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 Abstract: The evaluation of new processor designs is an important issue in electrical and computer
 engineering. Architects use simulations to evaluate designs and to understand trade-offs and interactions
 among design parameters. However, due to the lengthy simulation time and limited resources, it is often
 practically impossible to simulate a full factorial design space. Effective sampling methods and predictive
 models are required. In this paper, the authors propose an automated performance predictive approach which
 employs an adaptive sampling scheme that interactively works with the predictive model to select samples
 for simulation. These samples are then used to build Bayesian additive regression trees, which in turn are
 used to predict the whole design space. Both real data analysis and simulation studies show that the method
 is effective in that, though sampling at very few design points, it generates highly accurate predictions
 on the unsampled points. Furthermore, the proposed model provides quantitative interpretation tools with
 which investigators can efficiently tune design parameters in order to improve processor performance.
 The Canadian Journal of Statistics 38: 136-152; 2010 ? 2010 Statistical Society of Canada

 R?sum?: L'?valuation de la conception de nouveaux processeurs est une ?tape importante en g?nie ?lectrique
 et informatique. Les architectes utilisent des simulations afin d'?valuer les concepts et de comprendre les
 compromis et les interactions entre les diff?rents param?tres du mod?le de conception. Cependant, ? cause de
 temps de simulation excessif et de la limitation des ressources, il est pratiquement impossible de simuler un
 devis factoriel complet. Des m?thodes d'?chantillonnage efficaces et des mod?les de pr?diction sont requis.
 Dans cet article, les auteurs proposent une approche automatique pour pr?dire la performance qui utilise un
 plan d'?chantillonnage adaptatif interagissant avec le mod?le pr?dictif pour choisir les ?chantillons lors de la
 simulation. Ces ?chantillons sont alors utilis?s pour construire des arbres de r?gression bay?siens additifs qui
 sont ? leur tour utilis?s pour pr?dire l'ensemble de l'espace des devis. Des analyses de vraies donn?es et des
 ?tudes de simulation ont montr? que cette m?thode est efficace. En effet, m?me si l'?chantillonnage est fait
 sur tr?s peu de points de devis, il g?n?re des pr?dictions tr?s pr?cises sur les points non ?chantillonn?s. De
 plus, le mod?le propos? fournit des outils d'interpr?tation quantitatifs permettant aux chercheurs d'ajuster
 pr?cis?ment les param?tres du devis afin d'am?liorer les performances du processeur. La revue canadienne
 de statistique 38: 136-152; 2010 ? 2010 Soci?t? statistique du Canada

 1. INTRODUCTION

 In computer engineering, a new design is usually evaluated by processor simulators, which
 provide a detailed insight into the performance, power consumption, and complexity of the
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 processor. A design space is composed of different combinations of quantitative and qualitative
 microarchitectural design factors such as processor frequency, issue width, cache size/latency,
 and branch predictor settings. The design space is often very large. It is practically infeasible
 to test the processor performance on every design point for the optimal processor design. This
 problem is becoming more challenging as more parameters are brought in by chip-multiprocessors
 (CMPs). Therefore, we need a method which could (1) efficiently select configurations for
 simulation; (2) use the simulation data to accurately predict processor performance of unsampled
 configurations; (3) specify factors that are important in predicting processor performance; and (4)
 identify the joint effects of parameters on processor performance. In this paper, we propose an
 adaptive sampling scheme, together with the tree-based Bayesian predictive modeling method,
 to explore the microarchitectural design space and predict processor performance. The method
 bridges the gap between simulation requirements and costs. The real examples and simulation
 studies show that this method effectively samples at very few design points but generates highly
 accurate predictions on the unsampled points. Furthermore, the model provides quantitative
 interpretation tools that help investigators understand factor effects and interactions on processor
 performance.

 Some research has been done on selecting optimal designs and/or predicting the processor
 performances in large population spaces. Sacks et al. (1989) reviewed the special characters of
 computer experiments. Santner, Williams & Notz (2003) gave a survey on space-filling designs
 and some criterion-based experimental designs. Model-based adaptive designs are also developed.
 Cohn (1996) proposed an adaptive sampling algorithm based on neural network exploration. For
 this method, he tried to minimize the generalization error by completely exploring the design space.

