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In general, linearity is assumed to hold in multivariate calibration (MVC), but this may not be true. We ap-
proach the MVC problem using multidimensional penalized signal regression, which can be extended with
an explicit link function between linear prediction and response and in the spirit of single-index models.
As the two-dimensional surface of calibration coefficients is smoothly and generally estimated with tensor
product P-splines, the unknown link function is estimated using univariate Psplines. The methods presented
are grounded in penalized regression, where difference penalties are placed on the rows and columns of the
tensor product coefficients, as well as on the link function coefficients, each having its own tuning parameter.
An application to ternary mixture data shows that a non-linearity is present. Performance comparisons are
made to standard penalized signal regression, not only demonstrating the nonlinear effect, but also improve-
ments in external prediction.
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1. Introduction

In this paper, we take a novel approach in the multivariate calibra-
tion problem, in particular where the signal (spectra) regressors
have two-dimensional structures. Our application considers UV–VIS
spectra taken over several temperatures. Through simultaneous esti-
mation, we parse out and estimate two separate modeling compo-
nents: (1) a single smooth regression coefficient surface associated
with the two-dimensional signal [12], and (2) an unknown, possibly
nonlinear, link function [3]. Although the first component is linear,
the second component explicitly models the nonlinearity, allowing
us to learn something about its features, while enhancing insight
into the measurement process. We will see that the combination of
these components can lead to a systematic and tractable modeling
approach, that is statistical in nature, while having improved external
prediction performance when compared to standard signal regression
approaches and partial least squares.

1.1. Multivariate calibration with two-dimensional signals

At the heart of a multivariate calibration problem is rich regressor
data, often compactly given as a digitized signal, curve, or spectra.
Such regressor information can also be in two or more dimensions,
of such digitized images. An often ironic consequence of such data is
that as more and more precisely regressor information are obtained,
the more and more ill-conditioned estimation becomes. Since classi-
cal least squares modeling approaches usually fail, there have been
numerous competing methods developed to provide tractable and re-
liable prediction; see Eilers et al. [3] and Eriksson et al. [7] for partial
lists. We will see that, unlike most of the other approaches, our pro-
posed method additionally takes advantage of the ordered or array
structure among the regressors.

To motivate the problem, Fig. 1 displays signal regressors (at two
different temperatures) for each of m=34 observations, coming
from a ternary mixture experiment using spectroscopy. Each “signal”
actually consists of numerous digitizations (p=401) along the wave-
length axis (700 to 1100, by 1 nm). The top (bottom) panels present
the raw (first differenced) spectra. If such optical regressors are to be
related, e.g. to a chemometric response, then some regularization is
needed. Generally, not only is p≫m, but the regressors are highly
correlated.

Notice that the left and right panels of Fig. 1 presents “signals” at
temperature levels of 30° and 70 °C, respectively, and one could ima-
gine even more, forming a sequence of several “extremely narrow im-
ages”. Thus a natural question to ask is: What if the signal regressors
become fully two-dimensional, and we wish to take into account spa-
tial information in both directions? One could view this problem as
multivariate calibration with multidimensional spectra, where, e.g.,
the second dimension is temperature. Fig. 2 presents such a two-di-
mensional spectra structure with 4800 regressors, summarized in a
12×400 matrix (using first differences), for the center mixture unit,
with corresponding scalar responses (water, 1,2-ethanediol, 3-
amino-1-propanol, each at 0.33).

http://dx.doi.org/10.1016/j.chemolab.2011.08.006
mailto:bmarx@lsu.edu
mailto:p.eilers@erasmusmc.nl
mailto:bli@lsu.edu
http://dx.doi.org/10.1016/j.chemolab.2011.08.006
http://www.sciencedirect.com/science/journal/01697439


700 800 900 1000 1100

Wavelength
700 800 900 1000 1100

Wavelength

700 800 900 1000 1100

Wavelength
700 800 900 1000 1100

Wavelength

30 C: raw spectra

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

70 C: raw spectra

0.
00

0.
02

0.
04

0.
00

0.
02

0.
04

30 C: first differenced 70 C: first differenced

Fig. 1. Signal regressors (raw and first differenced) for mixture experiment, at two dif-
ferent temperatures.
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1.2. Notation and data structure

The data structure is as follows, each observation consists of the
data pair: (yi,Xi), where i=1,…,m. The response yi is scalar. We as-
sume independence among the responses, with common variance
var(y)=σ2.

The two-dimensional signal consists of (often thousands of) digi-
tized regressors, Xi, arranged in a p×⌣p array. The indexing axes, i.e. v
and⌣v, that define the support coordinates of Xi are usually on a regu-
lar grid, but the only requirement for our method is that the scatter of
digitizations are common for all i. As suggested by Fig. 2, the number
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Fig. 2. Two-dimensional (first differenced) signal regressor image for center mixture.
of regressors are rich, over one hundred times greater in number than
observations. The regressor support is specified as v⋆ (wavelength)
with p=400 channels (701 to 1100 nm, by 1 nm) and ⌣v⋆ with ⌣p ¼
12 temperature channels (30, 35, 37.5, 40, 45, 47.5, 50, 55, 60, 62.5,
65, 70 °C).

The response y comes from the composition (mole fraction) of a
mixture, here consisting of three components (water, 1,2-ethanediol,
3-amino-1-propanol). The ternary plot for the m=34 mixtures is
provided in Fig. 3. The center data point in the triangle represents
equal concentrations of the three components, the edge points are
mixtures containing only two components, and the corners are
pure. Note that there are 3 pure, 12 edge, and 19 interior (1 center)
mixtures.

