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Oil spills occur across large landscapes in a variety of soils. Visible and near-infrared (VisNIR, 350–2500 nm)
diffuse reflectance spectroscopy (DRS) is a rapid, cost-effective sensing method that has shown potential for
characterizing petroleum contaminated soils. This study used DRS to measure reflectance patterns of 68 sam-
ples made by mixing samples from two soils with different clay content, three levels of organic carbon, three
petroleum types and three or more levels of contamination per type. Both first derivative of reflectance and
discrete wavelet transformations were used to preprocess the spectra. Three clustering analyses (linear dis-
criminant analysis, support vector machines, and random forest) and three multivariate regression methods
(stepwise multiple linear regression, MLR; partial least squares regression, PLSR; and penalized spline) were
used for pattern recognition and to develop the petroleum predictive models. Principal component analysis
(PCA) was applied for qualitative VisNIR discrimination of variable soil types, organic carbon levels, petro-
leum types, and concentration levels. Soil types were separated with 100% accuracy and levels of organic car-
bon were separated with 96% accuracy by linear discriminant analysis using the first nine principal
components. The support vector machine produced 82% classification accuracy for organic carbon levels by
repeated random splitting of the whole dataset. However, spectral absorptions for each petroleum hydrocar-
bon overlapped with each other and could not be separated with any clustering scheme when contamina-
tions were mixed. Wavelet-based MLR performed best for predicting petroleum amount with the highest
residual prediction deviation (RPD) of 3.97. While using the first derivative of reflectance spectra, penalized
spline regression performed better (RPD=3.3) than PLSR (RPD=2.5) model. Specific calibrations consider-
ing additional soil physicochemical variability and integrating wavelet-penalized spline are expected to pro-
duce useful spectral libraries for petroleum contaminated soils.
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1. Introduction

Oil contaminated soils are problematic in many areas; both coastal
and inland. Whilst there is heightened media attention on the 2010
Deepwater Horizon oil spill in the Gulf of Mexico, smaller inland spills
occur on a regular basis. These spills typically occur in the form of broken
oil well service lines, leaking storage tanks or crumbling infrastructure,
long term leakage, and underground gasoline storage tanks at local fuel
stations. In some cases, agricultural soils are affected (where oil produc-
tion is occurring concurrently with crop production), but in other in-
stances, the contamination may take place in wildlife refuges or national
parks. Soil petroleum contamination endangers local and regional eco-
logical systems, food chains, and even creates the risk of explosion in
urban areas (Fine et al., 1997). To better understand contaminate trans-
port, fate, and remediation, reliable methodologies for monitoring/
measuring petroleum hydrocarbon contamination in soils are warranted.

http://dx.doi.org/10.1016/j.geoderma.2012.01.018
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Measurement of petroleum hydrocarbons in contaminated soils is
time consuming and requires rigorous field sampling besides costly
wet chemical analyses, making wide-scale quantitative assessment
challenging (Dent and Young, 1981). Gas-chromatography based lab-
oratory methods for total petroleum hydrocarbon (TPH) quantifica-
tion lack field-portability (Forrester et al., 2010). Moreover, a lack of
standardized methods has resulted in high variability (an order of
magnitude) in TPH results across commercial laboratories (Graham,
1998; Malle and Fowlie, 1998; Malley et al., 1999). Hence, there is a
pressing need for an innovative, rapid, environmentally responsible,
and cost-effective sensing technology to identify petroleum contami-
nated areas for remediation and to monitor restoration on an ongoing
basis (Prince, 1993).

Optical sensors can differentiate and quantify spectrally alike (but
unique) objects having subtle signature variations (Ge et al., 2007;
Hyvarinen et al., 1992; Wetzel, 1983). Besides, advancements in
both near-infrared (NIR) based proximal sensors with a fiber optic
probe and chemometric analysis have extended near-infrared spec-
trometry (NIRS) to petroleum industries for identification of gasoline
and middle distillate fuel properties (Balabin and Safieva, 2008;
Chung and Ku, 2000; Chung et al., 1999; Current and Tilotta, 1997;
Westbrook, 1993; Workman, 1996; Yoon et al., 2002). Synergistic ar-
rangement of optical sensors for diverse regions of the electromag-
netic spectrum is capable of identifying petroleum contamination in
a targeted matrix.