 Kim & Ding (2005) developed an optimal engineering design guided by data-mining methods.
 Their method adopts feature functions, of which evaluation is computationally economical, as the
 surrogates for the design objective functions. A design library is generated based on the evaluation
 of feature functions and then a classification method is applied to create design selection rules. ?pek
 et al. (2006) predicted the performance of memory subsystems, processors, and CMPs via artificial
 neural networks (ANNs). They combined neural networks and active learning methods to explore
 large design spaces. Lee & Brooks (2006) used regression models for processor performance
 and power prediction. Joseph, Vaswani & Thazhuthaveetil (2006) developed linear regression
 models which characterize the interactions between processor performance and microarchitectural
 parameters. These models were built via iterative processes directed by Akaike's information
 criteria (AIC). AIC or Bayesian information criterion (BIC) variable selection method requires
 pre-transformed variables and a set of interaction bases that have a reasonable linear relation to
 the response variable. Moreover, we show in this paper that neither AIC nor BIC is efficient in
 finding complex interactions. Li, Peng & Ramadass (2008) proposed a MART-aided adaptive
 sampling method. Two algorithms were used in their paper: (1) Multiple Additive Regression
 Trees (MART, see Friedman, 2001) for predictive model building and (2) adaptive sampling
 technique for selecting the unsampled points, based on which the MART model is most likely
 to be improved. Our method adopts Bayesian additive regression trees (BART) as the predictive

 model. Compared with MART, BART is a model-based approach which enables a full assessment
 of predictive uncertainty while remaining highly competitive in terms of predictive accuracy
 (Chipman, George & McCulloch, 2006). The assessment of predictive uncertainty is then utilized
 to guide the sampling procedures in our proposed method, which in turn lead to more efficient
 predictive models.

 The proposed method includes three components: (1) the predictive modeling method, BART;
 (2) an active learning method which adaptively selects the most informative design points to
 improve predictive accuracy; and (3) interpretation tools for BART-fitted models which are used
 to evaluate the importance of design parameters in predicting the quantity of interest and shed
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 light on the underlying working mechanism. With these components, this method provides a
 sampling technique and predictive approach to explore large design spaces, and thus could find
 its application in computer engineering and many other areas.

 The article is organized as follows. In Section 2 we review BART model building and
 predictions and propose inference methods for BART. The BART-guided adaptive sampling
 (BGAS) as well as theoretical results are presented in Section 3. The implementation of the
 BGAS and comparisons with other methods are discussed in Section 4. Section 5 includes the
 conclusions and discussions.

 2. BAYESIAN ADDITIVE REGRESSION TREES

 BART is a Bayesian "sum-of-trees" model used to model the relationship between response and
 explanatory variables (Chipman, George & McCulloch, 2006). The method has shown excellent
 predictive performance. See, for example, Yu, MacEachern & Peruggia (2006), Zhang, Shih &
 Muller (2007) and literatures therein. BART employs two algorithms: classification and regression
 trees (CART) (Breiman et al. ,1984) and "boosting," which builds and combines a collection of

 models. BART is defined by a statistical model with priors and likelihoods. This model-based
 approach enables a full assessment of predictive uncertainty. In this section, we briefly review
 BART in terms of the tree model, the boosting algorithm, the prior selection, and the model fitting
 process. We review and propose BART inference methods at the end of the section.

 2.1. Two Algorithms

 CART is a binary recursive partitioning algorithm that provides a nonparametric alternative to
 traditional parametric models for regression and classification problems. Specifically, CART splits
 a multidimensional covariate space into two regions at each iteration. To do so, an optimal variable
 and a split point are selected by a comprehensive test on all variables and their realized values in
 the covariate space. The split continues on one or both of these subregions until some pre-specified
 stop rules are met. Then responses are modeled as a constant in each terminal region. Although
 CART represents information in a way that is intuitive and easy to be visualized, it is usually not
 as accurate as its competitors.

 Boosting is one of the recent enhancements to tree-based methods that have met with
 considerable success in predictive accuracy. In boosting, models such as regression trees are
 fitted iteratively to the training data and appropriate methods are employed to put extra weights
 on observations modeled poorly by the current collection of trees.

 MART is a special case of the generic gradient boosting approach on trees. Given
 observations of the form {y?,x?}" = {y?, ..., XipY{ and any differentiable loss function
 L(y, F(x)), MART considers the problem of finding a function, F(x), which predicts the response

 y by the input vector x, such that the expected loss, FJ?x{L(y, F(x))}, is minimized over the joint
 distribution of (y, x). Technically, MART approximates the target function F(x) by an additive
 expansion of trees

 where M is the total number of trees; ?#(x; ym) is an //-terminal node tree (which partitions
 the input space into //-disjoint regions); ym is the parameter vector in the rath tree; and e
 (0, 1] is the "shrinkage" parameter which controls the learning rate of the procedure. The M
 trees, {Z?#(x; Ym)}m=\> are built sequentially with response y ? vZ?#(x; y?) and covariate
 vector for m = 1,..., M. Empirical results have shown (see, e.g., Friedman, 2001; Friedman

 The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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 & Meulman, 2003) that smaller can often improve predictive accuracy. In practice, the number
 of trees M can be chosen by monitoring predictive performance on a validation set. We stop
 the modeling process when the reduction of the predictive error on the validation set becomes
 negligible. Note that H is related to the order of interactions considered in the model. For example,
 if H = 2, MART fits an additive model with no interactions. A detailed MART algorithm and
 related interpretation tools can be found in Friedman (2001).