1.3. First modeling component: MPSR

The multidimensional signal regression (MPSR) model was first
presented in Marx and Eilers [12], initially motivated by both Marx
and Eilers [10] and Eilers and Marx [6]. The model's goal is to provide
an extremely practical solution for functional linear models using the
entire two-dimensional signal as regressors. Associated with the re-
gressors is a single overarching coefficient surface which serves to
smoothly weigh each two-dimensional signal digitization over its
support. Regularization is needed, and we choose to impose some
sensible constraints: ones that take into account the spatial structure
of the regressors, while ensuring smoothness in the coefficient sur-
face. As with any P-spline approach [4], we take two steps toward
smoothness: (a) The coefficient surface (not the signal) is intention-
ally overfit using two-dimensional tensor product B-splines, making
the surface more flexible than needed. (b) Tensor product coefficient
estimates are penalized using difference penalties on each of the rows
and columns.

The first step provides an initial reduction in parameter estimation
through smoothness, as the higher dimensional two-dimensional sig-
nal coefficient surface is projected onto a lower dimensional tensor
product basis, where the knots are “richly” chosen on a regular grid,
thus circumventing knot selection schemes. The second step ensures
further smoothness, as well as regularization, while allowing general
surface candidates. Two tuning parameters, associated with the row
and column penalties, respectively, are needed to allow for continu-
ous control over the surface. Fig. 4 displays a variety examples of (co-
efficient) surfaces using tensor products B-splines. The upper, left
water 1,2−ethanediol
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Fig. 3. Ternary plot for mixtures, with m=34: 3 pure, 12 edge, 19 interior.
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Fig. 4. Examples of surfaces that can be generated from tensor products when constraining roughness in two dimensions.
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panel displays a surface constructed from essentially unpenalized
tensor products, whereas the lower, right surface displays the limit-
ing plane resulting from large second order penalties on every row
and column of tensor products. The other two panels have a mixture
of a low penalty on one axis and a high penalty on the other.

1.4. Second modeling component: SISR

The second modeling component is single-index signal regression
(SISR), which was presented in Eilers et al. [3] for one-dimensional
signals, and is a method that can provide additional insight through
the explicit modeling of any nonlinear behavior that may exist with
the response. In fact, one could view the standard multivariate cali-
bration problem as using an identity link function, which in actuality
may be (slightly) misspecified. In effect, there may exist a true, but
“missing link” function (that is nonlinear and monotone) [1], and
SISR serves the purpose of estimating this link while improving exter-
nal prediction. Many approaches to the multivariate calibration prob-
lem, e.g. support vector machines (SVM) [14] or the genetic algorithm
[15], do implicitly “capture” nonlinearities to improve prediction per-
formance, but in the end do not necessarily provide the researcher
with meaningful information about the character of such nonlinear-
ity; we aim to do so.

In multidimensional penalized signal regression, the mean μ i of a
response is given by ∑ jk xijkαjk, where the matrix Xi contains the
measured two dimensional spectrum with elements [xjk], with
corresponding (smooth) coefficient matrix [αjk]. SISR introduces
a small modification: μ i= f(∑ jk xijkαjk). The function f(⋅) is as-
sumed to be smooth and is estimated from the data using univariate
P-splines, having its own additional tuning parameter. This model is
generally related to “projection pursuit” [9], with additional smooth-
ness demands on α.

While imposing some identifiability constraints and using a linear
approximation, we can cycle back and forth between MPSR and SISR,
until convergence, to simultaneously estimate the coefficient surface
and the nonlinear relationship.

1.5. Aims and benefits of the combined MSISR approach

We refer to the combination of MPSR and SISR asmultidimensional
single-index signal regression or MSISR. We will see that the basic ap-
peal of this particular single-index model is its explicit estimation
of meaningful components. We use the two-dimensional signal
(spectrum) in a natural way: with a two-dimensional coefficient sur-
face. Unlike some other “black box” approaches to the multivariate
calibration paradigm that target nonlinear structure, our proposed
approach provides explicit estimation of any nonlinearity relation-
ship that may be present. Thus our combined approach provides a
systematic means toward estimation of two separate model compo-
nents: (1) the coefficient surface associated with the signal regres-
sors, and (2) any nonlinear features or “link function” associated
with the response.
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As we will see, MSISR is extremely flexible: even minor departures
in f from the identity function can lead to relatively dramatic changes
in the estimated coefficient surface, while significantly improving
(external) prediction. Moreover, although the estimation between
f and α is iterative, it is extremely tractable, essentially boiling down
to repeated alternate applications of MPSR and P-spline smoothing
on “working” responses and regressors.

Other additional features of MSISR that are worthy of note in-
clude: (a) Although smooth, f can be assumed to be very general, an
explicit function can be estimated. (b) Heavy penalization associated
with f typically produces low degree polynomial estimates for f, in
some cases reducing back to standard MPSR. (c) The entire signal
can be used as regressors. (d) The number of highly spatially correlat-
ed regressors can far exceed the number of observations. (e) The pa-
rameterization (and the effective dimension) of the coefficient
surface is dramatically reduced, with a very manageable system of
equations. (f) The candidate coefficient surface can be very general
(non-additive), with heavy penalization yielding polynomial surfaces.
(g) Since the two-dimensional signals and single estimated coeffi-
cient surface have a common indexing plane, potentially important
regions can be visually identified. (h) Although we do not pursue it
here, the MSISR approach can be transplanted to the generalized lin-
ear model (e.g. binary response) framework [13].