Visible near-infrared diffuse reflectance spectroscopy (VisNIR
DRS) might be a useful proximal sensing tool to identify soil petro-
leum contamination because the scanning is rapid and non-
destructive, instruments are field portable, and costs are fixed. Recent
evidence suggests that VisNIR DRS and chemometric modeling offer
comparable levels of accuracy to standard physicochemical analysis
of various soil properties (Ben-Dor and Banin, 1995; Brown et al.,
2005; Islam et al., 2003; Morgan et al., 2009; Reeves et al., 2000;
Vasques et al., 2009; Viscarra Rossel et al., 2006). To date, researchers
have identified various spectral regions in VisNIR associated with soil
clays and organic matter. Ben-Dor and Banin (1990) proved the use-
fulness of near-infrared reflectance spectroscopy in chemical charac-
terization of clay minerals. Moreover, Waiser et al. (2007) concluded
that VisNIR DRS could predict soil clay content with reasonable accu-
racy. While overtones of OH−, SO4

2−, and CO3
2− groups and combina-

tion bands of H2O and CO2 are responsible for unique spectral
signatures of common clay minerals; O–H, C–N, N–H, and C_O
groups are active bonds for soil organic matter in the NIR region
(Al-Abbas et al., 1972; Bowers and Hanks, 1965; Brown et al., 2005;
Hunt, 1982; Hunt and Salisbury, 1970; Malley et al., 2002). A number
of studies have reported an increase in prediction accuracy when
VisNIR-organic C models were created for small, homogenous areas
(Chang et al., 2005; Lee et al., 2003). Concurrently, other researchers
have observed decreased prediction accuracy for larger geographic
areas (Brown et al., 2006; Dunn et al., 2002; Kusumo et al., 2008;
Shepherd and Walsh, 2002). Nonetheless, less attention has been
given to quantitative spectral analysis of petroleum contaminated
soils with variable texture and organic carbon and remains a consid-
erable task.

While researchers have proposed several calibration techniques to
relate NIR spectra with measured soil properties, only a few studies
have sought to quantitatively understand the effect of petroleum hy-
drocarbon on shortwave reflection. Malley et al. (1999) reported val-
idation r2 of 0.68 and 0.72 for NIR TPH predictions in diesel fuel
contaminated soils. Forrester et al. (2010) used PLS cross-validation
chemometric modeling for infrared spectroscopic identification of
TPH. Chakraborty et al. (2010) used PLS regression and boosted
regression tree modeling for identification of petroleum contaminat-
ed soils. However, there has been little effort on the development of
dedicated spectral libraries for soil–petroleum contamination
appraisal.
The goal of this communication is two-fold and is a continuation
of the work by Chakraborty et al. (2010), which demonstrated the
feasibility of VisNIR DRS for rapid and in-situ identification of petro-
leum hydrocarbon in soil, without prior sample preparation. Our pri-
mary goal is the further clarification of the relationship between soil
petroleum hydrocarbon and reflectance measurements based on
multivariate regression methods and classification techniques, in
the context of variable soil texture and organic carbon levels. Further-
more, this research investigates the possibility of linking specific
wavebands to unique petroleum hydrocarbons.

The authors acknowledge that the limited number of samples (68)
somewhat constrain the global applicability of the dataset. However,
this research was intended to investigate the effect of soil variability
on VisNIR-based TPH predictions in soil, investigate the viability of
different spectral analysis techniques, and ascertain which techniques
show the most promise for future investigations.

The applicability of VisNIR technology and methods tested in this
study is broad. Most NIR spectroscopic investigations of petroleum
contaminated soils have had limited scope because of the limited var-
iability of oil types, and/or because less importance was given to soil
texture and organic carbon, which can be both spatially and tempo-
rally variable, and management dependent (Russell et al., 2005).
Characterization of petroleum spectral patterns for variable amounts
of soil organic carbon and variable soil texture might be more useful
for creating a spectral library for large geographic areas. Combina-
tions of ideal data-mining or pattern-detection tools for using VisNIR
DRS to characterize petroleum contaminated soil are useful for
understanding other potential applications of the technology. The
present research envisions a VisNIR-DRS optical sensor located in a
soil probe for in-situ characterization of both surface and subsurface
petroleum contamination in soils. Hence, the specific objectives of
this research were to: (i) examine the effect of variable soil texture,
organic carbon, and oil types on VisNIR reflectance patterns of petro-
leum contaminated soils and, (ii) compare different spectral preproces-
sing and multivariate data-mining tools for characterizing petroleum
contaminated soils and future development of VisNIR-based optical
sensors.