 2.2. BART Review

 BART is a Bayesian version sum-of-trees model. BART differs from MART in several aspects:
 how it stochastically selects individual trees; how it weakens individual trees (controls the learning
 rate); and how it performs the iterative fitting by Bayesian backfitting on a fixed number of trees.

 To build a tree, MART uses the CART algorithm. The tree stops growing when some pre
 set rules, such as the total number of terminal nodes or the maximum length of the tree, are

 met. In BART, priors are set for each individual tree. These priors include: (i) the probability
 of each variable being a splitting variable at each interior node; (ii) the conditional distribution
 of the splitting rule assignment in each interior node, given the splitting variable; and (iii) the
 probability of a node at depth d being nonterminal.

 Let 7)(? = 1, 2,..., m) be the ith tree consisting of a set of interior node decision rules and
 a set of b terminal nodes, and Mi = { , a,..., be the set of parameters associated with
 the corresponding terminal nodes in 7?. For an observation (y, x), denote g(x; Ti, Mi) as the ith
 Bayesian tree which assigns a. e Mi to x. That is, E(y\x, Ti) = ^, if falls in the jth terminal
 node, j = 1,..., b. Technically, BART can be expressed as

 y = m + , (1)

 where /(x) = g(x; Tx, Mx) + g(x; T2, M2) + ? ? ? + g(x; Tm, Mm) and - N(0, 2).
 MART weakens the individual tree by a learning parameter while BART does so via setting

 priors. The parameters, , associated with each terminal node in a tree are assumed to be normally
 distributed with mean 0 and variance 2. We pre-shift and rescale y so that it is very likely to be

 in (-0.5, 0.5). Then we set 2 so that with a very high prior probability, the expected value of
 transformed y is in the interval (-0.5, 0.5). This prior has the effect of shrinking the tree parameters

 toward 0, limiting the effect of each individual tree component in (1) by keeping it small.

 The total number of trees in a BART model is pre-specified. A novel feature of BART is that
 it employs a backfitting MCMC algorithm to collect samples from the induced posterior over the
 sum-of-trees model space (readers are referred to Hastie & Tibshirani, 1998, for details about the

 backfitting algorithm and Chipman, George & McCulloch, 2006, about BART). The sample can
 then be used for enhanced inference. For example, a single posterior mean estimate could be used
 to predict y given x. Moreover, pointwise uncertainty intervals for /(x) are easily obtained by
 the corresponding quantiles, a property that is essential in our adaptive design scheme.

 2.3. Inferences From BART

 In this section, we review and propose methods for inferences based on BART. The application
 of these techniques to real data and simulation studies is presented in Section 4.

 To assess the importance of each covariate in predicting the quantity of interest, we compare
 the relative mean square error (MSE) change when each covariate is omitted from the model
 fitting. Let x\j be the set of all covariates excluding the jth covariate; 7 ( /) De the estimator of

 DOI: 10.1002/cjs  The Canadian Journal of Statistics / La revue canadienne de statistique
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 yi based on a model built on . The relative MSE is defined as

 RMSE^^^'V^f7", , = 1,2,...,p, (2) 3 ?= (yi - /x(x/))2/?

 where is the number of covariates used to build the BART and {xi\j}"=l are the data values
 of x\;. RMSE; approaching 1 means little difference in predictive error whether or not the jth
 covariate is used in model fitting. The larger the RMSE7, the more important the 7th covariate in
 fitting the final model.

 Chipman, George & McCulloch (2006) proposed measuring the dependence of the fitted
 model on a subset of variables by the posterior partial dependence. Their method is derived from
 the partial dependence plots used to make inference on MART. Given 7(x), a simulation from
 the posterior sum-of-trees model space, and any subset X(s) of the input variables indexed by
 s C {1,..., p], the corresponding partial dependence of J(x) on X(s) is

 ft(x(j)) = ?xv[?(x)L

 where ? [?] is the expectation over the joint distribution of all the input variables excluding
 those in s. Then the partial dependence can be estimated by

 1 N

 where x? = (x(s), x/\5) and {x?\s}f are the data values of x\5. Note that BART simulates from the
 posterior sum-of-trees model space. Therefore, we draw simulations from the posterior distribution
 of Ps(x.s), from which we make inference on a single variable or a group of variables of interest.

