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Abstract: Computer experiments have become increasingly important in several different industries. These experiments save
resources by exploring different designs without necessitating real hardware manufacturing. However, computer experiments
usually require lengthy simulation times and powerful computational capacity. Therefore, it is often pragmatically impossible
to run experiments on a complete design space. In this paper, we propose an adaptive sampling scheme that interactively works
with predictive models to sequentially select design points for computer experiments. The selected samples are used to build
predictive models, which in turn guide further sampling and predict the entire design space. For illustration, we use Bayesian
additive regression trees (BART), multiple additive regression trees (MART), treed Gaussian process and Gaussian process
to guide the proposed sampling method. Both real data and simulation studies show that our sampling method is effective
in that (i) it can be used with different predictive models; (ii) it can select multiple design points without repeatedly refitting
the predictive models, which makes parallel simulations possible and (iii) the predictive model built on its generated samples
gives more accurate predictions on the unsampled points than the models built on samples from other methods such as random
sampling, space-filling designs and some adaptive sampling methods. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data
Mining 5: 399–409, 2012
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1. INTRODUCTION

In the automotive, semiconductor, computer engineer-
ing, and many other industries, there is a growing empha-
sis on designing new products by computer experiments
[1]. These experiments facilitate exploring different designs
without real hardware manufacturing. For example, in com-
puter engineering, a new processor design is usually eval-
uated by processor simulators, programs that simulate the
running behaviors and provide detailed insights into impor-
tant benchmarks of the processor, such as its performance,
power consumption and complexity. However, the com-
puter experiments for each design point usually require
long simulation time and powerful computational capacity
and the design space is often composed of huge num-
ber of design points. For example, a processor design
space is composed of different combinations of quantitative
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and qualitative micro-architectural design factors such as
processor frequency, issue width, cache size/latency and
branch predictor settings. Owing to practical constraints,
it is infeasible to test every design point for the optimal
design, so we need a sampling method that can efficiently
select an appropriately small number of design points on
which statistical models could be built to (i) accurately
predict the performance of unsampled design points and
(ii) identify the factors and interactions that are impor-
tant in effecting the performance of interest. Moreover,
instead of sequentially choosing one design point, we select
multiple design points so that several computers can be
used for simultaneous simulations. In this paper, we pro-
pose a predictive model guided adaptive sampling (MGAS)
scheme. The sampling method selects many design points
sequentially and can be used with any predictive models. It
bridges the gap between simulation requirements and lim-
ited resources. Real-life examples and simulation studies
show that this method samples at very few design points
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yet generates highly accurate predictions of the unsampled
points.

The background literature for our method is based on
two lines of research. The first line is on the predictive
models. A significant amount of work has been done on
predicting the quantities of interesting in large population
spaces. For example, İpek [2] predicted the performance of
memory subsystems, processors and chip multiprocessors
(CMPs) via artificial neural networks. They combined neu-
ral networks and active learning methods to explore large
design spaces. Lee and Brooks [3] applied regression mod-
els to processor performance and power prediction. Joseph
et al. [4] developed linear regression models which charac-
terize the interactions between processor performance and
micro-architectural parameters. These models were built via
iterative processes guided by Akaike’s information criteria
(AIC). The AIC or Bayesian information criterion (BIC)
variable selection method requires pre-transformed vari-
ables and a set of interaction bases that have a reasonable
linear relation to the response variable. The Gaussian pro-
cess (GP) [5] is popular in computer experiment analysis
since the process accounts for the deterministic property in
computer experiments. Yu et al. [6] proposed using BART
in computer experiments, for it can catch important non-
linear effects and interactions. As we observed in practice,
different predictive models are preferable in different situa-
tions. Therefore, a good sampling method should be readily
adaptable with any predictive models.

The second line of background research concerns effec-
tive sampling methods that select a small sample of points
for simulation, based on which effective predictive models
can be built. Sacks et al. [7] reviewed the special character-
istics of computer experiments. Santner et al. [8] presents
a survey on space-filling designs and some criterion-based
experimental designs. Model-based adaptive designs are
also developed. For instance, MacKay [9] aimed at min-
imizing the predictive variance by selecting the sample
points with maximum variance. Cohn [10] proposed an
adaptive sampling algorithm via neural network explo-
ration, in which he minimized the generalized error by
completely exploring the design space. Seo et al. [5]
demonstrated that both Mackay’s and Cohn’s methods per-
formed well in accelerating and improving learning. Kim
and Ding [11] developed an optimal engineering design
guided by data-mining methods. Their method adapted fea-
ture functions, of which evaluation was computationally
economical, as the surrogates for the design objective func-
tions. A design library was generated by evaluating the
feature functions, and then a classification method was
applied to create design selection rules. Gramacy and Lee
[12,13] proposed to use the GP at local regions split by a
tree model and then to measure the predictive uncertainty
to guide subsequent experimental runs.

