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Remote-sensing image classification based on the vegetation–impervious
surface–soil (V-I-S) model and land-surface temperature (LST) has proved
to be more efficient in characterizing the urban landscape than conventional
spectral-based classification. However, current literature emphasizes discussion of
the classifier’s accuracy improvement achieved by the input of V-I-S fractions and
LST over conventional spectral-based classification while ignoring the stability
evaluation. Hence, this study proposes an evaluation framework for exploring
the superiority of the input features and the stability of classifiers by integrating
statistical randomization techniques and a kappa-error diagram. The evaluation
framework was applied to case studies for demonstrating the superiority of V-I-S
fractions and LST in the context of urban land-use classification with five different
types of classifiers, including the maximum likelihood classifier (MLC), the tree
classifier, the Bagging classifier, the random forest (RF) and the support vector
machine (SVM). It followed that the use of V-I-S fractions and LST (1) could
alleviate the ‘salt and pepper’ effect; (2) is preferred by tree and tree-based
ensembles for branch splitting; (3) could produce classification trees with less
complexity; (4) could benefit the stability of classifiers in addition to the accuracy
improvement; and (5) could allow histograms following nearly normal distribution
in its feature space, which boosts the performance of MLC. It is shown that MLC
becomes comparable with modern classifiers when trained with V-I-S fractions and
LST combination. Because of its adequacy and simplicity, MLC is recommended
for urban land-use classification when V-I-S fractions and LST are used as the only
input features. However, replacing them with, or including, the band reflectance
might degrade MLC. A direct use of spectral band reflectance is not recommended
for any of the classification approaches being considered in this study, except for
SVM, which is the most robust classifier as it has a consistently high performance
for all the input feature combinations. We recommend using tree-based ensemble
classifiers or SVM when V-I-S fractions and LST as well as the band reflectance
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are all used in the classification. The proposed evaluation framework can also be
applied to the assessment of input features and classifiers in other remote-sensing
classification endeavours.

1. Introduction

The urban landscape is composed of dynamic and complex land-use (LU) features.
Remote-sensing image classification has been widely used to obtain historical and
present urban land-use and land-cover (LULC) conditions. Previous spectral-based
classification mainly produced land-cover (LC; land material) classes and has received
criticism due to its lack of consideration of the spatial configuration and arrangement
of pixels, especially when high-resolution remote-sensing images were used. The ‘salt
and pepper’ effect in classified images was also produced in this manner. Despite being
referred to together and sometimes interchangeably, the concept of ‘LU’ and the con-
cept of ‘LC’ are intrinsically distinct with respect to the natural and anthropogenic
urban landscape. LC refers to the physical properties of the Earth’s surface, which can
be directly identified from the spectral characteristics; while LU, mostly being asso-
ciated with large-scale studies, represents a higher-level understanding of the Earth’s
surface and should be inferred from the LC composition and configuration (Barnsley
et al. 2001, pp. 103–104, Mesev 2010, p. 144). In urban remote sensing, the LU-level
classification is generally more desirable as LU is directly related to social–economic
processes and is of greater interest (Barnsley et al. 2001, p. 103, Lu and Weng 2006).
Three research tracks have been documented in literature to make the use of spatial
information for LU-level classification, namely sub-pixel analysis and subsequent clas-
sification with medium-resolution images (Ridd 1995, Ward et al. 2000, Small 2001,
Phinn et al. 2002, Lu and Weng 2004, Lee and Lathrop 2006, Lu and Weng 2006, Weng
et al. 2006), texture and spatial metrics aided classification (Haralick et al. 1973, Gong
et al. 1992, Herold et al. 2003, Wu et al. 2006) and object-oriented classification (Baatz
and Schäpe 2000, Shackelford and Davis 2003, Myint et al. 2011).

As a representative of sub-pixel analysis, the vegetation–impervious surface–soil
(V-I-S) model (Ridd 1995) opened a new avenue for urban LULC studies and was
extended and applied by many others (Small 2001, Phinn et al. 2002, Lu and Weng
2004, 2006, Small and Lu 2006). Different V-I-S configurations directly translate
to different LU patterns, and the subsequent LULC classification based on V-I-S
fractions (abundance) has proved to be more accurate and efficient for urban land
characterization (Lu and Weng 2006, Weng et al. 2007, Weng and Quattrochi 2007).
However, there is a scarcity of studies focusing on the stability of classifiers built with
V-I-S fractions. Although the benefit of using V-I-S fractions over the conventional
way of classifying urban LU from multi-spectral band reflectance can be found in
the literature, discussion mainly emphasizes the accuracy improvement; seldom is the
superiority evaluated in terms of the classifiers’ stability or other aspects. Moreover,
classification methods applied to V-I-S fractions are mostly conventional approaches,
such as the maximum likelihood classifier (MLC) (Tarek et al. 2001, Lu et al. 2003, Lu
and Weng 2004, 2005, Lu and Weng 2006) and the decision tree (Tarek et al. 2001, Lu
and Weng 2004), failing to embrace other promising classifiers that have attracted the
interest of the remote-sensing community due to their lesser demand for assumptions
and their robustness to outliers, such as support vector machine (SVM) classifiers
(Brown et al. 1999, Huang et al. 2002, Foody and Mathur 2004, Mathur and Foody
2008) and ensemble classifiers (DeFries and Chan 2000, Chan et al. 2001, Gislason