2. Materials and methods

2.1. Sample preparation

Two soil samples (10–30 cm) with no known hydrocarbon con-
tamination were collected from an active agricultural production
field at the LSU AgCenter St. Gabriel Research Station, near Baton
Rouge, Louisiana, USA, (30°16′ 8″ N, 91°6′ 16″ W). Soil A is a Com-
merce silt loam (Fine-silty, mixed, superactive, nonacid, thermic Flu-
vaquentic Endoaquept), and Soil B is a Schriever clay (Very-fine,
smectitic, hyperthermic Chromic Epiaquert) (Soil Survey Staff,
2005). Soil samples were air-dried, ground, and passed through a 2-
mm sieve. A gravimetric soil moisture subsample was used for
oven-dry weight correction for laboratory analysis. Laboratory proce-
dures included particle size analysis by pipette method with an error
of ±1% clay (Gee and Or, 2002; Kilmer and Alexander, 1949; Steele
and Bradfield, 1934) and saturated paste pH (Soil Survey Staff,
2004). Total carbon levels were determined by Dumas Method com-
bustion using a TruSpec CN analyzer (LECO, St. Joseph, MI, USA)
(Dumas, 1831; Wang et al., 2003). Inorganic C was measured using
the modified pressure calcimeter method (Sherrod et al., 2002). Or-
ganic carbon was determined as the difference of total carbon and in-
organic carbon. Natural organic carbon levels for Soil A and Soil B
were both very low (≤0.5%). These soils were spiked with a mixture
of natural muck (collected from a local swamp) and commercially
available sphagnum so that Soils A and B were made to contain ap-
proximately 1%, 5%, and 10% organic carbon on a gravimetric basis.
Before spiking the soils, the dried sphagnum was chopped and the
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spagnum and muck were sieved (2 mm). Each of the soil–organic
matter mixtures were spiked with three types of petroleum and at
three concentrations. The three grades of petroleum included crude
oil, diesel, and used (Penzoil 10–30 weight) motor oil, and the three
levels of concentration were 1000, 10,000, and 30,000 ppm. Addition-
ally, an extra set of nine intermediate levels of crude oil concentra-
tions (4000–28,000 ppm at 3000 ppm intervals) was created for Soil
B, with an organic carbon content of 5% to improve the capability to
fit models and test their results. Before spiking with organic material
and petroleum, all soil samples were moistened to reach 7.5% mois-
ture content, by weight. Each sample was thoroughly homogenized
using a stainless steel spatula, stored in sealed glass jars capped
with an aluminum lined cap, and refrigerated to prevent hydrocarbon
volatilization.

2.2. VisNIR DRS scanning

In the laboratory, the constructed samples were scanned using a
field portable AgriSpec VisNIR spectroradiometer (Analytical Spectral
Devices, CO, USA) with a spectral range of 350 to 2500 nm (ultravio-
let/VisNIR [350–965 nm], short-wave infrared 1 [966–1755 nm], and
short-wave infrared 2 [1756–2500 nm]). The spectroradiometer had
a 1-nm sampling interval and a spectral resolution of 3- and 10-nm
wavelengths from 350 to1000 nm and 1000 to 2500 nm, respectively.
About 30 g of each sample was placed into a Duraplan® borosilicate
optical-glass Petri dish and scanned from below using a muglamp
with a tungsten quartz halogen light source (Analytical Spectral De-
vices, CO, USA). Each sample was scanned four times with a 90° rota-
tion between successive scans to obtain an average spectral curve. A
spectralon panel with 99% reflectance was used every five samples
to optimize and white reference the spectroradiometer.

2.3. Pre-treatment of spectral data

In the present study, we compared two techniques (1st derivative
of reflectance and discrete wavelet transform) to preprocess the soil
spectra prior to analysis. Three clustering analysis techniques were
utilized for pattern recognition, including linear discriminant analy-
sis, support vector machines, and random forest. Moreover, three
multivariate regressionmethods (stepwise multiple linear regression,
MLR; partial least squares regression, PLSR; and penalized spline)
were compared to develop the petroleum predictive models. A statis-
tical analysis software package, R version 2.11.0 (R Development Core
Team, 2008) was used to preprocess raw reflectance spectra. Based
on a comparative analysis described by Chakraborty et al. (2010),
only the smooth reflectance and the first-derivative of reflectance
spectra on 10-nm intervals were extracted using custom ‘R’ routines
(Brown et al., 2006). From previous studies, it is apparent that first-
derivative spectra can remove the baseline shift arising from detector
inconsistencies, albedo, and sample handling, improving the accuracy
of quantification (Demetriades-Shah et al., 1990).