Our work has its roots in ref. 6, where the authors pro-
posed a BART-aided adaptive sampling method. In this
paper, we generalize the active learning process, so that
the proposed sampling method can be applied with gen-
eral Frequentist or Bayesian predictive models, giving us
the flexibility to choose models that have good predictive
performances and/or can provide quantitative interpretation
tools that help investigators understand the factors and their
interaction effects on the quantity of interest. When BART
is the predictive model, the proposed method reduces to
the method described in ref. 6, except that the theories in
this paper are more precise with fewer approximations in
sequentially estimating the change in predictive variances
when a new design point is added. This paper develops a
theoretical framework to evaluate predictive uncertainties of
unsampled design points and their changes due to additional
design points. This enables us to consider the associations
among design points when selecting multiple design points,
without resampling or refitting the predictive model. The
proposed sampling method is especially useful in an asyn-
chronous parallel environment, where several computing
agents are used independently for computer experiments.

The article is organized as follows. In Section 2, we
present the MGAS scheme. In Section 3 we develop the
theoretical framework and generalize the sampling method
so that it can be guided by more general predictive
processes. The implementation of the general model guided
adaptive sampling (GMGAS) method and its comparisons
with other methods are discussed in Section 4. Section 5
includes the conclusions and further research topics.

2. MODEL GUIDED ADAPTIVE SAMPLING

Adaptive sampling, also known as active learning in
machine learning literature, involves sequential sampling
schemes that use information gleaned from previous obser-
vations to guide the sampling process. Several empirical
and theoretical studies have shown that samples selected
adaptively outperform those obtained from conventional
sampling schemes in learning a target function. See, for
example, refs 6, 14–17 for more discussions.

The purpose of adaptive sampling is to actively select
samples, which are used to build models with good
predictive accuracy. Usually, mean squared error is used to
measure predictive accuracy. Let y and ŷ be the true and
predicted values respectively for the quantity of interest.
We want to minimize E[(y − ŷ)2], where the expectation
is over the training and testing data. Note that the expected
error can be decomposed as

E[(y − ŷ)2] = E[(y − E(y))2] + [E(ŷ) − E(y)]2

+ E[(ŷ − E(ŷ))2]. (1)
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The first term in the right-hand side of Eq. (1), denoted as
σ 2, is the variance of random errors, invariant to which
training and testing data sets are used. Many computer
experiments are deterministic, i.e. σ 2 = 0. That is, repeated
sampling at the same design point will generate the same
response. The second term of Eq. (1) is the squared
predictive bias. Since E(y) is unknown, usually we do not
know the bias. The third term is the predictive variance,
var(ŷ), which highly depends on how the training data sets
are formed, i.e. the sampling scheme for the training data.
In this paper, we focus on choosing a sampling method to
minimize the predictive variance.

There are two popular active learning schemes. The
first method, suggested by MacKay [9], noted as ALM),
aims to select the design point where the predictor exhibits
maximum variance. The second method, proposed by Cohn
[10], noted as ALC), measures the reduction in predictive
variance averaged over the design space and chooses
the point that maximizes the reduction. Both methods
are efficient, as shown by Seo et al. [5]. Our method
intends to adaptively sample at more than one design point
thereby enabling parallel experiments, and saving time
and computational resources for initiating new sampling
processes and building new predictive models. The problem
we encountered is that the design points are usually highly
correlated and therefore tend to have similar predictive
variances. In order to achieve global accuracy, we should
select sampling points that well represent the entire design
space. It is usually more efficient to sample at the
uncorrelated design points with relatively high predictive
variances than at design points with the highest predictive
variances but highly correlated. Therefore, whenever a point
is chosen, the points that are highly correlated with it
should have a decreased chance of being selected. This
is reasonable in that the information of a design point
could greatly reduce the predictive variances of other design
points highly correlated with it. We propose the following
sequential sampling algorithm, Algorithm 2, that actively
estimates the change in predictive variances of unsampled
design points when new design points are sampled. The
estimated variances are then used to guide future selection
of design points. In the algorithm, n1 and n2 are preset
sizes of the initial sampling and the sequential sampling
respectively.

Algorithm 1 Model Guided Adaptive Sampling (MGAS)
Algorithm

1. Randomly sample at n1 points from the design space,
denote the collection of design points as D.

2. (a) Fit predictive model f on D and use the model
to predict unsampled points.