1.6. Outline of this paper

In the next section, we provide a basic overview of tensor product
B-splines and motivate the development of the penalty and its imple-
mentation to estimate the smooth coefficient surface. Section 3 brings
the function f into the MPSR setting providing the combined MSISR
approach. We aim for reliable prediction, and in Section 4 we discuss
cross-validation measures that can be used to optimally tune the pa-
rameters associated with the penalty. We also discuss effective di-
mension of the estimated coefficient surface. In Section 5, the
proposed methodology is applied to the ternary mixture data set
and directly compared to both the standard MPSR approach and par-
tial least squares (PLS). We close with a brief discussion.

2. Recap: tensor product B-splines and MPSR

Eilers and Marx [6,12] provided a basic presentation Tensor prod-
uct B-splines in a nutshell, giving essential details to building smooth
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surfaces; Dierckx [2] provides a much more complete coverage. The
essential building block is a bicubic basis function, which is the tensor
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⌣
B (pre-

sented on the margins). The axes are v and ⌣v (e.g. emission and exci-
tation wavelengths), respectively. The tensor product has a zero
(non-zero) value in the corresponding zero (non-zero) univariate
B-spline support along v and ⌣v.

Tensor product B-splines exist in the v×⌣v plane. For our presenta-
tion, n ⌣n

� �
equally-spaced indexing knots are placed on v (⌣v) to yield a

regularly-spaced grid, carving out the plane into subrectangles. The

rth–sth single tensor product Br vð Þ⌣Bs
⌣v
� �

is positive in the rectangular

region defined by the knots R ¼ ϕr;ϕrþqþ2
� �

×
⌣
ϕs;

⌣
ϕsþ⌣qþ2

h i
or on a

support of spanned by qþ 2ð Þ× ⌣qþ 2
� �

knots. Similar to univariate
B-splines, it is convenient to index each tensor product by one of
the n×⌣n knot pairs and

Br vð Þ⌣Bs
⌣v
� �

N 0 for all v; ⌣v∈ R ¼ 0 for all v; ⌣v∉ R; ð1Þ

r=1,…,n and s ¼ 1;…;
⌣n. Fig. 5 sparsely displays nine (scaled) tensor

product B-splines, which represent only a portion of a full basis. A
graphic of a complete basis would be difficult to appreciate, as the
“hills” strongly overlap. Associated with each “hill”, there is an un-
known coefficient. A complete tensor product B-spline basis thus
has an unknown coefficient matrix, denoted by Γn×⌣n ¼ γrs½ �. For a
given knot grid, a very flexible surface can be approximated, e.g. at
the digitized coordinates. For j=1,⋯,p and k ¼ 1; ⋯;⌣p,

α v⋆j ;
⌣v⋆
k

� �
¼ ∑

n

r¼1
∑
⌣n

s¼1
Br v⋆j
� �⌣

Bs
⌣v⋆
k

� �
γrs: ð2Þ

The surface is in fact driven by relatively few parameters (n⌣n),
changing Γ changes the surface.

2.1. Unfolding Γ and notation

It is computationally efficient to reexpress the surface in an “un-
folded” notation. Before doing so, some further notation is needed.
Denote the support coordinate matrix C ¼ v⋆⊗1⌣p; 1p⊗⌣v⋆� �

of di-
mension p⌣p×2. Let the matrix B1

⋆ and B2
⋆ (with respective dimensions

p⌣p×n and of p⌣p×⌣n) be the univariate B-spline basis matrix evaluated
at each entry of the first and second columns of C, respectively. The
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unfolded expression at the support coordinates then has the standard
multiple regression form

vec α v⋆;⌣v⋆
� �n o

¼ T⋆γ; ð3Þ

where γ=vec(Γ). Define the matrix

T⋆ ¼ B⋆
1⊗1′

n

� �
⊙ 1′

⌣n ¼ ⊗B⋆
2

� �
ð4Þ

of dimension p⌣p×n⌣n. The symbols ⊗ and ⊙ denote Kronecker
product and elementwise multiplication of matrices, respectively.
Penalized estimation of γ and its use with two-dimensional signal
regressors are topics discussed in the next section.

2.2. Smooth two-dimensional coefficient surfaces

Given the ith regressor matrix Xi=[xijk] of dimension p×⌣p, signal
regressor support matrix C, and coefficient surface α v;⌣v

� �
, express

the mean

μi ¼ ∑
p

j¼1
∑
⌣p

k¼1
xijkα v⋆j ;

⌣v⋆
k

� �
; ð5Þ

where i ¼ 1;…;m; j ¼ 1;…; p; k ¼ 1;…;
⌣p. Using tensor product B-

splines, (Eq. (2)) can be substituted into Eq. (5) yielding

μi ¼ ∑
p

j¼1
∑
⌣p

k¼1
xijk ∑

n

r¼1
∑
⌣n

s¼1
Br v⋆j
� �⌣

Bs
⌣v⋆
k

� �
γrs ¼ x′iT

⋆γ; ð6Þ

where xi ¼ vec Xið Þ. We can further express Eq. (6) in matrix form as

μ ¼ XT⋆γ ¼ Mγ;

where X is the m×p⌣p matrix of vectorized signals and M ¼ XT⋆.