2.4. Wavelet analysis and stepwise multiple linear regression

In VisNIR spectroscopic analysis, wavelets have been proposed by
several researchers to pre-treat spectral data and develop calibration
models (Ge et al., 2007; Lark and Webster, 1999; Viscarra Rossel and
Lark, 2010). Wavelet coefficients at higher scales have local support
and correspond to fast varying, undesirable noise of individual
bands in the spectral measurement; whereas, those at lower scales
have wide support and correspond to slow, varying signal shifts in-
volving many contiguous bands (e.g., instrument dark current shift
due to ambient temperature change). For these reasons, wavelets
are regarded as a useful tool for VisNIR spectral data pretreatment
and model calibration. By discarding wavelet coefficients at high
and low scales, the remaining coefficients capture the absorption
information and give rise to a more informative calibration model
compared to PLSR techniques. A spectroscopy-specific example of
wavelet transformation can be seen in Ge et al. (2007).

The Haar wavelet system was used to process spectral data and
the filter bank algorithm was implemented to dyadically decompose
each soil spectrum (original noise corrupted, 1-nm interval) from
the highest scale (Scale 11, representing the raw spectrum itself) to
lowest (scale 0, representing the average of the spectrum). The wave-
let coefficients at scales 7, 6, and 5 which had bandwidths of 128, 64,
and 32 nm, respectively, were extracted. Among them, six wavelet
coefficients were selected (by stepwise multiple linear regression)
for VisNIR model development. The wavelet decomposition was per-
formed using the Wavelet Toolbox in MatLab R20009a (The Math-
Works, MA, USA) while the stepwise MLR model was built in R
version 2.11.0.

2.5. Principal component analysis

Principal component analysis (PCA) was applied for qualitative
VisNIR discrimination of the prepared samples according to the vari-
able soil types, organic carbon levels, oil grades, and oil concentra-
tions. The cumulative proportion of variance explained by the
leading principal components (PC) was used to extract optimum
PCs. Fisher's linear discriminant analysis (LDA) was then applied on
the selected leading PCs, assuming equal prior probability for each
group. To assess classification results, kappa coefficients were com-
puted (Thompson and Walter, 1988). Furthermore, pairwise scatter-
plots of the first three PCs were produced to provide visual
assessment on how different groups were separated in the PC space.
To test whether soil type and organic carbon content mask the signa-
ture of different oil types, pairwise scatterplots of the first nine PCs
were produced for a particular soil type with a specific organic carbon
content and multiple oil grades. PCA was performed using R version
2.11.0 (function: prcomp).

2.6. Support vector machine and random forest

Support vector machine (Boser et al., 1992; Vapnik, 1995) and
random forest (Breiman, 2001) are two popular data mining
methods, which were recently proposed for VisNIR modeling applica-
tions (Stum, 2010). From the geometric perspective, support vector
machine is a margin-based classifier. For a separable binary classifica-
tion problem support vector machine chooses a hyperplane so that
the distance from it to the nearest data point on each side is maxi-
mized. For non-separable data (VisNIR data), the soft-margin support
vector machine chooses a hyperplane that splits two classes as clean-
ly as possible, while still maximizing the distance to the nearest
cleanly split examples. A complex space with non-linear multivariate
relationships is transformed into a higher dimensional, linear (inner
product) space via the kernel trick, the SVM problem is solved in the
linear dataspace, then back-transformed to the lower dimensional
space for the result. A desirable property of support vector machine
is that its solution only depends on a subset of training examples
called support vectors. The support vector machine was performed
by using the “e1071 package”, an R interface to library for support
vector machines (LIBSVM) (Chang and Lin, 2001). The radial basis
kernel was used.

Random forest is an enhancement that aims to improve the per-
formance of a single decision tree by fitting many trees (and thus
the name ‘forest’) and combining them for prediction. The final pre-
diction is based on majority votes over all the trees built. In random
forest, the decision trees are different because of the following
two factors: (1) at each tree node (splitting point), a best split is cho-
sen from a random subset of the input variables rather than all of
them and, (2) each tree is built based on a bootstrap sample of the ob-
servations. The random forest was performed in R using the



Fig. 1. Average reflectance spectra is shown for Soil A from Louisiana, USA with 1% or-
ganic carbon and different concentrations of diesel (ppm or mg kg−1). Soil A is a Com-
merce silt loam and acidic in nature. Spectral absorption maximums of petroleum at
1730 nm and 2310 nm are apparent in mean spectral reflectance curve.
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“randomForest package” developed by Breiman and Cutler (Breiman,
2001). A total of 500 trees were generated for each random forest
model.