(b) Calculate the predictive variances for all points:
Vj = var[f (xj )|D]; j = 1, . . . , N , where N is
the size of the design space.

(c) Let q = 0, V = maxj (Vj ),

i. Estimate the decrease in Vj if an additional
design point xl is sampled: dVj |l = Vj −
var[f (xj )|D ∪ {xl}], j, l = 1, . . . , N .

ii. Method 1 (ALM): Select k = arg maxl

[maxj dVj |l]; or
Method 2 (ALC): Select k = arg maxl

(
∑

j /∈D dVj |l ).

iii. Let q = q + 1, D = D ∪ {xk} and Vj =
Vj − dVj |k .

iv. If q < n2, go back to 2(c)i. Otherwise repeat
Step 2 until stopping criterion is met.

Remark 1. Generally we want n1 and n2 to be small for
the best sampling and prediction. However, n1 should be
large enough to build predictive models. If n2 is sufficiently
large, it could speed up the sampling process with a trade-
off of model accuracy. We want n2 to be large enough so
that with the additional n2 sample points, the predictive
variance from the newly built predictive model could be
significantly reduced. Step 2(c)iv could also be ‘Go back
to 2(c)i if maxj (Vj )/V > z, otherwise repeat Step (2)’,
where z(< 1) is prespecified to control the improvement
of the predictive variance. In this way, we do not need to
prespecify n2. In Section 4, we try a different n2 and find
that if the fitted model is close enough to the true model, a
moderate change in n2 will not have a big influence on the
final predictive accuracy.

Remark 2. In general, we stop the procedure based on
either the time/cost constraint or the convergence of some
performance measure. The former is purely user-dependent.
For the latter, we can monitor the procedure by a cross-
validation measure or by the predictive performance on an
independent test set. Since we consider the cases in which
the stopping issue is potentially user-dependent, we preset
the total sample size throughout the paper.

Remark 3. The two methods in Step 2(c)ii are based
on the two different active learning schemes proposed
by MacKay [9] and Cohn [10]. These two methods are
competitive. Their performances are evaluated in Section 4.

3. GENERAL MODEL GUIDED ADAPTIVE
SAMPLING

To implement Algorithm 2, it is important to calcu-
late predictive variances, and to estimate the change in
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predictive variances for all design points after an additional
design point is added. This calculation highly depends on
the predictive models. For most nonparametric procedures,
it is difficult to estimate the sequential changes of predictive
variances. For most parametric models, the predictive vari-
ances and their changes may not be in an analytical form
and/or the calculation could be expensive. In this section,
we generalize the method in Algorithm 2 so that under cer-
tain assumptions, MGAS can easily be implemented with
both Bayesian and Frequentist parametric predictive models
or nonparametric procedures.

The change in posterior predictive variance depends
not only on the predictive model and the sampling
method, but also on the underlying population distribution.
Assume the true model has the form y = f + ε, where
f is a structure function of known information (e.g., the
covariates x), ε is the random error which could be 0
for deterministic functions, and f and ε are independent.
Therefore, var(y|D) = var(f |D) + var(ε|D). We need two
assumptions to generalize MGAS: (A1) If a design point is
sampled, the predictive variance of the structure part for the
point reduces to zero, i.e. var(f |D) = 0. The motivation
for this assumption and examples can be found in ref. 1.
(A2) For any two design points xi and xj , their structure
functions can be decomposed into two parts: f (xi ) =
af

(i,j)

0 + f
(i,j)

i and f (xj ) = bf
(i,j)

0 + f
(i,j)

j , where a and

b are unknown parameters, f
(i,j)

0 is the common structure
component shared by yi and yj , and f

(i,j)

i and f
(i,j)

j are
the specific structure parts of yi and yj separately. We
further assume that f

(i,j)

0 , f
(i,j)

i and f
(i,j)

j are independent.
Therefore, the variance of yi can be decomposed into three
parts, a2var(f

(i,j)

0 ) + var(f (i,j)

i ) + var(εi), one shared by
yi and yj , one distinctive for yi , and one by random error.
Meanwhile, a2var(f

(i,j)

0 ) accounts for the reduction in
var(yi) if we learn the shared part.

LEMMA 1: Under the above assumptions and nota-
tions, if design points xi , xj and xk are not sampled and
used to build the initial model, then if xk is sampled to
update the model,

1. the posterior predictive variance of yj is reduced

by
σ 2
jk

σ 2
k

;

2. the posterior covariance of yi and yj is reduced
by

σikσjk

σ 2
k

.

where σ 2
i is the predictive variance of yi and σij is the

covariance between yi and yj before the model updating.