2.3. Penalizing the coefficient surface

In the P-spline spirit, a separate difference penalty is assigned to
each row and to each column of Γ. The penalties have structure to ef-
fectively break the linkage in the penalty from row to row or from
column to column. The objective function is nowmodified, using pen-
alties, to minimize

Q P γð Þ ¼ Residual SSþ Row Penaltyþ Column Penalty

¼ ∑
m

i¼1
yi−x′

iT
⋆γ

� �2 þ λ∑
n

r¼1
γr •D

′
dDdγ′r • þ⌣λ∑

⌣n

s¼1
γ′

•sD′⌣
dD⌣

dγ•s

¼ ∥y−Mγ∥2 þ λ∥Pγ∥2 þ ⌣λ∥⌣Pγ∥2;

ð7Þ

where γr • (γ• s) denotes the rth row (the sth column) of Γ.
The penalties are compactly represented using Kronecker

products and matrix notation: P ¼ D′
dDd

� �
⊗I⌣n and ⌣P ¼ In⊗ D′⌣

dD⌣
d

� �
,

where I denotes the identity matrix and d denotes the order of
the difference penalty. Both P and ⌣

P are square with dimension
n⌣n. The matrices Dd and D⌣

d are banded in structure, each has
rows that consist of polynomial contrasts (see [4]), and has dimen-

sion (n−d)×n and ⌣n−⌣d
� �

×⌣n, respectively. The order of the pen-

alties (d, ⌣d) are in principle additional hyper-parameters, but in
practice are usually fixed by the user. The non-negative λs essen-
tially provides continuous control over smoothness. The influence
or weight of the penalty is the same for each row, the same for
each column, but is allowed to differ from rows to columns.
Fig. 5 displays a possible scenario resulting from strong row (top
panel) and strong column (bottom panel) penalization using a sec-
ond order penalty on each row and column with large λ and ⌣λ.

The explicit P-spline solution for Eq. (7) is

γ̂ ¼ M′Mþ λP′P þ ⌣λ
⌣
P′⌣P

� �−1
M′y: ð8Þ

We see from Eq. (8) that the system of equations remains n⌣n even
as the resolution of the two-dimensional signal, p⌣p, increase dramat-
ically. The predicted values are ŷ ¼ Mγ̂.

2.4. Modification for an intercept term

The model can also include an intercept term α0 which results in
the modified P-spline solution

α̂0;γ̂
′

� �
′ ¼ M′

1M1 þ λP′
1P1 þ

⌣
λ
⌣
P′
1
⌣
P1

� �−1
M′

1y;

with M1 ¼ 1mð jMÞ, P1=(0|P), and
⌣
P1 ¼ 0ð j⌣PÞ. The zero vector in P1

and
⌣
P1 ensures an unpenalized intercept.

3. Bringing in f : MSISR methodology

As mentioned, one problem with MPSR is that prediction quality is
limited to estimated coefficients that are linear in the signal regressors,
and this may be one explanation as to why penalized signal regression
sometimes has difficulties competing with, e.g., machine learning ap-
proaches that can take advantage of nonlinear features of the signals.

The MSISR model has the form μ ¼ f Mγð Þ, where the function f
and the smooth coefficient surface are unspecified and approximated
with P-spline coefficients α and γ. Consequently, a modification of the
MPSR objective in Eq. (7) can be rewritten as

Q⋆
P ¼ ∥y−f Mγð Þ∥2 þ λ∥Pγ∥2 þ⌣λ∥⌣Pγ∥2 þ λf ∥Ddα∥2: ð9Þ

Given the tensor B-spline coefficient vector γ, the estimation of
function f becomes a one-dimensional smoothing problem, and we
can apply any scatter-plot smoother to obtain its estimate, which is
driven by the basis coefficient estimates α̂. As in Eilers et al. [3],
we estimate f using a (cubic) P-spline scatter smoother [4]. The pen-
alty on α ensures a smooth f; recall that α is the vector of B-spline co-
efficients with equally-spaced knots placed along estimated linear
predictor, η̂ ¼ M γ̂. P-splines are used for the following reasons:
(a) P-splines smoothers are easy to use and optimize. (b) Heavy
smoothing (with a second order penalty) leads to approximately
monotone linear f, which is expected by the thermodynamic proper-
ties. (c) The first derivative of f (denoted as ḟ ), which is needed in our
algorithm, can be easily computed.

Note that derivatives of smoothers with equally-spaced B-splines
have the pleasant property that they are equivalent to B(q−1)(Δα)/
b, where q is the degree, Δ denotes the first difference operator, and
b is the step length on the equally-spaced knots. For simplicity
in notation, denote S(V,W,λf,df,nf) as the operation of fitting a cubic
P-spline scatter smoother on V (the input variable) and W (the re-
sponse) using the penalty tuning parameter λf and difference order
df on the nf equally-spaced knots.

3.1. The model fitting algorithm

Once given an estimate of f, the coefficient vector γ can be esti-
mated using a (first-order) Taylor series approximation of the func-
tion f (about the current estimate, γ0). Specifically, if γ0 is the
current estimate for γ, then the current estimate of μ ¼ f Mγð Þ can
be approximated by

f Mγð Þ≈ f Mγ0ð Þ þ diag ḟ Mγ0ð Þ
n o

M γ−γ0ð Þ: ð10Þ
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Using Eq. (10), with fixed f, we have an approximation of QP
⋆

Q ⋆
P≈ jjγ−f Mγ0ð Þ−diag ḟ Mγ0ð Þ

n o
M γ−γ0ð Þ jj2 þ λ jjPγ jj2 þ ⌣λ jj⌣Pγ jj2

¼ jj y−f Mγ0ð Þ þ diag ḟ Mγ0ð Þ
n o

Mγ0

h i
−diag ḟ Mγ0ð Þ

n o
Mγ jj2

þλ jjPγ jj2 þ ⌣λ jj⌣Pγ jj2 ¼ jjy⋆−M⋆γ jj2 þ λ jjPγ jj2 þ⌣λ jj⌣Pγ jj2;
ð11Þ

where y⋆ ¼ y−f Mγ0ð Þ þ diag ḟ Mγ0ð Þ
n o

Mγ0 and M⋆ ¼ diag ḟ Mγ0ð Þ
n o

M.
Note that Eq. (11) implies that given f, the optimal α that minimizes the
right-hand side of Eq. (11) can be obtained through a
MPSR M⋆; y⋆; λ;⌣λ

� �
; Dd;D⌣

d

� �
; n;⌣n
� �� �

.

