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Introduction

Visible near-infrared (VisNIR) diffuse reflectance (DRS) spec-
troscopy is a rapid, proximal-sensing technology which has 
shown promise in a variety of agronomic and waste-manage-
ment applications, including quantification of multiple soil 
properties, waste products, and environmental hazards (Weindorf 
et al., 2011). The interests of this study lie in the technology’s 
ability to assess the organic matter (OM) content of finished 
composted materials for quality control purposes. Compost is an 
inherently variable product hewn from a wide variety of organic 
source materials known as feedstocks and, worldwide, serves as 
a means of recycling many types of organic wastes for use as 
soil-amendments and agricultural fertilizers. However, there are 
inherent risks in using certain types of waste products for feed-
stock material in compost production and the potential for con-
tamination from commercial compost application is of concern 
(Plaha et al., 2002; Tomati et al., 2002). For this reason, in the 
USA and many countries across Europe, compost must be tested 
for basic parameters and possible contaminants before it can be 
sold (Brinton, 2000). Standards and protocols vary across 
national borders, though almost all have certifying agencies and 
requirements. The current USA standard is Test Methods for the 
Examination of Composting and Compost (TMECC), which 
provides the procedures and methods for compost analysis at 
certified laboratories as defined by the US Composting Council 

(USDA-USCC, 2002). In the USA, compost quality is regulated 
as a biosolid or fertilizer, and regulations vary by state (Brinton, 
2000). These established testing methods often require extensive 
laboratory preparation and analysis, which can interrupt or delay 
the abilities of compost producers to manage their product. As 
such, a means to quickly test a basic and important parameter of 
compost, such as OM, with little or no laboratory preparation, or 
ideally in situ could enable compost producers to more effi-
ciently measure this aspect of their product in order to ready it 
for sale.

The majority of current knowledge concerning spectroscopy 
for compost analysis has utilized near-infrared spectroscopy 
(NIRS), which focuses on a narrower range of the electromag-
netic spectrum (800–2500 nm) than VisNIR DRS (350–2500 
nm). However, because the two technologies share a spectral 
range of interest, promising results involving NIRS are relevant 
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to the use of VisNIR DRS for compost analysis. Near-infrared 
(NIR) spectroscopy has shown promising results in assessing 
organic matter, total organic carbon, nitrogen concentrations, 
physicochemical qualities (Vergnoux et al., 2009), nutrient metal 
content (Huang et al., 2008), and overall compost quality 
(Galvez-Sola et al., 2010). Sludges and compost–sludge mixtures 
have also been assessed with NIRS technology as to their carbon 
and nitrogen content (Albrecht et al., 2008), heavy metal content 
(Galvez-Sola et al., 2009; Moral et al., 2007), and humic acid 
contents (Polak et al. 2005).

Studies utilizing VisNIR DRS in the fields of agriculture or 
waste management have shown the technology’s ability to iden-
tify organic and inorganic soil carbon for soil characterization 
(Brown et al., 2006; Morgan et al., 2009), clay mineralogic com-
position (Waiser et al., 2007), and in quantifying soil environ-
mental contaminants, such as hydrocarbons (Chakraborty et al., 
2010). The history of the technology with compost analysis, 
however, is more limited, though studies have proven its applica-
bility in assessing microbial populations, nitrogen content, car-
bon content, pH, and compost salinity (Ben-Dor et al., 1997; 
Malley et al., 2005; Sharma et al., 2005). Sharma et al. (2005) 
obtained r² values of 0.852 for the correlation between predicted 
and measured values for quantification of the percentage of ash.

Whilst these studies indicate the potential of the technology, 
they have been limited by various factors. Ben-Dor et al. (1997) 
were focused on monitoring the material’s composition and spec-
tral changes throughout the composting process instead of analyz-
ing the material once it had reached a finished state. Malley et al. 
(2005) obtained useful calibration data for total carbon, organic 
carbon, total nitrogen, carbon:nitrogen, sulfur, potassium, and pH, 
and Sharma et al. (2005) for pH, salinity, and percentage of ash. 
However, their studies were confined by studying only milled and 
dried samples from specific feedstocks and composting methods. 
Both groups noted the need for further study involving more var-
ied sample sets and samples at variable moisture contents.