5998 Q. Tang et al.

et al. 2006, Foody et al. 2007, Chan and Paelinckx 2008). Many studies have com-
pared SVM with MLC (Huang et al. 2002), decision trees (Huang et al. 2002, Foody
and Mathur 2004) and neural networks (Huang et al. 2002, Foody and Mathur 2004),
and many of them have demonstrated the superiority of SVM. Other than the SVM
method, ensemble classifiers are generally superior to the conventional classifiers as
the variation of the base classifiers is reduced during the ensemble process. In addi-
tion, the land-surface temperature (LST) derived from thermal bands has also been
found to be closely related to urban biophysical characteristics and has been applied
to LULC mapping and urban sprawl studies (Lo et al. 1997, Weng 2001, Weng et al.
2007, Weng 2009). How much improvement of the classifiers that a synergic perfor-
mance of the V-I-S fractions and LST could bring to the urban LU classification has
also remained an unanswered though interesting question.

2. Evaluation framework

Previously, comparisons of input features and the classifier selection were limited to
the overall classification accuracy and a single degree-of-agreement kappa statistic
while ignoring the stability assessment. This research introduced an evaluation frame-
work in which a classification tree and a randomization technique were used (1) to
evaluate the importance/superiority of input features and (2) to evaluate and com-
pare classifiers’ performance for both accuracy and stability. Figure 1(a) displays three
criteria for evaluating input features. Specifically, the tree structure and the sequence
of variable being selected for branch splitting of trees are used to indicate the input
feature’s superiority. A random forest of trees is considered by using these two crite-
ria to draw conclusions with statistical significance. The increase of the badness-of-fit
on the out-of-bag samples in the random forest is used to reveal the superiority of
input features. The evaluation of classifiers is depicted in figure 1(b) from two aspects:
the kappa-error diagram and the analysis of variance (ANOVA) test. The following
sub-sections elaborate the evaluation framework in detail.

2.1 Variable selection sequence and the complexity of the classification tree

The first two criteria for evaluating the superiority of input features originated in the
classification and regression tree (CART). The CART produces classification rules
by recursively seeking the most significant variable and the associated cut-off value
for splitting. The fitted tree tends to select variables with great variability and the
ability to separate classes in the early splits. The algorithm proceeds until no fur-
ther splitting can be found to reduce the node impurity or classification error or gain
information by a pre-defined threshold (controlled by the complexity parameter (cp)).
Hence, the sequence of variables chosen for splitting is regarded as an indicator of
the variables’ importance and superiority. A tree’s complexity highlighted by its depth
and the number of nodes also indicates the capability of input variables in separating
designated classes. In this sense, the simpler a fitted tree is, the more superior and rele-
vant the input features are when used for growing such a tree in the given classification
scheme.

2.2 Randomization technique

Randomization of training samples (the so-called bootstrap) creates multiple training
data sets through drawing samples with replacement from the original sample pool,
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Figure 1. Evaluation framework. (a) The evaluation of input features; (b) the evaluation of
classifiers.

and the bootstrap samples are used for producing an ensemble of classifiers (Hastie
et al. 2009, p. 249). The contribution of the randomization technique to the evalua-
tion framework is threefold. First, these produced classifiers cannot only be considered
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together to obtain a final classification but also, and more importantly, be investi-
gated individually for the stability assessment of base classifiers that constitute the
ensemble. Second, the conclusion regarding the superiority of input features by cri-
teria introduced in §2.1 can be drawn repeatedly from an ensemble of tree classifiers
(random forest); hence, the statistical significance of the conclusion is obtained. Third,
randomization provides an innovative out-of-bag (OOB) method (Hastie et al. 2009,
p. 593) to look at the variable’s importance in the random forest. In the random forest,
each tree is built with bootstrap samples. The prediction of a given observation is con-
structed by averaging only those tree classifiers corresponding to bootstrap samples in
which this observation did not appear. Hence, the OOB idea is similar to the N-fold
cross-validation (Hastie et al. 2009, p. 593). The variable’s importance is measured by
the increase in the badness-of-fit on OOB samples after a random permutation of the
variable’s value. In other words, if a given input feature is important, a random per-
mutation would lead to a significant degradation of the model. Conversely, if a given
input feature is not important in the first place, the random permutation will not make
a big difference to the model fit.

2.3 Kappa-error diagram

Previously, the variability of the overall accuracy was adopted as a measure of stability
of classifiers (Huang et al. 2002). However, this indicator still causes problems because
classifiers with a similar overall accuracy might still have discrepant or even distinct
classification results; hence, it is not reasonable to infer stability just from consistent
accuracy reports. A kappa-error diagram (Margineantu and Dietterich 1997) is supe-
rior to the variability of the overall accuracy as a measure of the stability of classifiers.
The kappa-error diagram visualizes the accuracy and stability of a classifier in a single
scatter plot. First, n sets of bootstrap samples are produced for fitting a classifier n
times, producing C2

n = n(n – 1)/2 pairs of classifiers. Then, the kappa-error diagram is
constructed by taking the mean error rate of pairwise classifiers on the validation data
set as y and the corresponding degree of agreement (indicated by the kappa statistic as
x). The kappa-error pattern for a stable and accurate classifier will display a compact
point cloud located at the lower-right corner in the diagram indicating a low error rate
and a high kappa statistic (meaning consistent and stable). The kappa-error diagram
has not been generally adopted in the remote-sensing community albeit a few excep-
tions, such as DeFries and Chan (2000) and Chan et al. (2001). In this research, we
promote the use of the kappa-error diagram by demonstrating its value in classifier
evaluation.