 3. PREDICTIVE MODEL GUIDED ADAPTIVE DESIGN

 We first describe the proposed sampling scheme which combines the nonparametric tree
 based predictive model BART with advanced sampling techniques to efficiently explore the
 microarchitectural design space. Then we justify the method in Section 3.2 and extend the sampling
 scheme to linear predictive models in Section 3.3.

 3.1. BART Guided Adaptive Sampling
 Adaptive sampling, also known as active learning in machine learning literature, involves
 sequential sampling schemes that use information gleaned from previous observations to guide
 the sampling process. Several empirical and theoretical studies have shown that samples selected
 adaptively outperform those obtained from conventional sampling schemes in learning a target
 function. See, for example, Freund et al. (1993), Sung & Niyogi (1995), Saar-Tsechansky &
 Provost (2001), and Li, Peng & Ramadass (2008). We propose the following sequential sampling
 algorithm:

 Algorithm 3.1. BART Guided Adaptive Sampling Algorithm

 (1) Randomly sample n\ points from the design space.
 (2) (a) Fit BART model with sample points and use the model to predict unsampled points.

 (b) Calculate the posterior predictive variance for all points: Vj = var[/(xj)]; j =
 1,..., N, where is the size of the design space.

 (c) Letq = 0, V = max/Vj),

 The Canadian Journal of Statistics / La revue canadienne de statistique  doi: 10.1002/cjs
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 (i) Select k = arg max7 Vj and let q = q + 1.
 (?z) Calculate the posterior predictive correlation between the j\h and &th design

 points, pjk = con(f(xj), /(**)), j = 1, ? ? ? ,N.
 (Hi) Let Vj = Vj (1 ? ,*).
 (?v) /f # < n2, go back to 2(c)i. Otherwise repeat Step 3.1(2) until stopping criterion

 is met.

 Remark 1. Generally we want n\ and n2 to be small for the best sampling and prediction. But
 should be large enough so that BART can be built on the initial \ sample points. If 2 is large,

 it could speed the sampling process with a trade-off of model accuracy. We want 2 to be large
 enough so that with the additional n2 sample points, predictive variance of the newly built BART

 could be significantly reduced. Step 2(c)iv could also be "Go back to 2(c)i if maxj(Vj)/V > z,
 otherwise repeat Step 2," where z(< 1) is pre-specified to control the improvement of the
 predictive variance. In Section 4, we try different n2 and find that if the model predictive
 performance is good, moderate change of 2 will not have a large influence on the final predictive
 accuracy.

 Remark 2. In general, we stop the procedure based on either the time/cost constraint or the
 convergence of some performance measure. The former is purely user-dependent. For the latter,
 we can monitor the procedure by a cross-validation measure or by the predictive performance on
 an independent test set. Since we consider the cases for which the stopping issue is potentially
 user-dependent, we pre-set the total sample size throughout the paper.

 The rationale for the above sequential sampling is the bias-variance decomposition?note
 that the decomposition is originally proposed for the squared error loss, but it can be generalized
 to other losses such as the zero-one loss for classification. In practice, since the bias is unknown
 before measuring, we can only measure the predictive variance. To increase predictive accuracy,
 one should sample from design points with high predictive variances. However, clustered points
 tend to have similar predictive variances. In order to achieve global accuracy, we should
 select sampling points that are representative of the whole design space. Therefore, whenever
 a point is chosen, the other points that are highly correlated with this point have a lower
 chance of being selected. This corresponds to the assumption that the inclusion of a point
 in the model would result in greater decrease in predictive variance in those more correlated
 points.

 3.2. Justification of the Adaptive Sampling

 In this section, we heuristically justify the reason why we downweight the predictive variance
 for candidate design points by 1 ? p, where is the predicted correlation coefficient between the
 chosen sample and other candidate design point.