The proof of Lemma 1 is in the Appendix. Lemma 1(1)
implies that the more correlated the design points xj and xk

are, the larger the reduction in posterior predictive variance
of yj after the point xk is sampled. Lemma 1(2) shows how
to calculate the sequential change of predictive covariances
without fitting a new model with new samples. The lemma
indicates that the analytical forms of f

(i,j)

0 , f
(i,j)

i or f
(i,j)

j

are not needed for sampling purposes.
In the cases that (A1) and (A2) do not hold, we

can consider the following way to estimate the reduction
in predictive variance of yj after xk is sampled. If
we predict yj = η(yk) by the linear model of the form
η̂(yk) = α + βyk , the variance of yj can be decomposed
[18] to

var(yj ) = var{η(yk) − η̂(yk)} + σ 2
jk

σ 2
k

,

where the first term measures the lack of fit and the second
term is the same as in Lemma 1(1), measuring the variance
of yj that is explained by this fitted approximation with
yk . By these arguments, MGAS can be generalized to the
GMGAS as following:

Algorithm 2 General Model Guided Adaptive Sampling
Algorithm

1. Randomly sample n1 points from the design space,
denote the collection of design points as D.

2. (a) Fit predictive model f on D and use the model
to predict unsampled points.

(b) Calculate the predictive variance–covariance
between all points:

Vij = cov(f (xi ), f (xj )|D); i, j = 1, . . . , N.

(c) Let q = 0,

i. Method 1 (ALM): Select k = arg maxl

[maxj dVj |l] = arg maxl Vll ; or
Method 2 (ALC): Select k = arg maxl

(
∑

j /∈D

V 2
j l

Vll
).

ii. Let q = q + 1, D = D ∪ {xk} and Vij =
Vij − VikVjk

Vkk
.

iii. If q < n2, go back to 2(c)i. Otherwise repeat
Step (2) until stopping criterion is met.

Algorithm 2 generalizes MGAS so that it can be
implemented as long as we can obtain the predictive
variance–covariance matrix for the unsampled design
points.
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Remark 1. For Method 1 in Step 2(c)i, the second equal-
ity holds since if k = arg maxl Vll , then Vkk ≥ VjjVll/Vll ≥
V 2

j l/Vll = dVj |l by Lemma 1(1), for any j and l.
Remark 2. If the design space is very huge or

any covariate is continuous, the practitioner can consider
adapting space-filling methods such as maximum entropy
designs to select well-spaced candidate subspaces to rep-
resent the whole design space. Then the predictive vari-
ance–covariance matrix is estimated only at the candidate
subspaces.

Remark 3. The predictive model could be any Bayesian
or Frequentist predictive process. For the general Bayesian
models, we simulate predictions from the posterior distribu-
tions and then calculate the predictive variance–covariance
matrix from the simulation [6]. For the general Frequentist
models, the prediction simulation can be obtained by using
bootstrap method [19]. An example can be found in ref. 17.
Note that we provide a general method to obtain the predic-
tive variance–covariance matrices. Simulation and approx-
imation may not be necessary for some parametric models,
where the matrices have analytical forms. Even when the
analytical forms become available, our method sometimes
can simplify the calculation without loss of efficiency. An
example is given in Section 4.

In this paper, we use BART very often as the predictive
model to guide the adaptive sampling. BART is a Bayesian
‘sum-of-trees’ used to model the relationship between the
response and explanatory variables [20]. The method has
shown excellent predictive performance. (See, for example,
refs 21 and 22 and literature therein.) Readers interested
in BART are referred to the original paper by Chipman
et al. [20] and the paper by Yu et al. [6], who reviewed
BART and its inference methods. We utilize BART-
guided adaptive sampling (BGAS) to explore examples in
Section 4.

4. EXAMPLES

We apply MGAS along with different predictive models
to a real-life design study and two simulation studies. We
observe that in the real design study, when using with
the same predictive model, BART or multiple additive
regression trees (MART, [23]), MGAS outperforms both the
simple random sample (SRS) and the space-filling method,
maximin. We also use the real data to evaluate the effect
of n2 on the BGAS predictive performance. We find that a
moderate increase in n2 would not significantly affect the
predictive performance, while it is more efficient to select
multiple points without reinitiating the sampling process or
rerunning the model.

The first simulation is based on a deterministic real
function. In this simulation, we demonstrate the flexibility
of MGAS with any predictive models. The GP is a popular

model in computer experiments and has been extended to
the treed GP. Both processes can cooperate with MGAS.
By so doing, the predictive performance from the design
points selected by MGAS can be improved if compared
with traditional adaptive sampling methods such as ALC
and ALM.

