the soil samples collected. The original TPH contents of

the samples were widely and non-normally distributed from 44.3

to 48 188 mg kg�1 of soil. Crude oil was the main source of TPH.

Soil textures at the six locations varied from clay to sandy loam.

Twelve samples from the Ruston fine sandy loam were collected

near, but not at the same location used in the validation dataset

of this paper.
Fig. 2 (a) Reflectance and (b) first-derivative spectra for one petroleum

contaminated (48 188 mg kg�1) and one uncontaminated (44.3 mg kg�1)

soil sample from the calibration dataset.
VisNIR spectroscopy and laboratory analyses

An AgriSpec VisNIR portable spectroradiometer (Analytical

Spectral Devices, Boulder, CO) with a spectral range of 350 to

2500 nm (2 nm sampling resolution and a spectral resolution of 3

and 10 nmwavelengths from350 to 1000 nmand 1000 to 2500 nm,

respectively) was used to scan field-moist soil samples (both cali-

bration samples and study site samples) with a contact probe. The

contact probehada circular viewing area (20mmdiameter) and its

own halogen light source. Each sample was scanned four times

with a 90� rotation between scans to obtain an average spectral

curve. A spectralon panel with 99% reflectance was used every

four samples to optimize and white reference the spectroradi-

ometer to offset dark current and temperature effects. The spec-

troscopic reflectance measurement for each soil sample was then

obtained by averaging the four raw scans.

A statistical analysis software package, R version 2.11.0 was

used to preprocess raw reflectance spectra.16 Based on a

comparative analysis by Chakraborty et al., only the reflectance

and the first-derivative of reflectance spectra on 10 nm intervals

were extracted using custom ‘R’ routines.8,17 Spectroscopic

reflectance splines and first derivative spectra of one contami-

nated (48 188 mg kg�1) and one uncontaminated sample

(44.3 mg kg�1) from the calibration dataset are presented in

Fig. 2. In general, mean spectral reflectance and first derivative

spectra decreased as TPH concentration increased, as expected.18

Note that the apparent spectral discrimination between

contaminated and uncontaminated samples in the first derivative

spectra was less than the mean reflectance spectra. However,

derivative spectroscopy was preferred as it allows the detection

and positive identification of trace levels of a component of

interest (TPH in this paper) in the presence of a strongly

absorptive matrix and corrects baseline shifts resulting from

detector instabilities and faulty sample handling in the mean

reflectance spectra, thereby increasing quantitative accuracy.

A validation subset with 10 samples was randomly selected

from the 128 study site samples. In a commercial laboratory,

TPH was measured gravimetrically for both the 46 calibration

samples and 10 validation subset samples, following the method

of Clesceri et al.8,19
Penalized spline model

The penalized spline calibration model was developed using the

first-derivative of the reflectance spectra of the 46 contaminated

and uncontaminated soils collected in six Louisiana parishes.

Penalized spline is more stable and flexible than parametric
This journal is ª The Royal Society of Chemistry 2012
principle components regression and partial least squares

regression as the shape of the functional relationship amongst

covariates and the dependent variable (TPH, in this study) is

governed by the data.20,21 Penalized spline attempts to take

advantage of the additional structure from the order of regres-

sors. Namely, it forces the regression coefficients to be smooth

(i.e. constraining the difference between the neighboring regres-

sion coefficients). The smoothness comes from a difference

penalty on adjacent regression coefficients. This penalty is

proportional to the size of the difference between neighborhood

coefficients. Because of the additional constraint imposed by the

difference penalty, penalized spline is well-suited for ill-posed

problems (the dimensionality is much larger than the sample size)

such as signal regression problems.

Although a penalized spline model can handle both parametric

and non-parametric data, transformation on the response vari-

able is necessary because the TPH content of the samples is

widely and non-normally distributed from 44.3 to 48 188 mg

kg�1. Therefore without transformation, the model results were

highly affected by outliers. Vasques et al. also transformed on the

response variable even though they had a large dataset for non-

parametric models.22 In the present study, the Box–Cox trans-

formation was applied to the original TPH data using lambda ¼
0 (log10-transformed) to bring the data to a more normal

distribution (Fig. 3).23 Thus, the penalized spline model was

developed based on log10-transformed data that approximated a

Gaussian distribution after stabilizing the variance. As such, the

remaining penalized spline model and kriging interpolation

reported here all show log10-transformed TPH.
J. Environ. Monit.
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Fig. 3 Normal Q–Q plots of the (a) original (l ¼ 1) and (b) log10-transformed (l ¼ 0) total petroleum hydrocarbon (TPH) contents of the soil samples

collected from six different parishes in Louisiana, USA and used to calibrate the penalized spline model to predict TPH. An increase in the Shapiro–Wilk

statistic for log-transformed data revealed that the Box–Cox transformation made the original TPH data more normal.
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For the penalized spline model, the cubic B-spline was used