 We use the squared error to measure predictive accuracy. Let y and y be the true and
 predicted values, respectively. We want to minimize Y^f=i (y? ? yt)2. Note that in terms of
 Bayesian analysis, given data D, the posterior risk is E[(y ? S02|?*] = E[(y ? E(y))2\D] -f
 E[(y ? E(y))2\D]. The first term in the right-hand side is the posterior predictive variance
 (var(y|D)), and the second term is the posterior squared predictive bias. We focus on minimizing
 the posterior predictive variance because E(y), and therefore the bias term, is unknown. The
 posterior predictive variance depends not only on the predictive model and the sampling method
 but also on the underlying population distribution. Assume that the true model is y = / + ?, where
 fis a structure function of known information (e.g., the covariates x), is the random error, and/
 and 6 are independent. Then, var(y|D) = var(/|D) + var(6|D). Two assumptions are needed for
 Lemma 3.1 : (1) if a design point is sampled, the posterior predictive variance for the structure part

 DOI: 10.1002/cjs  The Canadian Journal of Statistics / La revue canadienne de statistique
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 of the point reduces to zero, that is, var(/| D) = 0. This assumption fits the deterministic nature of
 the response in processor experiments, in that when the design points are decided, the values
 of the response variable are also decided. Jones, Schonlau & Welch (1998) use linear models for
 computer experiments. Their model also satisfies this assumption. (2) For a Bayesian additive
 model, any two sampled points y\ and y2 can be decomposed into three parts: y\ = fa + fa + ?\
 and j2 = fa + fa + where fa is the structure component shared by y\ and yi, fa, and fa are
 the independent structure parts of y\ and yi separately, and e\ and 62 are the random components.

 We further assume that fa, fa, fa, \, and 62 are independent.

 Lemma 3.1. Under the above assumptions and notations, if y\ is sampled, the posterior
 predictive variance ofy^ is reduced to \ ? \ % where is the correlation coefficient between
 y\ and y% o\ and | are the predictive variances of y\ and y2 separately before y\ is sampled.

 The proof of Lemma 3.1 is in Appendix. In practice, the main goal of sampling is to select
 one sample from design points with large variances. After y\ (with large a2) is selected, we want
 to select a second point y2 which also has a large variance. This enables us to assume 2 ~ a2.

 Therefore, comparing 2 ? \ 2 is approximately equivalent to comparing \ ? 2. To reduce
 the total posterior risk, we first sample a design point with the largest posterior predictive variance
 and then by Lemma 3.1, the posterior predictive variances for other candidate points are reduced
 to about (1 ? p) times the original variances. Note that when y2 ? yi, o\ reduces to 0, which
 agrees with Assumption 1. If == 0, the sampling of y\ would not improve the predictive variance
 of y 2. Since < 1, the posterior predictive variance of y2 is always larger than or equal to 0 after
 yi is selected.

 One of the benefits from BART is that BART produces a MCMC sample from the induced
 posterior over the sum-of-trees model space, which can readily be used to keep track of the
 uncertainty of prediction and to estimate the correlations among design points. Li, Peng &
 Ramadass (2008) use MART-guided design to improve prediction, where they use MART as the
 predictive model and sequentially sample design points that have the largest predictive variances
 while the minimum distance among each other is maximized. They have to use resampling method
 to estimate the predictive variance. However, they use the resampling method by Maximin distance

 design, which ignores the difference of the importance of each parameter on predicting the quantity
 of interest. If the information on the importance of parameters in prediction is available, it should
 be used adaptively to further guide the sampling process.

 BART is chosen as the predictive model because it has great predictive performance if the
 true models are complicated. Even when the true model is linear, BART is also competitive.

 Note that our sampling scheme can be applied to any model which can estimate the uncertainty
 of prediction and the correlations among design points. We present a linear regression model
 example in Section 3.3.

 3.3. Sequential Designs With Linear Regression Model
 The sequential construction of optimal designs can also be used in combination with other
 predictive models. Different predictive model should have different sequential change of variance
 for a candidate point after a certain design point is selected. Lemma 3.2 considers a linear
 regression model: y = x? + e, where e ~ N(0, 2). Let Xo be the design matrix used to build
 the linear model, and x/ and ;? are design points not in Xo . Denote

 Pij = / ^ ^
 anda2 = ^ ^ ^?.
 The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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 Lemma 3.2. For linear regression models,

 (1) if sampling at point xy, the predictive variance at design point x; is reduced to of [1 ?
 pfjaj/( 2 + aj)], where pij is the predictive correlation coefficient at x; and xy, of and 2
 are the predictive variances between ,? and xy, respectively, right before sampling at xy;

 (2) sampling at design point x? = argminy{xy(XQXo)_1xy} would minimize the current
 maximum predictive variance.

 The proof of Lemma 3.2 is in Appendix. The lemma implies that for linear regression models,
 our sampling algorithm actually constructs a sequential G-optimal design.