The second simulation aims to demonstrate the efficiency
of our method in dealing with nonlinear real functions. It
shows why BGAS is efficient in terms of adaptive sampling
and the superior predictive accuracy of BART over linear
models. We also compare the estimated predictive variances
from Lemma 1 with the true variances in this simulation.

4.1. A Computer Architectural Design Study

We test MGAS on a computer architectural design space
of relatively small size, 1600 design points. With the small
design space, we can actually sample all the design points to
evaluate the predictive accuracy of different methods. There
are six parameters in this design space, each of which has
2, 4 or 5 levels. We then test the processor performance of
the 1600 different designs on two CPU benchmarks, GCC
and TWOLF, from the Standard Performance Evaluation
Corporation (SPEC) CPU 2000. These are widely used
in the computer industry and academia to measure the
bottlenecks and overall performance of the processor. The
six parameters are L1CS, L1CBS, L1CA, L2CS, L2CBS
and L2CA. L1 and L2 are two-level caches that store
recently visited data and instructions. They are important to
a processor’s performance and power consumption. Here,
L1CS and L2CS represent L1 and L2 cache sizes separately.
A cache is divided into many blocks. L1CBS and L2CBS
denote the L1 and L2 cache block sizes respectively.
Usually a cache is divided into several small groups, each
having a few blocks. This cache organization is the so-
called set-associative where each group is termed a set.
The number of blocks in a group (or set) is cache set
associativity, which is recorded by L1CA or L2CA in this
experiment.

For comparison, we use the predicted R-square (PR2,
defined by Yu et al. [6]), to measure the ‘goodness-of-
prediction’. PR2 is calculated on the whole design space.
It is different from the traditional R-square which is used to
measure ‘goodness-of-fit’ of the model. When calculating
PR2, only a small proportion of the design space (at most
200 out of the 1600 points in this example) are used for
model fitting.

We start with 30 design points randomly selected from
the design space and then sample 10 additional design
points using BGAS each time until we have a sample of
size 200. We use both methods in Algorithm 3 Step 2(c)i,
denoted by BGAS1 and BGAS2 separately. To compare
BGAS, SRS and maximin, we use the same predictive
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Table 1. The average sample size needed to get the critical PR2.

GCC Performance

PR2 0.80 0.85 0.90 0.95 0.96 0.97 0.98 0.99

SRS 51 60 70 97 105 120 148.5 >200
Maximin 53 62 75 140 162 172 176 >200
BGAS1 47 55 63 81 86 95 105 138
BGAS2 47 52 61 79 87 94 110 144

TWOLF Performance

PR2 0.80 0.85 0.90 0.95 0.96 0.97 0.98 0.99

SRS 31 34 46 90 108 134 164 >200
Maximin 30 34 53 134 153 170 178 >200
BGAS1 31 34 43 73 93 118 138 158
BGAS2 31 34 41 74 91 117 139 170

model, BART, with these sampling methods separately. In
BART fitting, we skip the first 1000 simulated sum-of-trees
as burn-ins and then keep one from every four simulations.
By so doing, we obtain 1000 simulations from the posterior
model. During the process, we make sure that the simulation
converges to a stationary distribution and the simulations
are reasonably independent. The distance function in the
maximin method is the same as that in ref. 17. Each
sampling method was repeated 20 times. Table 1 exhibits
the average sample sizes (of the 20 repetitions) needed to
reach the critical PR2 values in predicting the two process
performances, GCC and TWOLF, respectively.

Table 1 shows that both methods in MGAS improve
the predictive performance more quickly than SRS and
maximin in that the adaptive design needs a much smaller
sample size to achieve the critical accuracy. Furthermore,
it becomes much harder (requires a larger sample) for SRS
and maximin to reach a higher PR2 (say, for example,
PR2 ≥ 0.97). The BGAS1 and BGAS2 methods show
negligible difference in this study: BGAS1 seems to be
better when the total sample size is large, and the conclusion
reverses when the total sample size is small.

The model guided adaptive design can be used with
any models. For this example, we also use MART with
MGAS, where the prediction variance–covariance matrix
is estimated by bootstrap. More specifically, we resample
with replacement from the selected design points and fit a
MART on the resampled data. From the fitted MART, we
predict the unsampled design points and then calculate the
variance–covariance matrix. For comparison, we combine
MART with the methods in Algorithm 3 Step 2(c)i, noted
as ‘MGAS1 + MART’ and ‘MGAS2 + MART’, and with
SRS and maximin sampling methods separately. Since
MART needs a larger sample size to build a model, we
start with 50 randomly selected design points and then
increase the sample size by 10 each time until we get
200 points. Figure 1 shows the performance of different

methods. We observe that MGAS outperforms SRS and
maximin with both BART and MART in this example.
The two sampling methods described in the algorithm
are competitive with BART model, while with MART,
Method 1 seems slightly worse when sample size becomes
bigger. With each sampling scheme, the predictive model
BART is better than MART in this example.