(using R version 2.11.0) as the base function with 100 equally

spaced knots. The order of the penalty was set to the default

value of three. The optimal value for the penalty-tuning

parameter was selected by minimizing the leave-one-out cross-

validation error. This penalized spline model was used to predict

the TPH contents of the 128 study site samples, which include the

subset of 10 that had TPH measurements. The ten validation

samples were used to assess the performance of both the penal-

ized spline predictive model and kriging exercise. The remaining

118 VisNIR-based penalized spline predictions were used

for point kriging TPH soil contamination values across the

study site.
Geostatistical analyses and kriging

A variogram and subsequently a kriged map of TPH were

created using the 118 VisNIR-based penalized spline predictions.

According to the usual method of moments, the experimental

semivariogram of soil TPH at the Kisatchie National Forest site

was calculated using,24,25

gðhÞ ¼ 1

2� nðhÞ
XnðhÞ
i¼1

n
zðsiÞ � zðsi þ hÞ

o2

(1)

where g(h) is the experimental semivariance at distance interval

h; n(h) is the number of observation pairs separated by the lag

distance h (omnidirectional); and z(si) and z(si + h) denote soil

TPH contents at spatial locations si and (si + h), respectively.

Geostatistical package GS+ 9.0 (Gamma design Software,

Plainwell, MI) was used to calculate the semivariogram of pre-

dicted TPH. A cross-validation approach was used to perform

jackknife analysis in which every measured point in the dataset

was temporarily deleted from the dataset and then estimated to

provide an indication of the appropriateness of the semivario-

gram model. Interpolation by point kriging was then conducted

based on the parameters of the semivariogram (C0 as the nugget,

C0 + C as the sill, and A0 as the range). The nugget was used to

indicate the combination of measurement error and fine-scale

spatial variability. The range indicates the distance in the field
J. Environ. Monit.
where TPH concentrations are no longer spatially correlated.

The strength of the spatial structure was calculated in terms of

sill : nugget ratio. The goodness-of-fit between the experimental

semivariogram and the modeled fit was measured in terms

of r2.

In the present study, point kriging was used to produce a TPH

contour map. Note that the exponential model, as shown in eqn

(2), best fit the experimental semivariogram for TPH in this

study.

gðhÞ ¼ C0 þ C 1� e�ðh=A0Þh i
when jhj. 0 (2)

The objective criteria for measuring the goodness-of-fit for

point kriging were the coefficient of determination (r2) and

RMSE. Calculated RMSE was derived with eqn (3):12

RMSE ¼ 1
�Zli

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

�
Zpi � Zli

�2
vuut (3)

where, Zpi and Zli were the predicted and laboratory-measured

TPH values of ith sample, �Zli was the mean of laboratory-

measured TPH values, and N was the total number of samples in

the validation subset (10 in the present study). Additionally, the

kriged map was used to investigate if the VisNIR detected soil

TPH variability could match the expected TPH variability of the

study site.
Results and discussion

The calibration set of soil samples used for penalized spline

model building had the following range in soil properties, salinity

(0–2.5 dS m�1), pH (5.2–7.8), clay content (160–600 g kg�1), and

organic matter (9.3–130.5 g kg�1) (see Chakraborty et al. for

details8). No association between clay, organic matter, and TPH

was found (both F-test and randomization test p-values were

insignificant at the 0.05 and 0.10 significance level).