2.4 Classifiers

We have tested five types of classifiers (figure 1(b)), including MLC, classification tree,
tree-based ensemble classifiers and SVM. The tree-based ensembles include Bagging
(bootstrapped aggregation) and random forest (RF).

As a parametric classifier, MLC relies on multi-variate normality assumptions and
is mathematically equivalent to the Bayesian quadratic discriminant analysis (QDA;
Richards and Jia 2006, pp. 194–199). MLC is the most popular classifier used by
the remote-sensing community and is implemented in most remote-sensing packages,
yet selections of training samples and classes that satisfy the normality assumptions
remain a challenge (Myint and Lam 2005). Owing to its popularity, MLC is used in
this research as a benchmark classifier.
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Table 1. R packages with the implementation of different
classification algorithms.

Classification method R package

Maximum likelihood classification MASS
Classification tree rpart
Random forest randomForest
Bagging randomForest
Support vector machine e1071

The ensemble classifier is a committee formed by fitting a collection of base
classifiers that makes classification decisions by a (weighted) majority vote (Hastie
et al. 2009, p. 605). The base classifiers are produced as independent classifiers
uncorrelated to each other, which is possible through randomization to reduce the
estimation variation, which generally leads to improved classification performance.
Bagging generates an ensemble via randomization, in which the training samples are
bootstrapped for fitting the base classifier repeatedly (Breiman 1996). RF is an exten-
sion of the Bagging method but differs from it in two aspects. First, it uses only trees
as the base classifiers; second, only a random subset of all input features is considered
for each branch split when growing tree classifiers. The selected input feature subsets
vary over the entire forest, which further reduces the correlation among trees (Breiman
2001).

The SVM classifier belongs to the ‘kernel-trick’ family, which projects the data set
into a higher dimensional feature space to achieve the ability to separate classes lin-
early by using kernel functions. Recent literature has witnessed a growing interest in
applying the SVM classifier in remote-sensing classification. A recent thorough review
of SVM applied in the remote-sensing area was furnished by Mountrakis et al. (2011).
A Gaussian radial basis function (RBF) was used in this study since it has been proved
effective in many classifications problems (Bruzzone and Carlin 2006).

The statistical programming language R available in the public domain was used
to build the evaluation framework since it has implemented all the aforementioned
classification algorithms (table 1).

3. Case study

3.1 Study area

The case study area is the suburban and core city areas (∼360 km2 in area) of New
Orleans, LA (see figure 2), a port city to the north of the Gulf of Mexico and home
to 1.24 million people in 2010 (according to US Census Bureau). The flow of the
Mississippi River across the city resembles an upside-down � symbol. New Orleans
is a metropolitan area with modern industrial and ethnic development despite its geo-
graphical location being around a hurricane-threatened community. New Orleans is
in a sub-tropical environment and undergoes an evident urban heat island (UHI)
effect, especially in warm weather, due to the large amounts of paved and dark-
coloured surfaces and greenhouse gas release in the urban communities (Baseline
Greenhouse Gas Emission Profile 2001). Several LU classes have been identified in the
study area. The southwest contains major vegetated areas composed of forest, agricul-
tural land and wetland; both the City Park to the south shore of Lake Pontchartrain
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Figure 2. Study area of New Orleans and Baton Rouge (Landsat 22/39 and 23/39).
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and the Audubon Park in the uptown neighbourhood also have a large coverage of
vegetation; the residential area is mainly located to the north and southeast of the
Mississippi River; the commercial and industrial areas are predominantly located
along the Mississippi River and in the central city (the northeastern part of the upside-
down � symbol, such as the Superdome Stadium). The waterbody areas are evident
as the Mississippi River across the city and canals as well as bayous in the southwest.
The diversity of LU patterns and the evident UHI effect in New Orleans are the main
reasons that we selected it for the case study.

Baton Rouge (see figure 2), the capital and the second largest city of Louisiana
State, is also included as an additional test site to verify major conclusions and to
demonstrate the generalizability of this study. The economic development of Baton
Rouge depends on the petrochemical industry. The central business district (CBD)
area is to the north of Baton Rouge and a large area in the north of the CBD is
occupied by oil refineries. The residential areas have been established mainly in the
east and south of the city. Baton Rouge is a dynamic urban area with a diversity of
LU patterns that is similar to New Orleans. These two urban areas are representative
of the majority of the US urban environment.

3.2 Data source and classification scheme

The Landsat Thematic Mapper (TM) image used in this analysis (Row/Path: 22/39 for
New Orleans and 23/39 for Baton Rouge) was obtained in August 2005 since a better
UHI effect is expected in this season than in other seasons. Bands 1–5 and 7 were cal-
ibrated with image metadata to compute the spectral reflectance. The 1 m resolution
digital orthophoto quarter quadrangles (DOQQs) obtained in that time of the year
were used for validation. A rigorous image co-registration between DOQQs and the
TM images was performed in the UTM Zone 15, North American Datum 1983 projec-
tion system, to ensure the locational accuracy of our analysis. A classification scheme
with four classes of ‘Commercial’, ‘Residential’, ‘Vegetated’ and ‘Waterbody’ was
adopted (table 2). These LU classes are commonly encountered in US urban areas.