Hence, in our algorithm, we first carry out an MPSR with the re-
sponse y on M (Step 1). Then, given γ, an estimate of f is obtained
(Step 2). The two steps, estimation of f and γ, are iterated until con-
vergence of γ̂. We set the B-spline basis degree q=3 (cubic splines)
as default value for both steps. Again only for simplicity of presenta-
tion, the intercept term is suppressed (α0=0) in the algorithm.

Algorithm MSISR

1. Initializations:

• Choose the tuning parameter values ðλ ;λ⌣ ;λf Þ for Steps 1

and 2

• Choose number of knots ðn; n⌣; nf Þ
• Choose penalty order ðd; d⌣; df Þ
• Set all tuning parameters to λ0 for the initial Step 1

(default value is 106)

• Create M¼XT ⋆

• Calculate γ̂¼MPSR ðM ;y ; ðλ0 ;λ0 Þ ; ðd ; d
⌣Þ ; ðn; d⌣Þ Þ

2. Cycle until convergence of γ̂'s

• Estimate f̂ and the estimate of the derivative ḟ from
S ðMγ̂ ;y ;λf ;df ;nf Þ

• Obtain y⋆ and M ⋆

• Update γ̂¼MPSR ðM ⋆ ;y ⋆ ; ðλ ;λ
⌣ Þ ; ðd ;d

⌣ Þ ; ðn ;n⌣ Þ Þ
• Constrain γ̂= ∥γ̂∥

3. Prediction: γ̂new ¼ f̂ ðxnewT ⋆γ̂Þ
end algorithm

To ensure identifiability, we constrain the γ vector to have a unit
L2 norm, i.e. γcur/||γcur||. To define the convergence criterion, denote
jjγj 2 ¼ ∑n

k¼1 γ
2
k

�� . The algorithm terminates when

γcur
k =jjγcur jj� �

− γpre
k =jjγprejj� �

γcur
k =jjγcurjj b �

for k ¼ 1;…;n⌣n, where γcur (γpre) is the γ vector for the current (pre-
vious) iteration, and ∈ is a prespecified convergence tolerance (de-
fault value is 10−3). R code for the MSISR algorithm can be found at
www.stat.lsu.edu/faculty/marx.

Thus the above algorithm outlines that, in principle, we have a
generalized linear model with a least squares objective function. We
will see in the next section that, given the link function, we can use
the final iteration for some diagnostics, such as effective dimension.

4. Optimization of the penalty

Some general guidelines toward MSISR could include using a gener-
ous number of tensor product B-spline basis functions (keeping
n⌣nb1000 for computational efficiency) on the signal plane, as well as a
generous number of univariate basis functions for f. We suggest using
a row, column and f penalty order of d=2 or 3 and to vary λ;⌣λ;λf

� �
on a logarithmic grid, while monitoring a performance criterion.

We aim for reliable prediction. The MSISR model is driven by the
non-negative penalty regularization parameters λ;⌣λ;λf

� �
, which

drive the continuous control over smoothness. There exists a variety
of ways to “optimize” the tuning parameters. We propose the follow-
ing: the data are split into three groups, denoted as the: training set,
validation set, test set. Apply MSISR to the training set and choose “op-
timal” λ;⌣λ;λf

� �
to minimize error on the validation set,

RMSEV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mvalid ∑
mvalid

i¼1
yi− ŷvi

� �2s
ð12Þ

where mvalid is the number of observations in the validation set and
ŷvi is the predicted response for the ith subject in the validation set,
using the parameter estimates from the training model.

Given a chosen “optimal” model, evaluation of external predictive
performance can be calculated using the root-mean-square error of
prediction (RMSEP) on the independent test set:

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mtest ∑
mtest

i¼1
yi− ŷi
� �2s

ð13Þ

where mtest is the number of observations on the test set and ŷi is the
predicted response for the ith subject in the external test set, using
the parameter estimates from the combined (training, validation)
sets with the “optimal” λ;⌣λ;λf

� �
. Generally, we perform a full

(three dimensional) linear grid search, where each element of
lambda;⌣λ;λf

� �
is varied on a logarithm scale.

4.1. Note on effective dimension

For the coefficient surface portion of the algorithm, note that we
use penalized least squares. Specifically, we find the estimate

γ̂ λ;⌣λ
� ���λf Þ ¼ MPSR M⋆

; y⋆; λ;⌣λ
� �

; d;
⌣
d

� �
; n;⌣n
� �� �

;

which is a function of the estimated f and ḟ , withM⋆ and y⋆ defined in
Eq. (9). An approximation to the effective hat matrix, corresponding
to the surface, can then be given by

H⋆ ¼ h⋆ii′
h i

¼ M⋆ M⋆′M⋆ þ λP′P þ⌣λ
⌣
P′⌣P

� �−1
M⋆′

: ð14Þ

It follows that the effective dimension of the estimated coefficient
surface, for fixed f, can be approximated by

EDα ¼ trace H⋆
� �

[8]. Using a permuted form of H⋆,

trace H⋆
� �

¼ trace M⋆′M⋆ M⋆′M⋆ þ λP′P þ⌣λ
⌣
P′⌣P

� �−1

 �

is computed more efficiently. Additionally, the corresponding EDf for
f̂ can be found in a standard univariate way, as outlined in Eilers and
Marx [4].