Calibration (n ¼ 46) and validation (n ¼ 10) datasets both had

different mean TPH values (2.60 and 2.21 log10 mg kg�1,

respectively) but similar standard deviations (0.66 and 0.67 log10
mg kg�1, respectively). The calibration statistics, using full cross
This journal is ª The Royal Society of Chemistry 2012
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Fig. 5 Experimental semivariogram and fitted theoretical model of

log10-transformed total petroleum hydrocarbon (TPH). As shown, the

isotropic experimental semivariogram was best fitted by an exponential

model with effective range, r2, nugget, sill, and nugget-to-sill ratio of 52

m, 0.76, 0.001 (log10 mg kg�1)2, 1.044 (log10 mg kg�1)2, and 0.001,

respectively.
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validation, resulted in a r2 of 0.81, an RMSE of 0.289 log10 mg

kg�1, a bias of 0.010 log10 mg kg�1, and an RPD of 1.77. The

calibration results were especially encouraging given an RPD of

1.77, which indicates the calibration model is stable and has some

predictability.26 This calibration was created without using any

soils from the actual contaminated site; therefore, the true

performance of the model was difficult to evaluate on the cali-

bration statistics alone. In the soil VisNIR literature, it is well

established that the accuracy of VisNIR-based prediction of a

soil constituent is closely related to the likeness of the calibration

set to that of the validation of test set that is to be predicted.27–29

This relationship is especially true when using intact, field-moist

soil samples.28

The prediction of soil TPH of the n ¼ 10 validation data was

reasonably satisfactory with a r2 of 0.70 and an RPD of 2.0.

Other validation statistics, such as the RMSE and bias were

0.409 and 0.235 log10 mg kg�1, respectively. The left panel of

Fig. 4 shows the actual versus predicted TPH concentration using

the penalized spline prediction model. The right panel of Fig. 4

shows the fitted coefficient curve from the penalized spline. It was

apparent that the fitted coefficient curve was smooth across the

spectrum, indicating the stability of the model. The grey-shaded

band shows the 95% confidence interval for the coefficients and

can be used to discover the region that has a coefficient signifi-

cantly different from zero, and the impact of this region on the

response. Based on the foregoing results, it can be concluded that

soil TPH at this study site was reasonably predicted by the

penalized spline model.

Fig. 5 shows the experimental semivariogram and the fitted,

exponential model for the predicted TPH values of the 118

collected samples. At 200 m, the semivariance appears stable,

i.e. the sill is not changing, indicating second-order stationarity

of log10-transformed TPH. As shown, the isotropic experi-

mental semivariogram was best fitted by an exponential model

with a r2 of 0.76. In addition, the effective range, nugget, sill,

and nugget-to-sill ratio were 52 m, 0.001 (log10 mg kg�1)2, 1.044

(log10 mg kg�1)2, and 0.001, respectively, implying a strong

spatial dependence of the TPH values according to the classi-

fication criteria reported by Cambardella et al.30 Moreover, a

nugget close to zero revealed that all variance of TPH was

reasonably well explained, at the sampling distance used in this

experiment.
Fig. 4 The left panel shows actual versus predicted total petroleum hydrocar

1 : 1 line. The right panel shows the fitted penalized splines (P-splines) coeffic

interval.

This journal is ª The Royal Society of Chemistry 2012
Using the semivariogram of the predicted TPH values, a

distribution map was developed using point kriging interpolation

in ArcGIS 9.3 (Fig. 6). The prediction capability of point kriging

(using penalized spline predictions) in terms of r2 (0.88) was

higher than simple penalized spline predictions in the validation

subset, and had a smaller RMSE (0.312 log10 mg kg�1) (Fig. 7).

This slight improvement in our validation shows that the inter-

polation did not decrease predictability. Perhaps the experi-

mental semivariogram which was fitted in a trial-and-error mode

was optimal in reflecting the spatial pattern of TPH.

Furthermore, as shown in Fig. 6, the TPH distribution

matched well with the topography of the study site (Fig. 1). The

highest TPH values were found around the area where the oil

spill occurred. In the valley (the middle section of the study site),

significantly elevated TPH levels can also be identified readily as

expected. After the occurrence, the spilled oil accumulated in the

surrounding area and then naturally moved down to the area

with lower elevations along with surface runoff and sediment. It

should be noted that a low level of TPH was predicted in the

valley and the elevated TPH values were also limited to within

the valley. This implies that the spilled oil had a fairly low

mobility and the impacts can be limited within a small area if

proper remediation was implemented. Overall, the successful

combination of VisNIR predictions and point kriging helped to

improve TPH prediction accuracy. The interpolated TPH

predictions matched the topography and the expectation well.