Training samples were specified by identifying polygons of homogeneous LU areas
in the Landsat TM scene in New Orleans, which comprised 628 pixels of ‘Commercial’
LU, 541 pixels of ‘Residential’ LU, 471 pixels of ‘Vegetated’ LU and 173 pixels as
‘Waterbody’. For the Baton Rouge site, the training samples covered 195 pixels of
‘Commercial’, 368 pixels of ‘Residential’, 481 pixels of ‘Vegetation’ and 133 pixels of
‘Waterbody’. Random points were generated and visually interpreted from the DOQQ
to identify the reference data of LU classes.

Table 2. Description of land-use classes adopted in this study.

Category Description

Commercial Areas predominantly constructed for human activities associated with
commercial and industrial events, including, buildings, parking lots,
shopping centres, transportation roads, etc.

Residential Areas predominantly constructed for human dwelling and residential
purposes

Vegetated Large homogeneous areas of vegetation cover, including forests, forested
wetlands, grassland, shrubs, etc.

Waterbody Mississippi River, lakes, ponds, canals and bayous
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3.3 Feature extraction

The fraction images were derived from the Landsat TM image by using the linear
spectral mixture analysis (LSMA) method (Wu and Murray 2003). A normalization
procedure (Wu 2004) was performed prior to the LSMA in order to reduce the spectra
variance of the end-members, followed by a minimum noise fraction (MNF) trans-
formation to reduce the data dimensionality and to eliminate noise in the TM image.
End-members were extracted based on the scatter plots of MNF components. The
impervious surfaces were mainly man-made features with a high albedo, such as build-
ings, transportation roads, parking lots and river deck. The spectrum of soil was mixed
with that of low-albedo features. Vegetation was predominately found as forests and
grassland. LSMA produced three fraction images: impervious surface + high albedo
fraction image (figure 3(a)), low albedo + soil fraction image (figure 3(b)) and vege-
tation fraction image (figure 3(c)). The overall root mean square error (RMSE) of the
LSMA was 0.045.

Various algorithms were developed to recover the absolute value of LST from
thermal infrared (TIR) bands, including the radiative transfer equation (RTE)-based
algorithm (Berk et al. 1989, Schmugge et al. 1998, Sobrino et al. 2004), the mono-
window algorithm (Qin et al. 2001) and the single-channel algorithm (Jiménez-Muñoz
and Sobrino 2003). These models usually require additional data input (water vapour
content, etc.) and prior knowledge of the underlying surface for atmospheric cor-
rection and emissivity adjustment. However, in this study, LST has been used for
classification. Therefore, the relative measurement was sufficient for mapping the LST
spatial variation and relating it to the LULC patterns (Weng 2009); hence, LST was
computed by using the standard calibration procedure (Landsat Project Science Office
2002). Figure 3(d) shows the LST image obtained from TM band 6. The UHI effect
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Figure 3. (a) Impervious surface + high-albedo fraction image; (b) Low-albedo fraction
image; (c) Vegetation fraction image; (d) LST image.
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was evident in New Orleans during the period of the study. The average LST of the
southern forest area was much lower than the commercial area.

A ten-dimensional composite input data set for classification was made by stacking
three fraction images, six multi-spectral reflectance images from TM bands 1–5 and
7 and the LST image. Various combinations of these input bands are possible for
classification. Specifically, we were interested in testing the following three commonly
used input feature configurations:

1. six original spectral bands of TM only;
2. V-I-S fractions and LST only; and
3. a combination of six original spectral bands of TM and V-I-S fractions and LST

(the full data dimension, ten bands).

4. Results and discussion

4.1 Classification results

The classification results using the six-band multi-spectral reflectance data (TM bands
1–5 and 7) are shown in figure 4. Regardless of the classifier being used, multi-spectral
reflectance input produced an evident ‘salt and pepper’ effect as marked in the maps,
which is a common problem associated with pixel-based classification. Two salient
misclassification regions were noticed. One was the bayou area with vegetation cover-
age in the southwest of the scene; and the other was the vegetated area in the north
of the southwest canals. Both the regions were misclassified as ‘residential’ LU. Note
that the sliver areas in the southern forest area were also misclassified as ‘residential’
and those pixels appeared isolated. These misclassifications revealed the incapabil-
ity of spectral reflectance in distinguishing the urban LU patterns. In contrast, as
seen in figure 5, classifiers built with V-I-S fractions and LST were notably improved
by alleviating the ‘salt and pepper’ problem, producing a reasonable and homoge-
neous vegetated area in the southwest. Furthermore, the accuracy of classification also
improved when using V-I-S fractions and LST instead of the six-band multi-spectral
data (table 3).

4.2 Evaluation framework-guided selection of input features

The following sections evaluate the input features by using the randomization frame-
work. As mentioned before, we are interested in testing three specific combinations of
input data: (1) multi-spectral reflectance only, (2) V-I-S fractions and LST combina-
tion and (3) a composite of (1) and (2).