5. Example: ternary mixture data

As introduced in Section 2 and in Fig. 3, we apply our MSISR to the
ternary mixture data. Recall that the responses are the mole fraction
of a mixture, consisting of three components: water, 1,2-ethanediol,
and 3-amino-1-propanol. There are 3 pure, 12 edge, and 19 interior

http://www.stat.lsu.edu/faculty/marx


Table 1
MSISR, MPSR, PLS external prediction RMSEP using optimal models.

Response MSISR MPSR PLS

Water 0.0214 0.0365 0.0465
1,2-ethanediol 0.0241 0.0338 0.0382
3-amino-1-propanol 0.0306 0.0251 0.0359
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(1 center) mixtures. A description of the experimental setting is pro-
vided in Appendix A.

The two-dimensional signal is constructed using the p×⌣p ¼ 4800
digitized regressors, Xi, arranged using the (first) differenced spectra,
across the temperature levels. The indexing axes that define the sup-
port coordinates of Xi are specified as v⋆ (wavelength) with p=400
wavelength channels (701 to 1100 nm, by 1 nm) and ⌣v⋆ with ⌣p ¼
12 temperature levels (30, 35, 37.5, 40, 45, 47.5, 50, 55, 60, 62.5, 65,
70 °C). The data were not preprocessed in any other way.

We focus on a prediction performance study that directly com-
pares the proposed MSISR method to the standard MPSR method
[12] and to partial least squares (PLS). One goal of this paper is to ex-
ploit and explore the explicit nonlinear effect, which is an added ben-
efit, uniquely provided using MSISR.

We divided the m=34 observation into three subsets as follows.
The training set consisted of mtrain=16 observations using the 3
pure, 12 edge, and 1 center mixtures. The remaining 18 interior ob-
servations (apart from the center) were divided into a validation
set (to optimize tuning parameters) and a test set (to quantify
quality of external prediction): (i) They were first sorted on the re-
sponse (either on water or 1,2-ethanediol or 3-amino-1-propanol)
in increasing order. (ii) The validation (test) set was constructed
using the mvalid=9 (mtest=9) even (odd) rank of observations.
Such an approach was taken in an attempt to have a fair and reason-
able range of mixture levels for both the estimation of f and the eval-
uation of external prediction. Additionally, there is no extrapolation
for model optimization or model testing.

Optimal tuning parameters were determined by minimizing
RMSEV in the trained model. Given these optimal tuning parameters,
external prediction was evaluated on the test data using RMSEP
using the newly trained model that combined both the training
and validation data. We stress that in the determination of every op-
timal model, all hyper-parameters (λs or number of PLS compo-
nents) are optimized using a validation set which is independent
of the external test set. We perform a full (three dimensional)
grid search, where each log λð Þ; log ⌣λ

� �
; log λf

� �
was varied from

−5 to 5 in twenty steps. For PLS, we varied the number of compo-
nents from 1 to 7. The RMSEV optimization for PLS is provided
in Fig. 6. All reported prediction performance refers to external pre-
diction on the test data. The number of equally-spaced knots
were set to n ¼ 40;⌣n ¼ nf ¼ 10. Second order difference penalties
ðd ¼ ⌣

d ¼ df ¼ 2) were used.
Table 1 presents the root mean square error of prediction (RMSEP)

for the external prediction set, using optimal MSISR, MPSR, and PLS
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Fig. 6. Optimization of the number of PLS components using RMSEV.
models. For responses water and 1,2-ethanediol, we find an improve-
ment in external prediction for MSISR over both MPSR and PLS, lead-
ing to RMSEP reductions that range from 30% to 55%. For MSISR, the
external RMSEP values are between 0.0214 and 0.0241, which when
multiplied by 100 gives units of percent mixture. The RMSEV values
were optimized, achieving values of (0.0155, 0.0372, 0.0343) for
water and (0.0173, 0.0508, 0.0454) for 1,2-ethanediol, for MSISR,
MPSR and PLS, respectively.

The response 3-amino-1-propanol also showed very promising re-
sults for MSISR, with a 15% reduction in RMSEP when compared to
PLS. Although the standard MPSR performed best of all three methods
(with RMSEP of 0.0251), this particular MPSR response model is
problematic in that extremely light (boundary) smoothing was re-
quired for the estimated two-dimensional coefficient surface. In
some respect, the MSISR model further regularizes the standard
MPSR model by accounting for the nonlinear effect, yielding stronger
prediction results with reasonable tuning parameters. The optimal
RMSEV values were (0.0148, 0.0282, 0.0359) for MSISR, MPSR and
PLS, respectively. Table 2 provides the optimal tuning parameters
for each method and mixture response.

Figs. 7–9 provide the estimated f̂ function and f̂− η̂
� �

(left panels)

for the three mixture components, respectively. The upper, left

panel shows f̂ relative to the dashed identity line. The plotted points
represent the nine observations in the external test data set. The

lower, left panel provides a more focused view of the nature of the f̂

function, by plotting f̂− η̂
� �

. These left panels highlight the unique

contribution of MSISR, i.e. the explicit estimation of the nonlinear f.
In addition, the estimated smooth MSISR coefficient surface
(top, right panel) is provided. The lower image panel further
provides the difference in the coefficient surfaces, i.e. MSISR–MPSR.
Note for the standard MPSR model for the water component, there
are particular large swings in the estimated coefficient surface, rang-
ing from −30 to 40 in the wavelength region 700–800 nm. Such
large values are moderated by a factor of 10 when using MSISR.
These right panels further highlight a very nice feature of MPSR,
i.e. that the spatial information of the regressors is built into the
model and further the user can actually see the relative magnitudes
for various regions of the coefficient indexing plane, as well as its in-
teractive features.