The prediction based on VisNIR DRS could provide a fast way
bon (TPH) (log10 mg kg�1) using penalized splines. The dotted line is the

ient curve at each waveband. The grey-shaded area is the 95% confidence

J. Environ. Monit.
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Fig. 6 Kriging map for log10-transformed total petroleum hydrocarbon (TPH) contamination of soils at the sampling site in Louisiana, USA.

Fig. 7 Lab measured versus predicted (kriging interpolated) total

petroleum hydrocarbon (TPH) (log10 mg kg�1) for the validation subset

(n ¼ 10). The dotted line is the 1 : 1 line.
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to understand the spatial distribution of TPH contamination, to

estimate the impacted area, and finally to expedite the process of

decision making after contamination occurred.

Data with a lognormal distribution, which is characterized by

a positive skewness, pose a potential problem in kriging esti-

mation. Journel revealed that experimental semivariograms are

highly affected by lognormal data and there are only two solu-

tions: trimming off high values or data transformation.31

Yamamoto and Furuie reported that logarithmic data trans-

formation is always a better solution than data trimming in

geostatistics.32 However, kriging approximations in the trans-

formed domain need to be back-transformed into the original

scale to obtain an unbiased result, after correcting the smoothing

effect.33 In this present study, kriging estimates have not been

back transformed. When we developed the penalized spline
J. Environ. Monit.
calibration model with lognormal data, we tried to fit the linear

relationship in eqn (4):

Y ¼ b0 + b1x1 + b2x2 + . + bpxp + e (4)

where Y stands for the abundance of the response of interest

(TPH) at the log10 space, and x1, x2, ., xp are the spectral

variables; p and b are the number of spectral variables and

penalized spline coefficients for spectral variables, respectively.

We attempted to identify the optimal fitting at the log10 space,

i.e., e (error) is i.i.d. (independently and identically distributed)

normal at the log10 space. However, if back transformation is

applied, it approximates the relationship (not mathematically

strict but close) given in eqn (5):

exp(Y) ¼ exp(b0 + b1x1 + b2x2 + . + bpxp) � exp(e) (5)

The error e would not be optimal at the original (non log10-

transformed) space in the sense log10 Y was used instead of Y. It

is noteworthy that this error is not additive, but rather multi-

plicative. To obtain the optimal solution (in the sense of ordinary

least squares) of the original space, it is necessary to start with the

non-transformed variable. However, that would have produced

useless predictions, affected by outliers. Therefore, we conclude

that the statistical relationship is not as simple as just doing the

forward transformation then transformation back while the

mathematical formulation indicates a far more complicated

relationship. Improvements in non-parametric modeling could

offset the outlier effect and handle the lognormal, limited data

without transformation. Subsequently, VisNIR model predicted

results could be transformed and interpolated with the option of

back-transformation.

With VisNIR DRS, regression-kriging utilizes cheaply and

quickly obtainable reflectance spectra of the target component

(with spatial reference via GPS) as auxiliary co-variables instead
This journal is ª The Royal Society of Chemistry 2012
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of landform attributes (such as slope, curvature, aspect, and

elevation) derived from a digital elevation model. Nonetheless, a

combination of VisNIR spectroscopy and point kriging appears

to be a reliable and efficient strategy for determining the spatial

patterns of TPH contamination in soils, providing information

for unvisited locations.

Conclusions

In this pilot study, the VisNIR predicted TPH results were

incorporated into point kriging to identify spatial patterns of soil

TPH contamination. A penalized spline model was developed

with full cross-validation to predict TPH contamination in soils

using lab TPH data and VisNIR spectra (first-derivative only)

from contaminated and uncontaminated soils from central and

southern Louisiana. This penalized spline model was used to

predict soil TPH content for 128 soil samples collected over an 80

ha crude oil spill location. Independent validation (n¼ 10) results

showed that a penalized spline model could use VisNIR spectra

to predict TPHwith an r2 of 0.70 and an RMSE of 0.409 log10 mg

kg�1. That same validation dataset was used to validate kriging

interpolation of 118 sampling locations. The exponential semi-

variogram model showed strong spatial dependence among soil

TPH samples. Validation of the point kriging resulted in r2 and

RMSE values of 0.88 and 0.312 log10 mg kg�1, respectively. In

the kriging map, TPH distribution matched well with the

topography of the study site. Overall, this study suggested that

the combined use of VisNIR prediction and geostatistics have the

potential to identify the spatial patterns of TPH contamination

in soil quickly on site, reducing the need for expensive laboratory

analyses.
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