 4. EXAMPLES

 We apply our method to a real computer architectural design study and two simulation studies.
 We find that in the architectural design study GAS is more efficient than both the simple random
 sample (SRS) and the space-filling method, Maximin. We also find that BGAS performs better
 than the adaptive sampling method guided by MART. Furthermore, we use the real data to illustrate
 how to make statistical inference and to evaluate variable importance based on results from BGAS.

 Two design spaces?one small and one large?are simulated to demonstrate the efficiency of
 our method. The small one is used to show why BGAS is an efficient method from the perspectives
 of adaptive sampling scheme and the superior predictive accuracy of BART over linear models.
 As to inference, our method shows its ability in detecting interactions. We use the large simulation
 to illustrate how to apply BGAS in large design spaces, which are more common in reality. In
 the study, randomly selected test data sets are used to compare BGAS with SRS and Maximin.

 Also, we select different 2 to show that a moderate change in n2 would not affect the sampling
 and therefore the predictive performance. It is more efficient to select multiple points without
 re-running the model.

 4.1. A Computer Architectural Design Study

 We first choose a relatively small design space of size 1,600 so that we can actually sample all the
 design points to evaluate the predictive accuracy of different methods. There are six parameters in
 this design space. Each parameter has 2,4, or 5 levels, which results in 1,600 different designs. We
 then test the processor performance of the 1,600 different designs on two CPU benchmarks GCC
 and TWOLF from the Standard Performance Evaluation Corporation (SPEC) CPU 2000, which
 are widely used in the computer industry and academia to measure the bottlenecks and overall
 performance of the processor. The six parameters are L1CS, L1CBS, L1CA, L2CS, L2CBS, and
 L2CA. LI and L2 are two level caches which store recently visited data and instructions. They are
 important to a processor's performance and power consumption. Here LI CS and L2CS represent
 LI and L2 cache sizes separately. A cache is divided into many blocks. LI CBS and L2CBS denote
 the LI and L2 cache block sizes, respectively. Usually a cache is divided into several small groups,
 each having a few blocks. This cache organization is so-called "set-associative" where each group
 is called as a set. The number of blocks in a group (or set) is "cache set associativity," which are
 recorded by LI CA and L2CA in this experiment.

 For comparison, we use the predicted R2, defined as

 o ssto ? sse PR2 =- 100%, ssto

 where ssto = Y^f=i (y/ ? y)2 is the total sum of squared errors before model fitting, with
 being the size of the design space, y? the observed processor performance, and y the mean

 performance; and sse = ?= (y i ? y i)2 is the sum of squared errors after model fitting, with

 DOI: 10.1002/cjs  The Canadian Journal of Statistics / La revue canadienne de statistique
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 yi being the predicted processor performance. The prediction is based on the model built by
 a small sample. We term PR2 the predicted R2 to distinguish it from the traditional R2 which
 is used to measure the model "goodness-of-fit." In calculating PR2, only a small proportion
 of the design space (at most 200 out of the 1,600 points in this example) are used for model
 fitting.

 We start with 20 design points randomly selected from the design space and then sample 10
 additional design points using BGAS each time until we have a sample of size 200. To compare
 BGAS, SRS, and Maximin, we use BART as the predictive model for all three sampling methods.
 In BART fitting, we skip the first 1,000 simulated sum-of-trees as burn-ins and then keep one
 from every four simulation. In this way, we obtain 1,000 simulations from the posterior model.
 During the process, we make sure that the simulation converges to a stationary distribution
 and the simulations are reasonably independent. For the Maximin method, we use the same
 distance function as that in Li, Peng & Ramadass (2008). We repeat all sampling methods
 100 times. Table 1 gives the average sample sizes (of the 100 repetitions) needed to reach the
 critical predictive R2 values in predicting the two process performance, GCC and TWOLF,
 respectively.

 Table 1 shows that BGAS improves the predictive performance more quickly than SRS and
 Maximin in that the adaptive design needs a much smaller sample size to achieve the critical
 accuracy. Furthermore, it becomes much harder (requires a larger sample) for SRS and Maximin
 to reach higher PR2 (say, e.g., PR2 > 0.97).

 We also compare BGAS with the adaptive sampling method guided by MART in Li, Peng &
 Ramadass (2008, denoted by LI). To make the methods comparable, we start LI with 20 Maximin
 samples and then adaptively choose 10 additional design points at each iteration until a total of
 200 samples are selected. The process is repeated 100 times. Figure 1 compares all four methods
 in terms of the mean predicted PR2 of the 100 repetitions. It is clear that BGAS is superior to
 SRS, Maximin, and LI. Note that both Maximin and LI start with 20 Maximin samples, but LI
 uses MART while Maximin uses BART as predictive models. We also combine LI with random
 forest (RF) as a predictive model for a comparison.