5.1. Further inspection of the nonlinear components

The estimated link functions, as shown in Figs. 7–9, are
clearly nonlinear. Unfortunately, by splitting our data in training,
Table 2
Optimal tuning parameters for MSISR, MPSR, and PLS models.

MSISR MPSR PLS

Response (λ,
⌣
λ, λf) (λ,

⌣
λ) Components

Water (4e-5, 9e-4, 2e-3) (3e-5, 5e-4) 5
1,2-ethanediol (4e-5, 2e-1, 5e-1) (8e-2, 6e-1) 3
3-amino-1-propanol (1e-5, 1e-3, 1e-3) (1e-7*, 1e-7*) 5

* light (boundary) smoothing required for MPSR.



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

eta

f(
et

a)

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

700 800 900 1000 1100

30
40

50
60

70

Te
m

pe
ra

tu
re

0

2

0.
02

0.
06

eta
700 800 900 1000 1100

30
40

50
60

70

Wavelength

Te
m

pe
ra

tu
re

0

10

20

30

Fig. 7.Water: the estimated f̂ function is given (upper, left), along with f̂−η̂
� �

(lower, left). The plotted points represent the nine observations in the external test data set. The right
panels provide the “optimal” image plots for the estimated coefficient surface (upper) and the coefficient surface difference, MSISR–MPSR (lower).

127B.D. Marx et al. / Chemometrics and Intelligent Laboratory Systems 109 (2011) 120–130
validation and test sets, no data points with extreme mole frac-
tions are displayed, and thus do not have an idea of how well
the functions fit to the data points. To get a better picture, we
retrained the model using all data while using the optimal penalty
parameters(λ; ⌣λ; λf). Fig. 10 shows the results. They suggest
a quite sharp bend near zero, in an otherwise quite smooth
0.0 0.2 0.4 0.6 0.8

eta

0.0 0.2 0.4 0.6 0.8

eta

0.
00

0.
05

0.
10

0.
15

0.
0

0.
2

0.
4

0.
6

0.
8

f(
et

a)

30
40

50
60

70

Te
m

pe
ra

tu
re

30
40

50
60

70

Te
m

pe
ra

tu
re

Fig. 8. 1,2-ethanediol: the estimated f̂ function is given (upper, left), along with f̂−η̂
� �

(low
The right panels provide the “optimal” image plots for the estimated coefficient surface (up
function, for 1,2-ethanediol and 3-amino-1-propanol. Strong local
changes in the smoothness of a curve cannot be captured by our
present model.

To get a better understanding of the behavior of the link function
at small concentrations of 1,2-ethanediol and 3-amino-1-propanol,
the model has to be improved, but also more detailed measurements
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at low mole fractions are needed. The data now jump from 0 to 0.15,
with nothing in between.

We are not experts in chemical mixtures, so we will not try to give
a fundamental explanation of the observed behavior. However, from
the data, we find that at low concentrations of one organic compound
in water, the spectrum of water behaves in a remarkable way. When
the mole fraction of water increases from 0.75 to 1, the spectrum
changes much more in size and shape than would be expected from
a change by one third.
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5.2. Prediction performance: PLS, MPSR, and MSISR

In the experiment, we compared the prediction performance of
each PLS, MPSR, and MSISR against each other through the compara-
tive test error, defined by

ci;j ¼
RMSEPi j

min RMSEPi;l
n o

l¼1;2;3

; i ¼ 1;…;50; j ¼ 1;2;3 ð15Þ
2 0.4 0.6 0.8

anediol

−0.2 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3−amino−1−propanol

f(
et

a)

0.4 0.6 0.8
ta

−0.2 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

eta

(f
−

et
a)

�
. The corresponding f̂−η̂

� �
functions are provided in the lower panels.



w
at

er

w
at

er

w
at

er

et
ha

ne
di

ol

et
ha

ne
di

ol

et
ha

ne
di

ol

pr
op

an
ol

pr
op

an
ol

pr
op

an
ol

1

2

3

4

5

6

C
om

pa
ra

tiv
e 

er
ro

r

PLS
MPSR
MSISR

Fig. 11. Boxplot of comparative test errors for PLS, MPSR, and MSISR, based on 50 random splits of the data.

0.
4

0.
6

0.
8

1.
0

y*
*(

no
nl

in
ea

r)

0.
4

0.
6

0.
8

1.
0

f(
et

a)

129B.D. Marx et al. / Chemometrics and Intelligent Laboratory Systems 109 (2011) 120–130
over 50 replications for each method. This quantity facilitates individ-
ual comparisons by using the test error of the best method for each
data set to calibrate the difficulty of the problem. Within each replica-
tion, the entire data set is randomly split into training (16), validation
(9) and testing (9) sets. Fig. 11 shows the boxplots of comparative ex-
ternal test errors for PLS, MPSR, and MSISR. For each replication, the
tuning parameters for each method were optimized using RMSEV
with the respective validation set. The optimum number of PLS com-
ponents ranged from 3 to 12. Table 3 further shows the average
RMSEP for PLS, MPSR, and MSISR for the external test sets based on
the 50 replications, with corresponding standard deviations in paren-
theses. Fig. 11 and Table 3 provides convincing evidence that MSISR
achieves better external prediction performance than both MPSR or
PLS, for all three components. For MPSR and MSISR, the number of
knots and order of the penalty were set as above.