For GCC data, Table 2 presents the average final
sampling frequencies (of the 200 × 20 samples) for each
level of every covariate, based on BGAS1, BGAS2, SRS
and maximin separately. The number in each cell is the
percentage of times that the corresponding level of the
covariate is selected. By SRS and maximin, every level
of a covariate has about the same chance of being selected.
BGAS chooses samples adaptively and thus results in better
predictions as demonstrated in Table 1. Note that BGAS1
and BGAS2 seem to choose very different samples.

It is interesting to see how MGAS performs when n2

varies. Figure 2 shows that for both BGAS1 and BGAS2,
the differences in PR2 are negligible when n2 ranges from
5 to 30. These differences become significant when n2 is
50, where PR2 is the smallest.

Theoretically, the predictive performance of BGAS
should be better when n2 is smaller. But a smaller n2

would result in a greater number of times to run the BGAS
algorithm and to initiate a new simulation process. To
draw the same number of simulations, the time to run the
BGAS algorithm and to initiate a new simulation process is
approximately inversely proportional to n2. When designing
the BGAS algorithm, our goal is to best approximate the
posterior variance so that we can choose multiple design
points without rerunning the models or incurring too much
error. As in this study, the predictive error is about the same
when n2 is between 5 and 30. In practice, we can set up a
cost function to study how the costs attributed to time and
to the loss of predictive accuracy change with n2, and then
search for the best n2.
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Fig. 1 For the real data set, comparison of MGAS with SRS and maximin. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Table 2. Proportion of the corresponding level of each covariate being selected in the sample.

L1CBS L1CA L2CS

Covariates levels 32 64 1 2 4 8 256 512 1024 2048 4096

BGAS1 50 50 32 23 20 25 27 19 17 17 20
BGAS2 50 50 29 26 23 23 24 21 19 18 17
SRS 50 50 26 25 25 25 20 20 20 19 20
Maximin 50 50 25 25 25 25 20 20 21 21 19

L2CBS L1CS L2CA

Covariates levels 64 128 8 16 32 64 1 2 4 8 16

BGAS1 51 49 32 23 20 25 34 19 15 14 17
BGAS2 51 49 27 26 24 23 28 21 18 17 17
SRS 50 50 26 25 25 25 20 21 20 19 20
Maximin 50 50 26 25 25 25 20 20 20 20 20

4.2. Simulation 1

The GP is prevalent in computer experiments [5].
Gramacy and Lee [12] adapted the GP to the treed Gaussian
process (TGP) extending the Bayesian treed linear model

by using a GP model with linear trend independently
within each region divided by the Bayesian tree process.
They further developed an adaptive sampling method in
computer designs [13] (noted as GL) that uses TGP as
the predictive model and adaptively chooses design points
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Fig. 2 Comparison of BGAS methods when n2 changes. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

using ALC or ALM. When we use the ALC or ALM
criterion in MGAS, our sampling methods differ from
GL in two aspects: first, to reduce the correlation among
the selected design points, GL uses space-filling designs,
such as maximin distance design and latin hypercube
sampling (LHS), to select a candidate data set. Therefore,
the correlations are controlled by prespecified ‘distance’.
In contrast, we develop a theory that can be used to
estimate the sequential change of the predictive variances
of unsampled design points. The correlations among design
points are dynamically considered in that sampling at
a design point would incur big changes in predictive
variances of those points highly correlated with it. Second,
to calculate the predictive variance–covariance matrix of
the candidate design space, GL uses the GP by assuming
that the density over output at a new point has a normal
distribution. MGAS has no assumption on the density in
general and thus can be used with any nonparametric
models. For parametric models, MGAS is also applicable if
the calculation of the adjusted variance is too complicated.

In this simulation, we compare the sampling efficiencies
of MGAS and GL. For this purpose, we use MGAS guided
by the TGP or GP method. We adopt the high-dimensional
simulation in GL with a minor adjustment. This is a six-
dimensional example, with true response

z(x1, x2, x3, x4, x5, x6) = exp{sin
(
[0.9(x1 + 0.48)]10)}

+ x2x3 + x4.