 We obtain box plots of the relative MSE in Equation (2) for the six co vari?tes in Figure 2.
 The locations of these box plots indicate the importance of the six covariates in predicting GCC

 Table 1 : The average sample size needed to get the critical predictive R2

 PR2

 0.80 0.85 0.90 0.95 0.96 0.97 0.98 0.99

 GCC performance
 SRS 50 60 70 100 110 120 150 > 200
 Maximin 50 60 70 100 130 140 180 > 200
 BGAS 50 50 60 80 90 100 110 140

 TWOLF performance
 SRS 30 30 40 90 110 130 160 > 200
 Maximin 30 30 50 100 120 160 190 > 200
 BGAS 30 30 40 80 100 120 140 170
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 Figure 1 : For the real data set, comparison of BGAS with SRS, Maximin, and LI. [Color figure can be
 viewed in the online issue, which is available at www.interscience.wiley.com.]

 GCC Data TWOLF Data

 Figure 2: For the real data set, the box plots of RMSE of six covariates in predicting the processor
 performance.

 and TWOLF. We find that "L2CA" is the most important parameter in predicting both processor
 performances, though in predicting TWOLF, the difference between "L2CA" and"L2CS" is not
 significant (the two 95% confidence intervals are overlap).

 In Figure 3, we obtain the partial dependence plots for GCC data to show how the processor
 performance changes with different settings of each covariate, where the jc-axis shows the values of
 the corresponding covariate and y-axis is the partial dependence. We can learn the marginal effect
 of each covariate on the GCC from the plot. For example, we observe that the marginal effect of
 GCC decreases when the level of L2CA increases. We can also use the partial dependence plot on a
 subset of covariates (not shown) to check the joint effect of covariates on processor performance.

 We do not find any important interactions in this data set.

 For GCC data, Table 2 shows the average final sampling results (of the 200 100 samples)
 for each covariate based on BGAS, SRS, and Maximin separately. In the table, each cell shows
 the percentage of times that the corresponding level of the covariate is selected. By SRS and

 Maximin, all levels of a covariate have about the same chance of being selected. BGAS chooses
 samples differently and thus results in better predictions as demonstrated in Table 1.
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 Figure 3: For the real data set, partial dependence plots of each covariate in predicting the GCC.

 Table 2: Proportion of the corresponding level of each covariate being selected in the sample.

 Covariates

 L1CBS  L1CA  L2CS

 32  64  8 256 512 1,024 2,048 4,096

 GAS 50
 SRS 50
 Maximin 50

 50
 50
 50

 32
 26
 25

 23
 25
 25

 20
 25
 25

 25
 25
 25

 27
 20
 20

 19
 20
 20

 L2CBS  L1CS

 17
 20
 21
 L2CA

 17 20
 19 20
 21 19

 64  128  16 32 64  1  16
 GAS

 SRS
 Maximin

 52
 50
 50

 48
 50
 50

 31
 26
 26

 21
 25
 25

 21
 25
 25

 27 35
 25 20
 25 20

 19
 21
 20

 15
 20
 20

 14
 19
 20

 18
 20
 20

 4.2. Simulations
 4.2.1. Simulation 1

 We have shown in Section 4.1 from a real data set that BGAS could improve predictions with a
 small sample size. In this section, we use a simulation to investigate the source of the improvement:
 the BART predictive model and/or the adaptive sampling. We also show how BART can help in
 identifying important interactions.

 We have five covariates, each of which has six levels (0, 0.2, 0.4, 0.6, 0.8, 1). Thus, the
 design space is composed of 7,776 design points. The response variable is simulated from the
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 Figure 4: For Simulation 1, comparison of adaptive experimental design with SRS and BART with linear
 regression model. Left plot shows the mean predictive R2 of each method as the sample size increases. Right
 plot shows the variance of predictive R2 of the 20 repetitions. [Color figure can be viewed in the online

 issue, which is available at www.interscience.wiley.com.]

 equation y ? 9e~3(1~*l)2e~3(1~*2)2 ? 0.65e~2(*3~*4) + 2 sin2(jC57r) + e, where e is the normally
 distributed random error with mean 0 and signal to noise ratio of 4 (the variance is approximately
 2.06).

 We start to sample at 40 points and add 20 points at each iteration until we collect a total of
 400 samples, about 5% out of the 7,776 design points. We repeat the process 20 times to account
 for the randomness in initial sampling and the MCMC process. BGAS design is compared with
 SRS, both using BART as the predictive model. Furthermore, BART is compared with the linear
 models chosen by AIC and BIC, and all models are built on randomly selected samples. The left
 plot in Figure 4 shows the mean PR2 of the 20 repetitions. The right plot shows the corresponding
 variance of the PR2.