The moisture content of samples is of particular interest as 
moisture interference in spectral readings has been noted in many 
studies (Morgan et al., 2009; Stevens et al., 2006; Van der Meer 
and De Jong, 2000). However, it has also been shown that the 
influence of moisture on soil reflectance was stronger in the short-
wave-infrared (SWIR) (1100–2500 nm) region than the VisNIR 
region (400–1100 nm) (Zhu et al., 2010). Other studies (Waiser  
et al., 2007) have indicated that air-drying of samples increases 
the accuracy of the prediction model because air drying reduces 
the intensity of bands that are related to water so signals associ-
ated with other physicochemical properties are not masked. The 
interaction between sample moisture and the assessment of sam-
ple parameters in compost warrants further study.

In order to build on previous results that indicate the potential 
use of VisNIR DRS as a viable tool in the rapid assessment of 
OM in finished composted materials, the objectives of this study 
were to: (i) determine the capacity of VisNIR DRS to quickly and 
accurately quantify OM in finished composted products; (ii) test 
un-ground samples at variable moisture contents to further assess 

the applicability of the technology for in situ analysis; and (iii) to 
compare the accuracies of partial least squares (PLS) regression 
and principal component regression (PCR) in predicting OM in 
composts. If VisNIR DRS proves a reliable method for the quan-
tification of OM in compost, it could replace more time consum-
ing laboratory (loss on ignition) analysis and aid in compost 
product assessment.

Materials and methods
Samples

Thirty-six compost samples of diverse origin, feedstock, and 
composting method were collected from across the USA in the 
spring of 2011 (Table 1), including one sample from Canada. 
Compost samples were tested according to standard TMECC 
(USDA-USCC, 2002) laboratory procedures and later analyzed 
with VisNIR DRS. Diversity of sample type and composting 
method were ensured to test the applicability of the technology 
on a range of composted materials. Of the 36 samples, 3 were 
from a certified testing laboratory and were used to validate the 
accuracy of our laboratory results. Our results fell within the 95% 
confidence intervals set by the certified laboratory for most 
parameters. The 36 samples were divided into replicates and 
stored in plastic bags at 4°C upon receipt. Each replicate was 
tested independently and the resulting data were averaged to 
obtain a single data set for each parameter.

Standard laboratory testing

The TMECC standard method for loss-on-ignition (LOI) (Method 
05.07-A) (USDA-USCC, 2002) was used to analyze the 36 sam-
ples for the percentage of OM in a muffle furnace using a 1-g sam-
ple (Fisher Scientific Isotemp Programmable Forced-Draft Muffle 
Furnace; Thermo Scientific Barnstead, Dubuque, IA, USA). An 
Orion 2-Star pH meter (Thermo Scientific, Waltham, MA, USA) 
was used to asses pH (Method 04.11-A 1:5 Slurry) (USDA-USCC, 
2002). Electrical conductivity (EC) was tested via the same method 
on a model 4063CC digital salinity bridge (Traceable Calibration 
Control Company, Friendswood, TX, USA). The percentage of 
moisture was assessed via Method 03.09-A (USDA-USCC, 2002). 
Particle size divisions (Method 02.02-B; USDA-USCC, 2002) 
were determined using a sieve shaker with nested sieves (Model B 
Ro-Tap® Sieve Shaker; W.S. Tyler, Pleasant Prairie, WI, USA). 
Particle size, EC, pH, and moisture percentages were determined 
in order to evaluate the diversity of samples and thus to establish 
the applicability of the technology to all types of compost. Compost 
OM was calculated using equation (1):

OM = (1 – AshW÷ dw) × 100

where OM is LOI organic matter in percent, AshW is sample net 
weight (g) after ignition at 550°C, and dw is sample net weight 
(g) after drying according to Method 03.09-A before ignition 
(USDA-USCC, 2002). The analysis was run twice to obtain an 
average for each sample.

(1)
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Table 1. Composting method, feedstock, origin, pH, organic matter (OM), salinity, and moisture content data for 36 compost 
samples used in this study from various locations in the USA and Canada.