2.7. Wavelet-support vector machine classifier

The discrete wavelet decomposition algorithm (Mallat, 1989) was
applied to the spectral matrix (both reflectance and first-derivative of
reflectance at 10-nm intervals) and the wavelet coefficients to extract
important features. Before the wavelet coefficients were decomposed,
thresholding was applied to eliminate “unimportant” (not significant-
ly different from zero mean) coefficients considered to be noise. De-
tails of wavelet thresholding are elucidated by Donoho and
Johnstone (1994). After wavelet decomposition, support vector ma-
chine was applied to the extracted features (the wavelet coefficients
after thresholding). After thresholding, 108 wavelet coefficients
were left (i.e. at least one non-zero value among all the samples).

2.8. Partial least squares regression

Partial least squares regression was employed to help predicting
petroleum content through spectral and concentration matrix de-
composition using R version 2.11.0. Quantitative PLSR modeling can
handle the complicated relationship between the predictors and re-
sponses resulting from multicolinearity of predictors, random linear
baselines, and overlapping of major spectral components of predic-
tors with that of the analytes (Wold et al., 2001). The whole dataset
(68 samples) was used for training with leave-one-out cross-
validation for model creation and selection for the number of latent
factors (rotations of PCs for a different optimization criterion).
Models with as many as nine factors were considered, and the opti-
mal model was determined by choosing the number of latent factors
with the first local minimum in root mean squared error of cross-
validation (RMSEcv). The coefficient of determination (r2), and resid-
ual prediction deviation (RPD) (the ratio of standard deviation to
RMSECV) were used as rubrics for evaluating the quality of PLSR and
other models in real-world situations.

2.9. Penalized spline

In PLSR, the order of the regressor channels (wavelengths) is ig-
nored. In other words, the same results will be obtained when the re-
gressors are shuffled. Penalized spline (Eilers and Marx, 1996)
attempts to take advantage of the additional structure from the
order of regressors. Namely, it forces the regression coefficients to
be smooth (i.e. constraining the difference between the neighboring
regression coefficients). The smoothness comes from a difference
penalty on adjacent regression coefficients. This penalty is propor-
tional to the size of the difference between neighborhood coefficients.
Because of the additional constraint imposed by the difference penal-
ty, penalized spline is well-suited for ill-posed problems (the dimen-
sionality is much larger than the sample size) such as signal
regression problems. A nice property of the penalized spline is that
it is within the linear regression framework. Hence, it inherits all
the statistical inferences of linear regression, such as confidence inter-
vals. In addition, like linear regression, penalized spline can run the
leave-one-out cross-validation by fitting the model on the entire
dataset once, without recomputation of the regression model omit-
ting each observation. For the details of penalized spline, we refer
readers to Eilers and Marx (1996).

In the present study, the cubic B-spline was used (using R version
2.11.0) as the basis functions with 100 equally-spaced knots. The
order of the penalty was set to the default value of three. The optimal
value for the penalty-tuning parameter was selected by minimizing
the leave-one-out cross-validation error.
3. Results and discussion

Particle size analysis confirmed soil textures of soil A and B as silt
loam (8.7% clay) and clay (47.1% clay), respectively. Both soils exhib-
ited similar pHs (6.3 and 6.6, respectively). Average reflectance spec-
tra for soil samples with 1% organic carbon and three concentrations
of diesel (ppm or mg kg−1) are shown in Fig. 1. In general, mean
spectral reflectance decreased as diesel concentration increased, as
expected (Hoerig et al., 2001). Note that, the specific absorption max-
imums of petroleum at 1730 (C–H stretch 1st overtone band) and
2310 nm (C–H stretch combination band), as already exhibited by
Cloutis (1989), were clearly identified by VisNIR DRS. Other re-
searchers identified that the first overtone of the C–H band makes
the most important contribution for analysis of oil systems (Balabin
and Safieva, 2007). It is always desirable to use individual reflec-
tance/absorption features while calibrating petroleum concentrations
and spectral reflectance.

3.1. Classification

Eighty-eight percent of the spectral variance was explained by the
first nine PCs. Despite the high dimensionality of the spectral data
(215 channels from 350 to 2500 nm at 10-nm intervals), three quar-
ters of the variation was primarily explained by the first five PCs
(76%). Separate pairwise PC score plots for soil types and oil grades
indicating organic carbon levels were used (Figs. 2 and 3, respective-
ly) to discriminate reflectance spectra and identify clustering pat-
terns. Fig. 2a, illustrates how the first PC separates the samples from
Soil A and B with less differentiation by organic carbon content. Prin-
cipal component two delineates the three quantities of organic car-
bon (Fig. 2a and b). Conversely, clear separations between
contaminant oil types and concentrations were not delineated by
first three PCs or any of the first nine PCs.