4.2.1 Multi-spectral reflectance only. All classifiers were trained repeatedly (by
n = 45 times) with bootstrapping samples for producing the kappa-error diagram.
Figure 6(a) shows the accuracy of the performances of all the classifiers trained with
different input feature combinations. When used with the multi-spectral reflectance
as the only input feature, all the classifiers gave a low accuracy (indicated by the
low-elevated green boxes in figure 6(a)). The tree classifier appeared to be the most
spread-out box, indicating that it is the most unstable classifier when using only the
spectral reflectance data. Owing to the instability and weakness of the single-tree
classifier, tree-based ensemble classifiers can improve the stability of individual tree
classifiers. However, the improvement was statistically significant only in stability, not
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Figure 4. Classification results with only the multi-spectral reflectance variable used as the
input. Red circles mark the ‘salt and pepper’ effect resulting from the image classification. Red
rectangles mark the salient misclassification regions.

much in accuracy, as could be seen from the ANOVA tests using multiple compar-
isons with Tukey–Kramar adjustment (Freund and Wilson 2002, pp. 256–257; table 4).
The ANOVA test revealed that the SVM classifier stood out for both accuracy and
stability. In the kappa-error diagram (figure 7(a)), classifiers trained with band spec-
tral reflectance depicted a more compact point cloud for those tree-based ensemble
methods when compared with the single-tree classifier. Again, the SVM classifier
demonstrated its power by arriving at the lower-right corner of the kappa-error
diagram.

4.2.2 Synergy of V-I-S fractions and LST. The performance of MLC benefits signif-
icantly from the replacement of the band reflectance input with the V-I-S fraction and
LST combination input (see figure 6(a) for a clearly elevated blue box for the MLC
and table 5 for significant p-values when testing the accuracy of the performance of
MLC against other classifiers). The performance was even better than a synergy of
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Figure 5. Classification results with V-I-S fractions and land-surface temperature. When com-
pared with figure 4, the ‘salt and pepper’ problem is alleviated. A more homogeneous area
of vegetated area to the southwest of the study area is produced. The salient misclassification
regions in figure 4 are also eliminated in figure 5.

Table 3. The comparison of accuracy performance between two input feature configurations:
(a) multi-spectral reflectance only; (b) the synergy of V-I-S fractions and LST.

Multi-spectral reflectance only Synergy of V-I-S fractions and LST

Classifier Accuracy Kappa Classifier Accuracy Kappa

MLC 0.69 0.55 MLC 0.75 0.64
CART 0.69 0.55 CART 0.70 0.57
Bagging 0.69 0.55 Bagging 0.72 0.60
RF 0.69 0.55 RF 0.72 0.60
SVM 0.72 0.60 SVM 0.70 0.55

V-I-S fractions and LST and all spectral reflectance variables taken together. A pos-
sible explanation of this is as follows: according to Ridd’s V-I-S model (Ridd 1995)
and Lu–Weng model (Lu and Weng 2006), certain urban LU types can be identified
as cluster of points at certain locations in the V-I-S feature space (see figure 8 for our
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Figure 6. Accuracy and stability comparisons of five classifiers for three different input feature
configurations (New Orleans, LA).

Table 4. Multiple comparisons in terms of accuracy and stability of different classifiers trained
by band spectral reflectance variables only.

Classifier
Accuracy

difference (%) p-Value Implication

CART–Bagging
CART–RF

0.8
0.2

0.9994
0.9513

Randomization achieves no
significant accuracy
improvement on the single-
tree classifier

SVM–Bagging
SVM–MLC

2.0
2.0

<0.0001
<0.0001

SVM significantly outperforms
all other classifiers

SVM–RF 1.9 <0.0001
SVM–CART 2.0 <0.0001

Classifier Kappa difference p-Value Implication

CART–Bagging
CART–RF

–0.08
–0.12

<0.0001
<0.0001

Randomization improves the
stability of the single-tree
classifier significantly

SVM–Bagging
SVM–CART
SVM–RF
SVM–MLC

0.07
0.15
0.04
0.02

<0.0001
<0.0001
<0.0001
<0.0001

SVM is significantly more stable
than any other classifiers,
especially as opposed to the
single-tree classifier
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Figure 7. Kappa-error diagrams produced by three different input feature configurations: (a)
Multi-spectral reflectance only; (b) V-I-S fractions and LST combination; (c) Composite of (a)
and (b), e.g. all features being included.

case). Hence, the distribution of V-I-S fractions and LST in the feature space displays
several bell-shaped (Gaussian-like) surfaces with each individual peak corresponding
to a certain urban LU type, which matches with the MLC’s normality assumption and
thus leads to the optimal Bayesian decision boundary of the classes. However, a simi-
lar pattern cannot be found for the case in which the multi-spectral reflectance is used
as the data input. A similar finding was also stated in Pal and Mather (2003): ‘ . . . the
ML algorithm is preferred unless there is particular reason believing that the data do
not follow a Gaussian distribution’. Hence, despite being criticized in the literature,
MLC is a good classifier as long as its basic assumption is met by a careful selection
of the input features. In this study, we found that the use of V-I-S fractions and LST
data satisfied the normality assumption more easily.

The tree classifiers built with V-I-S fractions and LST had more stability than their
counterparts built with the multi-spectral reflectance input, as highlighted by the fact
that the ‘Accuracy’ box for CART was less spread-out (figure 6(a)) and the ‘kappa’ box
for CART was more elevated (figure 6(b)) and a significant p value (p < 0.001) in table
6. The point cloud for the tree classifier was more compact in figure 7(b) than in figure
7(a). The commonly reported improvement caused by using tree-based ensembles over
the single-tree classifier was, however, not observed (table 4). This result is different
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Table 5. Multiple comparisons in terms of accuracy and stability of different classifiers built
with V-I-S fractions and LST combination.