Sample Compost method Feedstock Origin pH OM EC Moisture Particle sizea

 -% (If number given)- -%- dS -%- _-%-

 1 Windrow Grass, chicken litter, woodchip Louisiana 7.1 64.1 0.7 45.8 49.3
 2 Windrow Paper manufacturing sludge, pine 

sludge
Louisiana 6.6 36.2 1.1 65.8 51.4

 3 Windrow 40 paper sludge, bark woodchip Louisiana 7.7 30.8 0.8 48.9 68.5
 4 Pile Poultry litter Louisiana 8.6 71.2 21.9 29.1 65.6
 5 Pile Bagasse crop residue Louisiana 6.4 86.0 0.1 61.5 90.4
 6 Pile Woodchip, bark mix Louisiana 6.8 82.8 0.1 64.7 45.3
 7 Windrow Grass, chicken litter woodchip, 

cooking oil
Louisiana 7.3 51.1 2.1 44.4 67.2

 8 Windrow Bark, stall sludge Louisiana 12.3 22.8 7.7 44.6 89.1
 9 Windrow Leaf, woodchip, chicken litter, 

glycerin
Louisiana 7.8 54.0 2.2 42.4 73.1

10 Unknown Unknown Pacific 
Northwest

6.7 81.7 1.9 75.7 51.8

11 Unknown Unknown Virginia 6.9 54.5 4.1 46.0 62.9
12 Unknown 95 Green waste, 4 biosolids, 1 wood California 7.8 45.2 3.0 40.11 85.1
13 Unknown Unknown California 8.2 53.6 3.7 44.4 84.3
14 Unknown Unknown California 8.0 51.3 2.2 49.8 79.9
15 Unknown Grape pumice California 5.8 36.1 8.8 41.2 99.7
16 Unknown Unknown California 7.0 27.7 5.7 24.5 87.5
17 Unknown Spent mushroom compost California 8.1 55.1 8.9 59.0 57.8
18 Unknown Unknown California 7.6 61.3 1.9 31.8 85.6
19 Aerated static pile 40 biosolids, 60 hulls Southern State 5.6 65.4 3.8 38.6 75.8
20 Windrow Green wastes/food waste California 7.8 55.8 3.6 47.9 88.8
21 Windrow 100 yard waste Pacific 

Northwest
7.8 60.7 4.2 43.9 84.8

22 Unknown Unknown Pacific 
Northwest

7.4 58.6 2.2 55.0 59.5

23 Unknown Unknown Pacific 
Northwest

7.4 42.1 2.2 35.5 81.8

24 Unknown Unknown California 8.4 32.0 5.1 19.9 88.7
25 None Sawdust Louisiana 4.9 96.6 0.4 8.7 100.0
26 Unknown Cow manure Florida 7.8 24.8 0.5 38.7 89.6
27 Unknown Spent mushroom Florida 7.4 58.8 3.9 58.1 84.9
28 Unknown Certified compost Colorado 9.0 22.3 5.1 29.3 87.3
29 Unknown Certified compost Colorado 7.8 35.2 0.2 54.1 23.3
30 Unknown Certified compost Colorado 8.7 42.4 4.0 35.3 90.3
31 Pile Dairy cow manure (grass fed) Texas 9.2 37.2 5.8 17.9 91.4
32 Pile Turkey manure and bedding Texas 6.9 35.8 5.0 31.5 88.2
33 Pile Mix:5 composts, granite, humate Texas 8.4 42.8 2.6 32.2 86.9
34 Unknown Cattle manure, cotton burr Texas 8.4 57.6 6.4 59.5 63.8

aPercent passing <5-mm sieve size.
EC, electrical conductivity.

VisNIR scanning

In the laboratory, the 36 compost samples were scanned using a 

field portable AgriSpec VisNIR spectroradiometer [Analytical 

Spectral Devices (ASD), CO, USA] with a spectral range of 350–

2500 nm [ultraviolet/VisNIR (350–965 nm), short-wave infrared 

1 (966–1755 nm), and short-wave infrared 2 (1756–2500 nm)] as 

given by ASD. The spectroradiometer had a 2-nm sampling inter-

val and a spectral resolution of 3- and 10-nm wavelengths from 

350 nm to 1000 nm and 1000 nm to 2500 nm respectively. Before 

scanning, each sample was divided equally into two parts (weight 
basis). The first part was left intact to preserve the moist condi-
tion (as received), whilst the second part was oven dried at 70°C 
for 24 hours (Method 5.07-A; USDA-USCC, 2002). Both moist 
and oven-dried samples were allowed to assume room tempera-
ture and were then scanned with a contact probe that had a 2 cm 
diameter circular viewing area and built-in halogen light source 
(ASD). The contact probe was inserted into the plastic bag that 
held the sample and full contact with the sample was ensured to 
avoid outside interference. Each sample was scanned three times 
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with a 90° rotation between successive scans to obtain an average 
spectral curve. A spectralon panel with 99% reflectance served as 
the standard white reference material and was scanned every five 
samples to compensate for drift in spectrometer and source.