Results of LDA classification closely followed results of visual PC
plot inspections. Notably, for soil type classification, LDAwas 100% ac-
curate in classifying soil types; LDA correctly classified all but three
samples by soil organic carbon content, but oil type was not discern-
able using LDA (Table 1).

Fig. 4 shows pairwise scatterplots of the first nine PCs for soil B
with 5% organic carbon and multiple oil types. It was challenging to
test whether soil type and organic carbon mask the oil type signa-
tures due to the small sample size. However, the plots indicated



(a) (b) (c)

 Soil A+1% organic carbon  Soil B+1% organic carbon  Soil A+5% organic carbon   Soil B+ 5% organic 
carbon  Soil A+10% organic carbon  Soil B+10% organic  carbon 

Fig. 2. Principal component (PC) plots for (a) PC1 vs. PC2, (b) PC1 vs. PC3, and (c) PC2 vs. PC3 of the first-derivative of VisNIR. The solid circles and open circles represent Soil A and
Soil B, respectively. Blue, red, and green represent soils with 1%, 5%, and 10% organic carbon, respectively.
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some separation of three oil types (the motor oil and diesel are two
ends and crude oil is in the middle) and implied that oil type signa-
tures were not completely masked by soil type and organic carbon
signatures. Nonetheless, no conclusion could be made unless compar-
ing these results with more soil types with different organic carbon
contents.

To evaluate the prediction performance for the support vector ma-
chine, random forest, and wavelet-based support vector machine, the
whole dataset was randomly split 50 times. For each split, a training
set contained 48 samples and a test set contained 14 samples. The
control (no petroleum contaminate added) samples were excluded.
The models were trained on the training set, while the prediction
was evaluated on the test set. The prediction performance of the sup-
port vector machine, random forest, and wavelet-based support vec-
tor machine was compared based on the percent misclassifications on
the 50 test sets. The summary prediction performance on oil type,
(a) (b)

Soils with  1000 ppm crude oil  10000 ppm crude oil

ppm diesel  30000 ppm diesel 1000 ppm motor oil 

Fig. 3. Principal component (PC) plots for (a) PC1 vs. PC2, (b) PC1 vs. PC3, and (c) PC2 vs. P
angles represent soils with crude oil, diesel, and motor oil respectively. The blue, red, a
respectively.
organic carbon level, and soil type is presented in Table 2. From the
average misclassification rate (%) from 50 test sets, it was clear that
the support vector machine, random forest, and wavelet-support vec-
tor machine had similar prediction performances. All methods sepa-
rated the two soil types with little to no error. For organic carbon,
the support vector machine performed slightly better than the ran-
dom forest, while the wavelet-support vector machine misclassified
twice as often as the first two methods. For oil types, all three
methods misclassified over 50% of the time. The misclassification
rates for a full leave-one out cross validation, using the entire dataset,
were much smaller than the 48-sample training set misclassification
rate (Table 2). Particularly, the misclassification rate for classing oil
types went to 0 to 23%. A misclassification rate between 60 and 0%
is a large but realistic estimate of the ability for VisNIR spectroscopy
to classify petroleum contamination type in soils. Clearly more sam-
ples in a training set and clearly defined contamination types
(c)

 30000 ppm crude oil 1000 ppm diesel 10000

 10000 ppm motor oil 30000 ppm motor oil

C3 using the first-derivative of VisNIR reflectance spectra. The circles, squares, and tri-
nd green represent 1000, 10,000, and 30,000 oil concentrations (ppm or mg kg−1),

image of Fig.�2


Table 1
Results for classifying soil organic carbon levels and oil types using the Fisher's Linear
Discriminant Analysis (LDA). The first nine principal components (PC) scores of the
first-derivative spectra were used as the explanatory variable (control type was excluded
from oil types analysis). The weighted kappa coefficients are 0.96 and 0.16 for organic
carbon and oil types, respectively.

LDA-classified organic carbon LDA-classified oil types

1% 5% 10% Sum

Sum

Overall accuracy

Crude Diesel Motor oil Sum

Low 19 1 0 20 Crude 14 7 5 26
Medium 0 28 0 28 Diesel 9 3 6 18
High 0 2 18 20 Motor oil 7 4 7 18

19 31 18 68 30 14 18 62

96% 40%

Fig. 4. Principal component (PC) plots using the first-derivative of VisNIR reflectance spectra
respectively. All samples contain 5% organic carbon.
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improves the probability of a correct classification. However these re-
sults are not encouraging especially if contamination types were
mixed.