Classifier
Accuracy

difference (%) p-Value Implication

CART–Bagging −2.2 <0.0001 Ensembles slightly improve the
CART–RF −1.2 0.0026 accuracy of CART. The base

tree classifier was sufficiently
stable, making less room for
potential improvement

MLC–Bagging 2.7 <0.0001 MLC is the most accurate
classifier when built with V-I-S
fractions and LST

MLC–CART 5.0 <0.0001
MLC–RF 3.7 <0.0001
MLC–SVM 4.3 <0.0001

Classifier Kappa difference p-Value Implication

CART–Bagging −0.02 <0.0001 Improvements in stability
CART–RF −0.06 <0.0001 achieved by ensembles are less

than as in table 3 or even none.
The base tree classifier is
sufficiently stable, making less
or no room for potential
improvement

MLC–Bagging 0.03 0.0224 MLC is also the top stable
classifier when built with V-I-S
fractions and LST

MLC–CART 0.04 0.5475
MLC–RF −0.01 <0.0001
MLC–SVM 0.02 <0.0001
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Figure 8. Slice density maps of distribution of V-I-S fractions and LST in the study area.
The distribution is Gaussian-like and each bump represents a certain land-use pattern.
(a) ‘Impervious surface’ fraction as x and ‘Vegetation’ fraction as y; (b) ‘Impervious sur-
face’ fraction as x and ‘Low albedo + soil’ fraction as y. Land-use classes are labelled with
(A) Waterbody; (B) Vegetated; (C) Residential; (D) Commercial.
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Table 6. Performance comparison between (a) V-I-S fractions and LST (b) band spectral
reflectance only.

Classifier
Accuracy

difference (%) p-Value Implication

Bagging 3.0 <0.0001 The Bagging, RF and MLC
classifiers improve when band
spectral reflectance input is
replaced by V-I-S fractions
and LST

CART 0.8 0.1767
MLC 6.0 <0.0001
RF 1.9 <0.0001
SVM −0.6 0.6843

Classifier Kappa difference p-Value Implication

CART 0.06 <0.0001 More stable trees are produced
when trained with V-I-S
fractions and LST

Note: The differences were calculated by subtracting (b) from (a).

from the case when the multi-spectral reflectance was used. Hence, the improvement
of tree-based ensembles over the single-tree classifier was suppressed because the tree
classifier as the base classifier was adequately accurate and stable when trained with
V-I-S fractions and LST combinations. This conforms with the conclusion drawn in
the previous theoretical (Breiman 1996) and empirical studies (Chan et al. 2001). RF
and Bagging had 1.9 and 3.0% accuracy increases, respectively.

Commercial and industrial areas have an evident UHI effect due to the thermal
property of underlying surfaces (buildings, transportation network, parking lots, etc.)
and massive human activities generating extra heat. These areas usually have higher
surface temperatures as opposed to more vegetated areas in the suburban area (for-
est, grassland, etc.). Conversely, the ‘vegetated’ areas are less disturbed by human
activities and undergo transpiration that lowers the surface temperature. Hence, LST
has the ability to differentiate the vegetated areas from the built-up areas. However,
‘Waterbody’ with high thermal inertia also appears cool, making it not separable
from the ‘vegetated’ areas merely by using LST. The ‘residential’ area has intermedi-
ate surface temperature in between, so it might be confused with ‘commercial’ LU or
‘vegetated’ LU depending on the relative amount of vegetation coverage (the ‘V’ com-
ponent) and man-made materials (the ‘I’ component). The lack of ability to separate
in terms of LST was clearly seen in figure 3(d). Although these LU classes (‘Vegetated’
and ‘Waterbody’, ‘Residential’ and ‘Commercial’, etc.) have similar LSTs, their V-I-S
configuration differs considerably. This is where the V-I-S fractions input comes into
play to increase the ability to separate. As such, V-I-S fractions and an LST are com-
plementary to each other and make an ideal input data configuration for urban LU
classification.

4.2.3 Full data dimension. Table 7 demonstrates the extent of gain that could be
obtained by the addition of V-I-S fractions and LST to the conventional spectral-
based classification. MLC has little benefit from the use of the spectral reflectance
variables, as they violate the assumptions of MLC and the impact of this was great
enough to choose to use the V-I-S fractions and LST. On the contrary, the tree and



6012 Q. Tang et al.

Table 7. Performance comparison between (a) all input features (b) band spectral reflectance
only.

Classifier
Accuracy

difference (%) p-Value Implication

Bagging 3.0 <0.0001 Adding V-I-S fractions and an LST
variable would not enhance MLC
as the assumption still remains
violated. Tree classifier gained
accuracy; tree-based ensemble
classifiers achieved the highest
accuracy

CART 1.7 <0.0001
MLC 0.3 0.9983
RF 2.4 <0.0001
SVM 0.0 1.0000000

Classifier Kappa difference p-Value Implication

Bagging 0.03 <0.0001 A slight but statistically significant
stability improvement is achieved
by adding V-I-S fractions and LST

CART 0.06 <0.0001
MLC 0.03 <0.0001
RF 0.01 <0.0001
SVM −0.02 <0.0001

Note: The differences were calculated by subtracting (b) from (a).

tree-based ensembles were enhanced in accuracy due to the addition of V-I-S fractions
and LST. The improvement in accuracy for CART, Bagging and RF was 1.7, 3.0 and
2.4%, respectively. The best classifier to be used for this input feature configuration was
the Bagging method. SVM retained its good performance regardless of the addition
of input features.