Pre-treatment of spectral data

For this study, derivative spectroscopy was used to pre-process 
compost spectra prior to analysis. Derivative spectra have the 
capability to improve the quantification accuracy by removing the 
baseline shift arising from detector inconsistencies, albedo, and 
sample handling (Demetriades-Shah et al., 1990). Raw reflec-
tance spectra were processed via a statistical analysis software 
package, R version 2.11.0 (R Development Core Team, 2008) 
using custom ‘R’ routines (Brown et al., 2006). These routines 
involved: (i) a parabolic splice to correct for ‘gaps’ between detec-
tors; (ii) averaging replicate spectra; (iii) fitting a weighted 
(inverse measurement variance) smoothing spline to each spectra 
with direct extraction of smoothed reflectance; (iv) first deriva-
tives at 10-nm intervals; and, subsequently, (v) second derivatives 
at 10-nm intervals. The zero, first, and second order derivative 
spectra were calculated using spectra expressed as reflectance, R, 
as a function of wavelength, λ, using equations (2)–(4):

Zero order , R = f(λ)

First order , dR/dλ = f’(λ)

Second order, d2R/dλ2 = f’’(λ) 

The resulting 10-nm average reflectance, first-derivative, and 
second-derivative spectra were extracted and individually com-
bined with the laboratory-measured OM. These processed data 
were used to build PLS regression and PCR prediction models. 
Reflectance data was chosen over absorbance spectra because of 
the advantages of the former for analyzing dark samples and 
avoiding the over-expression of weak features.

Multivariate modeling

Both PLS and PCR modes were employed to help in predicting 
OM using the 10-nm average reflectance, first-derivative, and 
second-derivative spectra of the 36 samples. Quantitative PLS 
modeling is a powerful multivariate statistical tool that has been 
successfully applied to VisNIR data (Chakraborty et al., 2010; 
Morgan et al., 2009; Vasques et al., 2009; Waiser et al., 2007). 
The full spectrum multivariate tool PLS combines the signal 
averaging advantages of principal component analysis and clas-
sic least squares (Haaland and Thomas, 1988). In the present 
study, to detect the effect of moisture on VisNIR DRS prediction 
of OM in compost, a total of 12 models (6 models each for PLS 
and PCR) were made using Unscrambler 9.0 (CAMO Software, 
Woodbridge, NJ, USA). The whole dataset (36 samples) was 
used for training with leave-one-out cross-validation and in 
selecting PLS latent factors. Models with as many as nine factors 
were considered, and the optimal model was determined by 

selecting the number of latent factors with the first local mini-
mum in root mean squared error of cross-validation (RMSEcv). 
The coefficient of determination (r2), and ratio of standard devia-
tion to root mean square error (RMSE) were used as measures in 
evaluating the quality of models in real-world situations. The sig-
nificant wavelengths in the first-derivative PLS model for both 
moist and oven-dry pretreatments were plotted to identify what 
portions of the spectra were important for organic matter predic-
tions. The significant wavelengths (P <0.05) were selected by ‘R’ 
based on Tukey’s jack-knife variance estimate.

Principal component regression provides a means of address-
ing ill-conditioned matrices. Instead of regressing with the reflec-
tance, first-derivatives, and second-derivative on the response 
variable (OM) directly, the principal components (PCs) for each 
spectra of the whole dataset (36 samples) were used. Choosing 
the optimum number of PCs was based on leave-one-out cross-
validation. As the principal scores for each spectra are orthogo-
nal, the PCR is just a sum of univariate regressions and is used to 
address the problem of multicollinearity.