3.2. Multivariate modeling

Three multivariate regression techniques were used to relate the
VisNIR reflectance spectra to oil concentrations with leave-one-out
cross validation. Accuracy and stability of different multivariate
models were evaluated according to the RPD-based guidelines by
Chang et al. (2001). The best prediction models are characterized by
a RPD of >2.0 with r2 of ~0.80–1.00, fair models with potential for
prediction improvement include RPD values of 1.4–2.0, while unreli-
able models have RPD values of b1.40. These RPD values are most
. The circles, squares, and triangles represent soil B with crude oil, diesel, and motor oil,



Table 2
Summary of classification performance on oil type, organic carbon content, and soil type for four classification methods.

Soil type Organic carbon content Oil type

Average
MRa

MR for whole data set Average
MR

MR for whole data set Average
MR

MR for whole data set

(no split) (no split) (no split)

%
Support vector machine 0 0 18 1.6 67 23
Random forest 0 0 18.5 0 63 0
Wavelet (1st)-SVMb 1.3 0 26 0 64 6.5
Wavelets (r)-SVM c 0 0 30 1.6 65 23

a MR, Misclassification rate.
b Wavelet (1st)-SVM, Wavelet decomposition on first-derivative of reflectance followed by support vector machine.
c Wavelets (r)-SVM, Wavelet decomposition on raw noise corrupted reflectance spectra followed by support vector machine.
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useful when the validation set is independent of the calibration set;
however, with leave-on-out cross validation they are still useful indi-
cators for describing the potential of the technology.

A plot of actual versus PLSR predicted oil concentration in soil
samples is presented in Fig. 5a. The PLSR plot shows that the predic-
tion method was less accurate at larger concentrations. In linear re-
gression modeling (which includes PLSR), one of the assumptions is
homogeneity of variance, also known as homoskedasticity assump-
tion. However, it was evident that the error variance was not constant
in case of PLSR (i.e. variance increases with the actual oil concentra-
tion). A trend in prediction residuals by soil type, organic carbon
levels, and oil type was investigated (Fig. 6). Non apparent trends in
the TPH prediction residuals were found by organic matter and soil
type; however it does seem that overall motor oil residuals were
higher than the residuals from the other oil types. The motor oil
was used motor oil. Perhaps the PLSR model had difficulty with the
spectral signatures of the impurities. The PLSR model used three la-
tent factors. The number of latent factors in the present study was
less than the values reported by other oil related research (Aske et
al., 2001; Balabin and Safieva, 2007). Notably, the abovementioned
oil related research used petroleum macromolecules in the model
systems without the influence of heterogeneous soil matrix.

Predictions of oil concentration using wavelet-MLR more closely
approximated the 1:1 line and had less bias (33 mg kg−1) (Fig. 5b).
The wavelet model, developed by using wavelet coefficients from
the reflectance spectra with leave-one-out cross validated stepwise
MLR performed the best of the three models. Most importantly the
residuals from the wavelet-MLR model were homoskedastic, which
lends more credibility to this model. Prediction accuracy and model
fit of the penalized splines method were better than the PLS, but
had a lower RPD than wavelet-MLR (Fig. 7 and Table 3). The fitted
coefficient curve was smooth across the spectrum, indicating stability
of the model. The gray-shaded band shows the 95% confidence
Fig. 5. Actual versus predicted oil concentration (mg kg−1) using a) partial least squares reg
linear regression (MLR). The solid line is the regression line, and the dashed line is a 1:1 lin
interval for the coefficients and can be used to discover the region
that has a coefficient significantly different from zero, and the impact
of this region on the response. For example, the 1300–1400 nm and
1550–1700 nm regions are both away from zero. However, the for-
mer contributes a positive effect on the oil concentration while the
latter has a negative effect.

Among the multivariate methods tested, the wavelet-MLR and pe-
nalized spline regression models performed better than PLSR model.
The wavelet-MLR yielded the highest predictability (RPD=3.97),
with the lowest RMSEcv (3010 mg kg−1). Furthermore, the penalized
spline model provided the highest coefficient of determination (0.98)
along with a high RPD (3.32), indicating the robustness and accuracy
of both wavelet-MLR and penalized spline models. Ge et al. (2007)
concluded that the main advantage of dyadic discrete wavelet trans-
formation over traditional PLSR and principal component regression
based methods is the use of fewer regressors, separated into different
scales. Since in the present study, the neighboring channels were
highly correlated, we believe that the effect of neighboring channels
(through the regression coefficients) were also highly correlated
(i.e. the regression coefficient curve is smooth). It is noteworthy
that the estimator from penalized spline was more stable than non-
penalized method (PLSR) given that the neighboring regression coef-
ficients were hand-in-hand connected, which was not true of PLSR.
The order of the channels was ignored by PLSR. Summarily, the
wavelet-MLR and penalized spline models reasonably predicted pe-
troleum concentration.