4.3 Discussion on the superiority of V-I-S fractions and LST

In addition to the stability and accuracy improvement revealed, the superiority of V-I-
S fractions and LST was also explored from two other aspects: (1) the tree structures
(e.g. the sequence of variable being selected and the tree size) of a single classification
tree and trees in the forest; (2) the variable importance determined by OOB samples.
The latter would provide an alternative way for band selection, such as the application
in hyper-spectral remote sensing (Chan and Paelinckx 2008).

In our case study, the tree classifier built with the ten-dimensional data set using the
‘Gini index’ criteria picked up all the V-I-S fractions and LST (figure 9(a)) in the earlier
splits, which, however, only adopted one spectral band reflectance (B5), indicating
that not much decrease in the overall lack-of-fit could be achieved by using spectral
reflectance data. The ‘information gain’ criterion was also specified and the fitted tree
picked up the V-I-S fractions and LST for their early splits and ignored most of the
spectral reflectance variables (figure 9(b)). Tree was pruned to cp = 0.001 because
beyond this cp value little accuracy improvement would result.

Delving into the grown forest to view each single fitted tree further confirmed the
relevance of V-I-S fractions and LST with the urban LU classes. All ten input features
were used for growing the RF. The forest size (number of random trees) was set to
300 as with this number the RF can achieve the least OOB error rate. The increase in
the badness-of-fit can be represented by either a decrease in accuracy (equivalent to the
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Figure 9. (a) Tree fitted with cp = 0.001 and ‘Gini index’ criteria. (b) Tree fitted with cp =
0.001 and ‘information gain’ criteria.
Note: IMP, impervious surface fraction; VEG, vegetation fraction; LOW, low albedo +
soil fraction; TEMP, LST; COM, Commercial; RES, Residential; VEG, Vegetated; WATER,
Waterbody.

Table 8. Variable importance comparisons based on the increase in the badness-of-fit for OOB
samples in a random forest.

Criteria Sequence

Mean increase in node
impurity

TEMP > IMP > VEG > LOW > B5 > B7 > B4 > B3 > B1 > B2

Mean decrease in
accuracy

TEMP > VEG > IMP > B5 > B3 > LOW > B7 > B4 > B1 > B2

Notes: LST is the most important input feature. Band spectral reflectances are less important
than the LST and V-I-S fractions in urban land-use classification.
IMP, impervious surface fraction; VEG, Vegetation fraction; LOW, Low albedo/soil fraction;
TEMP, LST.

increase in OOB error rate) or an increase in ‘node impurity’. The greater importance
of V-I-S fraction and LST can be observed in table 8.

To evaluate the input feature’s superiority with statistical significance, a forest con-
sisting of 500 over-fitted trees was grown for individual inspections. The average size
of the 500 trees when only spectral reflectance was used was about 39 nodes; and
this number was reduced to 25 when V-I-S fractions and LST were used instead. The
ANOVA test returned a significant p-value (p < 0.001). The frequencies of the ten
input variables being used as the first five splitting variables are summarized in table 9.
The first five splits were generally based on the use of V-I-S fractions and LST, sug-
gesting their superiority over band reflectance for urban LU studies. Another finding
in the analysis is that the infrared bands (B4, B5 and B7) of Landsat TM carry more
information for separating urban LU classes than the visible bands.
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Table 9. Deep investigation of individual trees by the Bagging method.

Input feature Root node Second node Third node Fourth node Fifth node

B1 6 13 30 2 6
B2 2 10 9 11 2
B3 6 10 5 45 1
B4 22 15 0 90 1
B5 101 11 3 76 11
B7 188 46 23 67 43
VEG 107 134 72 50 103
IMP 34 180 132 46 151
LOW 28 81 161 29 119
TEMP 6 0 65 13 43

Notes: The random forest method was replaced by the Bagging method to guarantee fairness.
In a random forest, the probability of V-I-S fractions and LST being selected for growing a
single tree compared to that of band spectral reflectance is 4:6, which is not fair. A preference
for using V-I-S fractions and LST for splitting a tree should be noted.

4.4 Generalizability and limitation

To test the generalizability of the results, the same analysis was also conducted on the
test site of Baton Rouge, LA. The SVM classifier was still the best classifier among all
classifiers being considered for conventional spectral-based classification. Except for
SVM, all the classifiers were boosted when we replaced the band reflectance with V-I-S
fractions and LST combination as input features. This was indicated by the prevalently
more elevated and less spread blue boxes when compared with their green counter-
parts (see figure 10). Especially, the improvement was most significant for MLC. The
difference in accuracy for MLC was 0.10 with a significant p value. This could be
attributed again to the superiority of the V-I-S fractions and LST combined input
as it has nearly multi-variate normal distribution and meets the MLC assumption.
Given that the V-I-S fractions and LST combination is the input, although MLC was
not the best classifier of the five tested classifiers for the Baton Rouge test site, it still
managed to achieve a comparable level of accuracy to those modern machine-learning
classifiers.