Results and discussion

Thirty-six compost samples were first analyzed, and PLS and 
PCR prediction models were subsequently created. The OM con-
tents were widely and normally (Shapiro-Wilk test statistic: 0.93 
at P = 0.05) distributed from 22.3% to 96.6%, which reflect dif-
ferent feedstocks, composting methods, and origins. Among 
other measured properties, soil pH varied from 4.8 to 12.3 (Table 1). 
The highest salinity (21.9 dS m-1) (sample 4) was identified in a 
sample where poultry litter was the main feedstock. Considerable 
variability was also observed for moisture content (8.7–75.7 %). 
Particle sizes also demonstrated considerable variability with the 
percentage of a sample that passed a 5-mm sieve ranging from 
45.3% to 100.0% (Table 1). While OM was better correlated to 
pH (correlation coefficient, P = 0.48) than moisture % (P = 0.21), 
no correlation was found between OM and EC (P = 0.06). No 
correlation between particle size and scanning results was inves-
tigated as the study was focused on general applicability of the 
technology to a wide range of samples and not on a comparison 
of milled versus un-milled samples.

An average of the reflectance spectra, first-derivative, and 
second-derivative with respect to the reflectance for all pre-
treatments is shown in Figure 1. Though fundamental vibration 
of organic molecules can be found in the mid-infrared region, 
their overtones and combination bands caused by the stretching 
and bending of N–H, C–H, and C–O groups occurred mostly in 
the VisNIR region. In the reflectance, first-derivative, and sec-
ond derivative plots, the specific spectral signals for water 
(1400 nm and 1900 nm) were quite apparent. Any significant 
difference in overall reflectance (except 550–1050 nm and 
1350–1550 nm) and first-derivative reflectance between moist 
and oven-dried compost could not be recognized. Perhaps the 
oven-drying of compost samples was responsible for increasing 
the average reflectance at ~1400 nm, which corresponds to 
water absorption.

(2)

(3)

(4)
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Figure 1. Averages of (a) reflectance, (b) first-derivative, and (c) second-derivative with respect to reflectance for moist and 
oven-dried compost samples analyzed by VisNIR spectroscopy.

Table 2. Partial least squares (PLS) and principal component regression (PCR) results of 36 compost samples from across the 
USA evaluated for organic matter using visible near-infrared diffuse reflectance spectroscopy.

PLS Regression PCR

 Latent 
factors

r2 RMSEcv (%) RPD Bias 
(10-15%)

Principal 
components

r2 RMSEcv (%) RPD Bias (10-16%)

Moist Moist
Reflectance 7 0.75 14.1 1.29 1.9 8 0.74 25.5 0.71 2.2
First-derivative 6 0.82 14.4 1.26 1.0 8 0.74 25.7 0.71 2.86
Second-derivative 4 0.77 13.7 1.33 1.7 6 0.58 18.7 0.98 2.93
 Oven-dried Oven-dried
Reflectance 5 0.71 12.3 1.48 8.0 7 0.66 14.3 1.27 3.4
First-derivative 4 0.82 10.1 1.72 –2.2 4 0.69 11.2 1.62 6.8
Second-derivative 2 0.74 12.0 1.49 3.7 1 0.42 22.5 0.81 4.5

RMSEcv, root mean square error of cross-validation; RPD, residual prediction deviation.

The accuracy and stability of both the PLS and PCR models 
were evaluated according to the residual prediction deviation 
(RPD) based guidelines by Chang et al. (2001). For spectroscopic 
modeling, a satisfactory prediction model is characterized by a 
RPD of >2.0 with r2 of ~0.80–1.00, fair models with potential for 
prediction improvement consist of RPD values from 1.4–2.0, and 
erratic models have RPD values of <1.40. It must be noted that 
for the ideal application of these RPD values 

an independent validation is recommended. However, with 
leave-one-out cross-validation these values are still suitable indi-
cators for describing the potential of the technology, especially 
when considered with r2 and additional error statistics, such as 
RMSEcv and bias (Table 2).

For moist sample scans, the first-derivative PLS model per-
formed slightly better (r2 = 0.82) than reflectance (r2 = 0.75) and 
second-derivative (r2 = 0.77) models (Figure 2; Table 2). Despite 
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the continuous reduction of PLS latent factors (rotation of princi-
pal components for a different optimization criterion) between 
the reflectance, first-derivative and second-derivative-based 

models (Table 2), RPD values were less than 1.40 for all three 
cases. Oven-dried model results were promising as the use of 
first-derivative reflectance spectra outperformed reflectance and 