3.3. VisNIR DRS as a proximal sensor for petroleum content and some
practical concerns

A possible explanation for the high accuracy in separating soil
types could be the fact that soil particle size (soil texture) affects
the transmission of light and reflectance spectra, as indicated by
ression (PLSR) and b) wavelet coefficients from the reflectance, and stepwise multiple
e.

image of Fig.�5


Fig. 6. Plots showing partial least squares model prediction residuals vs. a) soil type, b) organic carbon levels, and c) oil type.
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Chang et al. (2001). The possible reasons for the insensitivity of DRS
in separating oil types in VisNIR range when contaminations were
mixed could be 1) the heterogeneity and opacity of the soil matrix
Fig. 7. The left panel shows actual versus predicted oil concentration (mg kg−1) using pen
splines coefficient curve with a gray-shaded area showing the 95% confidence interval at ea
in addition to light scattering effects (Ko et al., 2010) and 2) crude
oils contain mixtures of heavy asphaltic crudes to light crudes that
are similar to a diesel fuel (Mattson et al., 1977).
alized splines for soils from Louisiana, USA. The right panel shows the fitted penalized
ch waveband.
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Table 3
Summary of oil contamination prediction performance using different multivariate
models.

Model r2 RMSEcva RPDb Bias
(mg kg−1) (mg kg−1)

Partial least square regression 0.84 4791 2.50 68
Wavelet-multiple linear regression 0.94 3010 3.97 33
Penalized splines 0.98 3553 3.32 48

a RMSEcv, Root mean square error of cross-validation.
b RPD, residual prediction deviation.
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The study was intended for testing the capability of VisNIR viabil-
ity instead of making a lab-grade predictive model. While working
with crude oil and other petroleum products, researchers encounter
a number of problems. The collection of a comprehensive range of re-
fined products and crude oil with different compositions and quality
indices is not an easy task (Balabin and Safieva, 2007). Moreover,
standard chemical analyses (both HPLC and gravimetric) are costly,
and time-consuming. Therefore, construction of large set of artificial
samples with actual oil and soil mixture is very challenging.

Testing the heterogeneity within a range of soil physicochemical
properties (more textures, organic carbon levels, and soil color) was
beyond the scope of this project and requires intensive studies before
drawing stronger conclusions. Auxiliary soil properties that can be
measured quickly and easily may improve petroleum predictive
models when used along with the soil spectra. More improvement
could be achieved by increasing sample number andmapping the dis-
crete wavelet transform regressors into a schematic, two-
dimensional waveband-scale tiling for a more systematic and
straightforward representation of the wavelet-based model.
4. Conclusions

This exploratory study utilized 68 lab constructed samples for
identifying the significant effects of soil type and organic carbon on
VisNIR reflectance patterns of petroleum contaminated soils. The var-
iable moisture effect on VisNIR reflectance spectra was offset by
maintaining uniform moisture to all samples. The first nine principal
components elucidated 88% of the variance in the data and plots of
sample scores were satisfactory to identify the clusters by soil types
and organic carbon levels. However, PCA could not separate different
oil types when contaminations were mixed. Visual interpretations
from PC plots were quantitatively confirmed by LDA. Support vector
machine performed slightly better than random forest for classifying
organic carbon levels. Subtle separations for oil types were obtained
from PC plots of soil B with 5% organic carbon, indicating the need
for future controlled research.

This study also elucidated the need of a reliable spectral pre-
treatment as an alternative to traditional methods. Among different
preprocessing and multivariate models tested, wavelet preprocessing
performed best with the highest predictability (RPD=3.97). Howev-
er, while dealing with first-derivative spectra, penalized spline re-
gression performed better than PLSR model, considering the order
of the regressors. Heteroskedasticity and systematic non-linearity of
residuals worsened PLSR model predictions at higher oil concentra-
tions. More intensive research is recommended considering other
soil physicochemical variability and integrating wavelet-penalized
spline for VisNIR characterization of petroleum contaminated soils.
Summarily, the cost-effectiveness, alacrity, and portability of this
technique make it a promising tool that would give soil and/or envi-
ronmental scientists the ability to characterize oil spills at a much
larger scale and for a larger geographic area by utilizing a specialized
spectral library focused on contaminant hydrocarbons. The goal for
our future research should be to develop a general model which can
lead to reliable hydrocarbon predictions under divergent soil matrix
conditions.
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