The tree classifier was again made more stable (but not more accurate) by
either using the ensemble approach or replacing the band reflectance input with
the V-I-S fractions and LST, which can be clearly seen in figure 10(a), where the
‘Accuracy’ boxes, B (band reflectance + Bagging), C (band reflectance + RF) and
D (V-I-S fractions and LST combination + CART), are less spread-out than A (band
reflectance + CART), as well as in figure 10(b), where the ‘kappa’ boxes, B (band
reflectance + Bagging), C (band reflectance + RF) and D (V-I-S fractions and LST
combination + CART), are more elevated than A (band reflectance + CART). The
addition of V-I-S fractions and LST to the multi-spectral reflectance also improved
the tree-based ensemble classifiers significantly, which was also the same as the case
for New Orleans.

The V-I-S model is the most suitable input when the classes of interest have dis-
tinguishable differences in their V-I-S structures. This is true for our two study areas
and most US urban areas where residential parcels are predominantly composed of
individual houses with adequate vegetation coverage. Therefore, the V and I frac-
tion quantities can distinguish different LU classes, e.g. the ‘residential class’ is in
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Figure 10. Accuracy and stability comparisons of five classifiers for three different input
feature configurations (Baton Rouge, LA).

between the ‘commercial class’ and ‘vegetation class’. However, for some developing
countries, such as Haiti and China, the majority of the population lives in multi-storey
apartments and the average vegetation coverage is limited. Hence, the boundary
between ‘residential class’ and ‘commercial class’ becomes fuzzy. Hence, the supe-
riority of V-I-S-derived LU classification might be applicable only to the US urban
environment and the like. The conclusion may also not be applicable if a different or
more detailed classification schema is to be adopted, such as a breakdown of vegeta-
tion class to ‘Forest’ and ‘Pasture’ class. However, the current classification schema is
very common in the literature of US urban studies. These four LU classes belong to
Anderson Level-I classes (Anderson et al. 1976). Given the medium-resolution image,
this is a reasonable and applicable LU classification schema. The classification results
of this study are useful for a Level-II classification with higher spectral/spatial reso-
lution images. For example, the LU class boundary could be used as constraints for
the segmentation in a subsequent object-oriented classification with a more detailed
classification schema.

5. Conclusions

The selection of classifiers is closely related to the selection of input features for
urban LU classification. This article proposes an evaluation framework based on
the classification tree and statistical randomization methods to offer a comprehen-
sive evaluation of the superiority of input features and the performance of classifiers.
A case study using the framework showed the superiority of the V-I-S fractions and
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LST over the direct use of multi-spectral band reflectance in urban LU classifica-
tion. The investigations and discussions were made based on (1) the sequence of
variable being selected in growing trees, (2) tree complexity, (3) kappa-error diagram,
(4) increase in the badness-of-fit for the OOB samples and (5) ANOVA tests. Three
major conclusions could be drawn.

First, the results of the analysis in this research promote the use of V-I-S fraction
images and LST in urban LU studies, because in addition to the improvement in the
overall accuracy of classification, which has already been documented in the previous
literature and also confirmed in this study by using the evaluation framework, the
use of V-I-S fractions and LST combination as the input for urban LU classification
can also: (1) alleviate the ‘salt and pepper’ problem; (2) be preferred by tree and tree-
based ensembles for branch splitting; (3) lead to less complex trees when achieving the
stopping criteria; (4) improve the stability of tree classifiers; (5) appear to be nearly
a normal distribution for urban LU classes and make the parametric MLC a reliable
classifier. These advantages of V-I-S fractions and LST revealed from the evaluation
framework complete a comprehensive assessment of their superiority in the context of
urban LU classification.

Second, MLC is comparable with the modern statistical learning classifiers or even
outperforms them when the V-I-S fractions and LST are used instead of the direct
use of spectral bands. This is consistent with previous reports that MLC could be
superior to non-parametric methods if the normality assumption is properly met.
In our case, the histogram of V-I-S fractions and LST displays adequate normality,
and the use of other complex classifiers becomes unnecessary. It is recommended that
MLC be used in conjunction with V-I-S fractions and LST as the input in urban
LU classification due to its adequacy and simplicity. However, the MLC is only suit-
able when V-I-S fractions and LST are used as the only input features. Replacing
them with, or including, the band reflectance, regardless of the enrichment of the
data input, might degrade the multi-variate normal distribution and subsequently
degrade MLC.

Third, the direct use of spectral bands is not recommended for any classifica-
tion approach being considered, except for the SVM, which maintains a consistently
high classification accuracy and is the most robust classifier. The tree classifier
trained with multi-spectral band reflectance lacks stability, leaving room for potential
improvements through randomization achieved by tree-based ensembles. Specifically,
tree-based ensembles increase the classification stability, but no statistically signifi-
cant accuracy improvement is found. The SVM achieves the highest overall accuracy
and stability when multi-spectral band reflectance is the only input. Therefore, SVM
is recommended for those urban LU studies that do not use the derivation of V-I-
S fractions and LST. The addition of V-I-S fractions and LST to the multi-spectral
reflectance contributes to the improvement of ensemble classifiers in the urban LU
classification significantly. The tree-based ensemble classifiers and SVM are suitable
for cases in which the full data dimension is used.

Despite the fact that the conclusions of this study have some minor limitations on
locations and classification schema, this work is among the few that have investigated
the stability of V-I-S fractions and LST in urban LU classification. The evaluation
framework developed in this article could also be applied to other urban environ-
ments and considered for use in the assessment of input features and classifiers in
other remote-sensing classification endeavours. Future studies may aim to apply the
evaluation framework for the assessment of texture variables and object-oriented
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classification to urban LU investigations. A different classification schema may also
be considered.
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