Figure 2. Predicted versus measured organic matter (%) for (a) moist reflectance, (b) moist first-derivative, (c) moist second-
derivative, (d) oven-dried reflectance, (e) oven-dried first-derivative, and (f) oven-dried second-derivative partial least squares 
regression models for 36 compost samples. The solid line is the regression line and the dashed line is a 1:1 line.
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the second-derivative-based model in terms of r2 (0.82), RMSE 
(10.1%), and RPD (1.72). The trend of improvement of first-
derivative models is consistent with other works using VisNIR, 
which also reported similar improvements (Brown et al., 2006; 
Chakraborty et al., 2010; Reeves and McCarty, 2001; Reeves et al.,  
1999). Notably, a reduction of PLS latent factors was observed in 
moist models with an increasing degree of higher derivative 
spectra, as was apparent in oven-dried models. It is possible that 
the use of a higher degree of spectrally-processed data helped to 
reduce the latent factors by removing viewing–geometry effects, 
as reported by Demetriades-Shah et al. (1990). According to the 
law of parsimony, in chemometric analysis, it is logical to choose 
a simpler model (smaller latent factors) assuming no substantial 
decrease in predictive performance. Plots of actual versus PLS 
predicted OM and fitted regression coefficient curves on the 
spectrum are presented in Figure 2. In the oven-dried first-derivative 
model, predictions of OM more closely approximated the 1:1 line 
and had negligible bias (-2.2 × 10-15%) (Table 2). The fair RPD 
(1.72) indicated that there is sufficient possibility for model 
enhancement. We believe that although the RPD was not as high 
as obtained for other constituents of soils (Malley, 1998), the 
results are encouraging considering the complex and variable 
composition of compost.

For PCR, plots of actual versus predicted OM in compost sam-
ples and fitted regression coefficient curve on the spectrum are pre-
sented in Figure 3. Model statistics for the PCR models, summarized 
in Table 2, showed higher RMSEcv compared with PLS models. 
Moreover, in most cases, PCR exhibited lower factors than PLS, 
which was also reported by Yeniay and Goktas (2002). Ignoring the 
variability of OM content whilst calculating the PCs may have 
some effects on the decreasing predictability of PCR compared 
with PLS (Martens and Naes, 1989). However, in terms of r2 (0.69), 
RMSEcv (11.2%), and RPD (1.62), the first-derivative of the oven-
dried model somewhat confirmed the PLS trend. Hence, consider-
ing both PLS and PCR model statistics, the first-derivative 
oven-dried model seemed to perform most satisfactorily.

To investigate the rationale of the oven-dried first-derivative 
model’s better performance over the moist first-derivative model, 
the significant regression coefficients (based on Tukey’s jack-knife 
variance estimate, P <0.05) of the first derivative PLS model from 
each pretreatment were plotted in Figure 4. Both the number and 
intensity of significant wavelengths changed markedly from moist 
to oven-dried models. We found more significant wavelengths for 
dried samples, which is the opposite of findings by Sakirkin et al. 
(2010, 2011) for manure. The change in numbers and intensities 
were apparent, specifically in the ~300–700 nm, 1700 nm, 1930 
nm, 2000–2100 nm, 2200 nm, and 2400 nm regions, which could 
contain the spectral signatures of minerals (electronic transitions), 
alkyl asymmetric-symmetric doublets, carboxylic acids, amides, 
aliphatics, and carbohydrates, respectively, as defined previously 
by Viscarra Rossel and Behrens (2010).

This masking effect from water was somewhat expected, and, 
indeed, has been well documented in soils. Stevens et al. (2006) 
noted an increase of 0.93 g organic carbon kg-1 of soil in the 

standard error of prediction between field-moist and dry sample 
states when analyzing organic soil carbon. Van der Meer and De 
Jong (2000) recognized the problem of quantifying organic soil car-
bon with VisNIR owing to the difficulty of isolating the reflectance 
of organic carbon from reflectance of water in a sample as they 
share some significant wavelengths and because of their effect on 
reflectance. Additionally, it has been observed that energy absorp-
tion by the water present in the sample can decrease the reflectance 
across the NIR range and that at high moisture levels the position of 
maximum reflectance may shift to shorter wavelengths (Bishop et 
al., 1994). Harris (1996) noted that the polarity of the water mole-
cule can affect the re-distribution of electrons during excitations, 
owing to alterations in energy differences between the ground and 
excited states of the molecules, which affects the wavelength of the 
sample’s absorbance or fluorescence.