6. Evaluation of simulated nonlinear effect

We simulated a nonlinear effect on the response of the form
f yð Þ ¼ yþ 3 y− 1

2

� �2. We applied both the proposed MSISR, as well as
the standard MPSR algorithms to these data. We expect that MSISR
can capture explicit nonlinearity through the estimation of f, while
having a smaller RMSEV than the (linear) MPSR counterpart.

Fig. 12 (left) shows the nonlinear structure of the simulated re-
sponse with an additive shock ∈=z/30 of scaled standard normals.
Fig. 12 (right) also provides the (optimal) MSISR estimated f, which
clearly exhibit the recovery of some of the true underlying nonlinear
response features. Although the coefficient surfaces are not displayed
for either approach, the standard (linear) MPSR coefficient values
took on a much wider range of values (approximately ±30) than
MSISR (approximately ±6). We suspect that the more erratic nature
MPSR coefficient surface is perhaps due to the linear estimators' in-
ability to capture true nonlinear response effects, which is also consis-
tent with the corresponding increase in optimal RMSEV of
approximately 0.05 (MSPR) compared to 0.02 (MSISR).

Some technical details follow regarding the construction of the re-
sponse and optimization. The nonlinear y⋆ ⋆ was obtained by first
Table 3
Summary of average external prediction for PLS, MPSR, and MSISR using optimized
models, based on 50 replications. Standard deviations are in parentheses.

Method Water 1,2-ethanediol 3-amino-1-propanol

PLS 0.0531 (0.0092) 0.0961 (0.0564) 0.0818 (0.0487)
MPSR 0.0594 (0.0184) 0.0767 (0.0572) 0.0819 (0.0619)
MSISR 0.0411 (0.0208) 0.0582 (0.0252) 0.0726 (0.0543)
generating a linear response (y⋆). The linear y⋆ was constructed
using the derivative spectra from the mixture experiment and a
fixed linearly estimated coefficient surface. The fixed coefficient sur-
face was determined using standard MPSR with fixed tuning parame-
ters (1, 0.1) and (10, 40) equally-spaced knots for temperature and
wavelength, respectively. The model was trained with all observa-
tions, apart from the validation set, and minimization of RMSEV de-
termined the optimal tuning parameters.
7. Discussion

We have shown how to estimate nonlinear relationships in multi-
variate calibration, by combining the single index model with multi-
dimensional penalized signal regression.

We stress that our MSISR approach, is not only a competitor, but
has some clear advantages. Unlike some other methods, MSISR
takes full advantage of the natural spatial information of the signals.
MPSR is straight-forward to use: it uses the entire (“raw”) signal
and works “right out of the box” without any data preprocessing.
The method is intuitive in that you can actually see what is going rel-
ative to the spatial indexing plane, i.e. how the coefficient surface is
used to contrast the two-dimensional signals for prediction. Further
the nonlinearity is clearly estimated with a smooth function.
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Fig. 12. Simulated nonlinear response (left) and MSISR fitted f, with all m=34 obser-
vations (right).
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We found that the explicit estimation of the nonlinearity can pro-
vide some insights into the physical and chemical processes underly-
ing the measurements, which we view as a contribution over some of
the other more “black box” approaches, while modestly improving
external prediction.

As pointed out in Marx and Eilers [12], our applications showed
that the physical background of the measurements dictated the
wavelength and temperature axes, and it was natural to allow differ-
ent amounts of smoothing. When working with real images, the axes
might be relatively arbitrary, only determined by the orientation of
the imaging instrument. Then it might be natural to have an isotropic
penalty, forcing both penalty parameters to be equal. Unfortunately,
isotropic does not imply rotation invariant: rotation of the axes
might lead to different estimates of the coefficient surface. We note
that it is possible to extend the penalties with mixed differences.
Presently we use penalties that either work exclusively on the rows
(columns) of the matrix of coefficients of tensor products. A mixed
penalty would work on both rows and columns.

The methods developed can be used beyond spectra; they can also
be used for medical/gray-scale, or other images. Future research could
constrain estimation so that the sumof themixtures is one. Also future
research could model the two dimensional coefficient surface but ex-
plicitly create a varying signal coefficient vector by using slices at an
arbitrary temperature, while possibly additionally modeling the link
functions smoothly in two-dimensions. One could also imagine
modeling two-dimensional image regressors while controlling for
other (smooth) covariates or factors, along the lines of Eilers and
Marx [5]. Other future research could investigate prediction stability
during calibration transfer, i.e. investigating the robustness of predic-
tion quality as an additional covariate changes, e.g. temperature [11].
In the present case the response is assumed to have a normal distribu-
tion. MSISR could also be generalized for binary classification or Pois-
son counts [12,13], e.g. a Bernoulli response with probability πi could
be modeled with log(π/(1−π))= f(Xβ).
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Appendix A. Description of the experimental setting

According to the documentation provided by Zhenyu Wang, the
following instruments and chemicals were used in the experiment:

• HP 8453 spectrophotometer (Hewlett-Packard, Palo Alto, CA)
• 2 cm closed quartz cuvette with glass thermostatable jacket
• Pt-100 temperature sensor
• Neslab microprocessor EX-111 circulator bath
• UV–visible Chemstation software (Rev A.02.04) on a Hewlett-
Packard Vectra XM2 PC

• Water: subboiled demi water (self made)
• 1,2ethanediol: 99.8% Sigma-Aldrich Germany
• 3amino1propanol: 99% Merk Schuchardt Germany
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