This function has four active variables. We also allow the
inputs to uniformly vary in [0, 1]. The simulation is slightly
different from GL in that the responses here are calculated
with no noise. Therefore, the response surface is determin-
istic. For all methods, we start with 30 samples. At each

run, we start with an initial set of 1000 configurations from
a maximum entropy design, and then choose ten samples
from the candidate data sets. The process is repeated until
we reach 200 samples. To compare sampling and model-
ing methods, we start with the same candidate sets. As in
GL, ALC works better than ALM in this simulation, and
TGP with jumps to the limiting linear models (TGPLLM) is
the best. Therefore, we use the ALC criterion and compare
the following processes denoted in the form of ‘modeling
method + sampling methods’: ‘GP + ALC’, ‘TGPLLM +
ALC’, ‘GP + MGAS2’, ‘TGPLLM + MGAS2’ and ‘BART
+ MGAS2’. Figure 3 shows the average R2 and its vari-
ances as evaluated on 20 random LHSs of size 1000 in
[0, 1]6 for 20 repeated modeling and sampling runs.

As is shown Fig. 3, with the same model, GP or
TGPLLM, MGAS2 outperforms ALC. Among the three
modeling methods, GP, BART and TGPLLM, TGPLLM
outperforms GP. BART is slightly worse than TGPLLM
in terms of the predictive performance when the sample
size is small, but it catches up quickly and becomes
much better when the sample size accumulates. As
for the predictive variances, GP introduces the lowest
variances while TGPLLM has the largest. Furthermore,
when using the same model, the variances from MGAS2
are smaller than those from ALC. The variances from
‘BART + MGAS2’ are comparatively small and appear to
fluctuate less as the sample size varies, compared with
other processes. When the sample size is 170 or more,
‘BART + MGAS2’ performs the best and ‘GP + ALC’ is
the worst. These differences are statistically significant. All
the computations are carried out in R, with ‘tgp’ package
[24] for TGPLLM and GP fitting and ‘BayesTrees’ package
for BART fitting. ‘BART + MGAS2’ requires much less
time than other processes.
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Fig. 3 For simulation 2, left panel compares the mean R2 of the different ‘modeling + sampling’ process. The right panel compares their
variances. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

4.3. Simulation 2

In the simulation, we create five covariates. Each covari-
ate has six levels (0, 0.2, 0.4, 0.6, 0.8, 1). Thus the design
space is composed of 7776 different design points. The
response variable is simulated from the equation y =
9e−3(1−x1)2

e−3(1−x2)2 − 0.65e−2(x3−x4) + 2 sin2(x5π) + e,
where e is the normally distributed random error with
mean zero and signal-to-noise ratio of 4 (the variance is
approximately 2.06).

We start to sample at 40 points and add 20 points at
each iteration until we collect a total of 400 samples, about
5% out of the 7776 design points. We repeat the process
20 times to account for the randomness in initial sampling
and the MCMC process. BGAS design is compared with
SRS, both using BART as the predictive model. In addition,
BART is compared with the linear models chosen by AIC
and BIC, and all models are built on randomly selected
samples. The left panel of Fig. 4 shows the mean PR2 of
the 20 repetitions. The right panel shows the corresponding
variance of the PR2.

Figure 4 shows that the AIC and BIC model selection
criteria outperform BART in model building and predictions
when the sample size is very small. This is due to the
fact that with small sample size, both linear models and
BART have high biases, while simpler model usually
has lower variances. As the sample size increases, BART
shows much better predictive performance since the
biases are significantly decreased with the sample size.
Combined with BART, BGAS consistently outperforms
SRS in that adaptive sampling reduces predictive variances
quickly. The right panel of Fig. 4 indicates that the
predictive variance for BART is larger than that for linear
models (compare ‘SRS + BART’ with ‘SRS + AIC’ and
‘SRS + BIC’). But the predictive variances of BGAS1 and
BGAS2 are consistently smaller than that of SRS with

BART. BGAS1 also has consistently smaller predictive
variance than the linear regression models. From this
simulation, we see that BGAS1 is better than BGAS2 in
terms of PR2 and has smaller predictive variance when the
sample size becomes large.

We also investigate the difference between the estimated
sum of predicted variance from Lemma 1 and the true
variance. As is shown in the left panel of Fig. 5, the
estimated variance is smaller than the calculated variance
from BART simulation. But it becomes stable at around
80% of the calculated predictive variance when the sample
size reaches 200. This is partially due to the fact that
the calculated predictive variances from BART simulation
actually include both the predictive variance and the
variance of random errors. The right panel of Fig. 5
shows the proportion of the calculated predictive variance
contributes to the sum of squared error. We find that
overall, model guided sampling methods result in greater
reduction in predictive variance than does the simple
random sampling.