Whilst a decrease in predictability in terms of RPD and 
RMSEcv was noted for the moist-first-derivative PLS model 
compared with the oven-dried first-derivative PLS model, in 
terms of r2 they did not perform significantly differently. Thus, 
whilst dry samples do permit a higher degree of accuracy, the 
convenience of using as received (moist) samples may, depend-
ing on the application, outweigh the slight loss in accuracy. 
Considering the heterogenous nature and volatility of OM in 
composts combined with the difficulty of replicating a given cal-
culation, particularly for OM, our results show promise for the 
use of VisNIR DRS for the quantification of OM in composts. 
Whilst our results indicate drying of samples may still be 
required, the method of VisNIR DRS would still require less 
sample handling and, thus, there would be less chance of sample 
distortion than current standard methods, such as LOI. It has been 
noted that drying or other pretreatments to ready samples for car-
bon analyses can result in ‘loss of volatile organic compounds or 
the decomposition and loss of other organic compounds present 
in the sample’ (Schumacher, 2002). Indeed, LOI, whilst the least 
caustic method for organic carbon analysis, is also often consid-
ered the least accurate method of total organic carbon determina-
tion. In soils, studies done by the Environmental Protection 
Agency indicate that the percent coefficient of variation for LOI 
amongst replicate samples ranged from 2.7% to 5.6% 
(Schumache,r 2002). The borrowing of analytical methods from 
soils for analysis of compost and manures is common, and the 
same principles of the method apply to either material (Karam, 
1993; Matthiessen, 2005; Schumacher, 2002). In our experiment, 
OM results from LOI fluctuated, on average, 8.1% among repli-
cated samples. Thus, the advantages of VisNIR DRS for OM 
analysis are threefold: (i) speed of analysis and instantaneous 
obtainment of results; (ii) less sample handling required as sam-
ples need not be weighed or further subjected to heat after initial 
drying; and, most importantly, (iii) the ability to take replicate 
scans and obtain an average for the sample. Thus, VisNIR DRS 
shows promise as an addition to the TMECC-certified methods 
for compost analysis.

We acknowledge that the limited number of samples (36) 
somewhat constrains the global applicability of the dataset. 
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However, this pilot research was intended to investigate the via-
bility of VisNIR DRS spectroscopy to quantify compost OM con-
tent under varying sample moisture states and to further ascertain 
which spectral processing and moisture contents show the most 
promise for future investigation. Testing the chemical heteroge-
neity of the compost was beyond the scope of this project and 

requires intensive studies before drawing stronger conclusions. 
More improvement could be achieved by increasing the sample 
number and building a spectral library targeting an even wider 
range of compost samples. That notwithstanding, these results 
are especially encouraging given the wide and dynamic range of 
OM levels and other variables in the samples tested.

Figure 3. Predicted versus measured organic matter (%) for (a) moist reflectance, (b) moist first-derivative, (c) moist second-
derivative, (d) oven-dried reflectance, (e) oven-dried first-derivative, and (f) oven-dried second-derivative principal component 
regression models for 36 compost samples. The solid line is the regression line and the dashed line is a 1:1 line.
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Figure 4. Regression coefficients (black) of the first-derivative partial least squares model of (a) moist first-derivative and 
(b) oven-dried first-derivative model of compost samples. The magnitude of the regression coefficient at each wavelength 
is proportional to the height of the bar. Significant wavebands (P <0.05), as indicated by Tukey’s jack-knife variance estimate 
procedure, are shown as thick, red bars. All plots are on the same x axis.

Conclusions

VisNIR DRS has shown the capacity to rapidly, reasonably, and 
non-destructively quantify the OM of composted materials. 
Given the field portability of the VisNIR spectroradiometer and 
our findings concerning the technology’s accuracy with moist 
samples, further testing is warranted concerning the possibilities 
of its use in situ. When comparing PLS and PCR model statistics, 
first-derivative oven-dried models performed most satisfactorily 
for both model types, with PLS performing the best. Our results 
show promise for improving the speed of performing laboratory 
analysis and obtaining results almost instantly. Thus, we recom-
mend the VisNIR DRS method, using dried samples, for further 
investigation concerning its possible inclusion among TMECC 
official testing methods and as a supplement to current, time-con-
suming laboratory methods. The goal for future research should 
be to develop a general model which can lead to reliable OM pre-
dictions under even more divergent compost matrix conditions.
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