5. CONCLUSIONS AND FURTHER RESEARCH

Computer experiments have been popular in exploring
huge design spaces without real experiments. However,
such exploration has recently become very challenging
because of the large number of parameters involved. In
this paper, we propose a GMGAS scheme, aiming at
efficiently sampling a small proportion of the design space
that can provide high predictive accuracy. By combining
with modeling processes such as BART, MART, TGPLLM
and GP, MGAS has shown its superiority over other
sampling schemes. The beauty of MGAS lies in the
facts that it is applicable with any modeling process,
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Fig. 4 For simulation study 2, comparison of adaptive experimental design with SRS and BART with linear regression model. Left plot
shows the mean predictive R-square of each method as the sample size increases. Right plot shows the variance of predictive R-square
of the 20 repetitions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

50 100 150 200 250 300 350 400

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Sample Size

E
st

im
at

ed
 V

ar
ia

nc
e/

C
al

cu
la

te
d 

V
ar

ia
nc

e

BGAS1
BGAS2

50 100 150 200 250 300 350 400

0.
20

0.
25

0.
30

0.
35

0.
40

Sample Size

C
al

cu
la

te
d 

V
ar

ia
nc

e/
S

S
E

BGAS1
BGAS2
SRS+BART

Fig. 5 For simulation study 2, left panel compares the estimated variance with the calculated variance from BART simulation. The right
panel shows the proportion of the calculated predictive variance contributed to the sum of squared error. [Color figure can be viewed in
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parametric or nonparametric, and that its calculation is
straightforward.

The proposed method may be applied to find optimal
designs from huge spaces. Instead of randomly selecting
candidate design points, we choose design points that are
predictive of extreme values. By predicting the posterior
predictive intervals for the quantity of interest on design
points, we could sample all the points whose posterior
intervals overlap that of the predicted extreme value. This
will be left as further research topic.
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APPENDIX: PROOF OF LEMMAS

Proof: Proof of Lemma 1
By (A2), we have that yk = af

{k,j}
0 + f

{k,j}
k + εk and yj = bf

{k,j}
0 +

f
{k,j}
j + εj , for unsampled points xj and xk . Note that for deterministic

functions, var(εi ) are 0. This fact dose not have any effect on the
proof.

1. If design point xk is sampled, then by (A1), var(f {i,j}
0 |yk) = 0.

Therefore,
var(yj |yk) = var(bf {k,j}

0 + f
{k,j}
j + εj |yk)

= var(f {k,j}
j ) + var(εj ),

⇒ var(yj ) − var(yj |yk) = b2var(f {k,j}
0 ) + var(f {k,j}

j )

+ var(εj ) − var(f {k,j}
j ) − var(εj ) = b2var(f {k,j}

0 ).
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Since yj = − b
a
f

{k,j}
k + b

a
yk + f

{k,j}
j + (εj − b

a
εk), which is

a linear regression with − b
a
f

{k,j}
k being the intercept, yk and

f
{k,j}
j being two independent regressors and (εj − b

a
εk) being

the random error. Therefore, b
a

, the slope for yk regressed on
yj , equals

σjk

σ2
k

. Also,

cov(yj , yk) = cov(bf
{k,j}
0 + f

{k,j}
j + εj , af

{k,j}
0 + f

{k,j}
k + εk)

= abcov(f
{k,j}
0 , f

{k,j}
0 ) = abvar(f {k,j}

0 ).

Therefore,

var(yj ) − var(yj |yk) = b

a
· abvar(f

{k,j}
0 )

= σjk

σ 2
k

· cov(yj , yk) = σ 2
jk

σ 2
k

.

2. When design point xk is sampled, let ρij = σij /(σiσj ) be
the correlation coefficient between yi and yj , and σ 2

i|k the
conditional variance of yi given yk , then

cov(yi , yj |yk) = ρ(yi , yj |yk) · σi|k · σj |k

= ρij − ρikρjk√
1 − ρ2

ik ·
√

1 − ρ2
jk

· σi|k · σj |k

= σij σ
2
k − σikσjk√

σ 2
i σ 2

k − σ 2
ik ·

√
σ 2

j σ 2
k − σ 2

jk

·
√

σ 2
i σ 2

k − σ 2
ik

σ 2
k

·
√√√√σ 2

j σ 2
k − σ 2

jk

σ 2
k

= σij σ
2
k − σikσjk

σ 2
k

= σij − σikσjk

σ 2
k

.

�
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