 From Figure 4, we see that the AIC and BIC model selection criteria outperforms BART
 in model building and predictions when the sample size is very small. As sample size
 increases, BART shows much better predictive performance. BGAS consistently outperforms
 SRS. Moreover, the predictive variance for BGAS is consistently smaller than that of SRS with
 BART. BART combined with BGAS has approximately the same predictive variance as the linear
 regression models.

 From the simulation formula, there should be interaction effects between x\ and x2, and

 between x^ and X4. The effect of x$ is independent from the other predictors. We check
 whether BART or linear regression models can detect the correct interaction terms. Figure 5
 shows some dependence plots of the response on the combination of two covariates. The
 dependence plots are based on one of the final sampling results from BGAS. All plots from
 the 20 repetitions look similar. We observe that BART successfully identifies the interactions
 between jci and x2, and x^ and 4. Note that one can also use standard statistical tests to check

 whether the interactions are significant based on the predictions of the model. The AIC and
 BIC modeling automatically chooses variables from all main effects, square terms, and all two
 factor interactions. The model with optimal AIC or BIC score is chosen as the best model. Note
 that only hierarchical models are considered by AIC and BIC. Table 3 includes the number
 of times, out of 20 repetitions, that each term is selected by AIC/BIC. AIC detects the x\x2
 interaction five times while BIC does so only once. Neither AIC nor BIC detects x3x4 interaction.

 This indicates that BART outperforms AIC and BIC model selection criteria in detecting
 interactions.
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 Figure 5: For Simulation 1, partial plots of subsets of the response y on the combination of two covariates
 to check for possible interactions in the BART fitted model. [Color figure can be viewed in the online issue,

 which is available at www.interscience.wiley.com.]

 Table 3: The count that each term is selected in the model by AIC or BIC out of the 20 repetitions in
 Simulation 1.

 Covariates

 X\ X2 X3 X4 X5 X\X2 -^1-^3 X1X4 Xl%5 X2%3

 AIC 5 20 20 20 20 5 0 2 1 1
 BIC 1 20 20 20 20 1 0 0 0 0

 2 X2 x\ x\ x\ X2X4 X2%5 -^3-^5 X4X5
 AIC 2 15 0 0 20 0 2 0 0 0
 BIC 0 19 0 0 20 0 0 0 0 0

 4.3. Simulation 2

 In BGAS, we need to calculate the predictive variances of unsampled design points and the
 correlation coefficients between the selected design point and all the unsampled points in order to
 select next samples. When the design space is huge, it might become unrealistic to select samples
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 from the whole design space because of the calculation burden. In Simulation 2, we illustrate
 how to implement BGAS and evaluate its performance when the design space is too large to
 sample from. Also, we use different ri2 in Algorithm 3.1 to show how the choice of ?2 affects
 predictive performance. We first use simple random sampling to choose a proportion of all design
 points as candidate points and then use BGAS to sample from the candidate design space. For the
 simulation, we modify the formula in Simulation 1 so that there are seven covariates and each
 variable has five levels. The simulation function is

 y = 9e-30-*i)V3(1-*2 V3(1-*3)2 - 0.65e-2(*4"*5) + 2sin2(x67r) - 1.77x7 + e,

 where e is the normally distributed random error with signal to noise ratio of 4 (here, the variance
 is approximately 0.59). Thus, there are a total of 78,125 design points. In the simulation, we start

 with 30 design points. We randomly choose 8,000 design points to form a candidate design space
 from which we apply BGAS each time for an additional 5,10,15,20,30, or 50 design points until
 we get at least 200 sample points. At each iteration, we randomly select another 5,000 sample
 points as the test set to evaluate the predictive performance of the models. The process is repeated
 30 times to account for randomness.

 The upper panel of Figure 6 compares BGAS, SRS, and Maximin with BART as the predictive
 model. In BGAS, we choose ri2 = 10. The upper left plot shows the means of predictive R2 and the

 50 100 150 200 50 100 150 200

 Sample Size Sample Size

 Figure 6: For Simulation 2, upper panel compares BGAS with SRS and Maximin, lower panel compares
 BGAS with different n2s. Left panel shows the mean predictive R2 of each method as the sample size
 increases. Right panel shows variance of the predictive R2 of 30 repetitions. [Color figure can be viewed in

 the online issue, which is available at www.interscience.wiley.com.]

 DOI: 10.1002/cjs  The Canadian Journal of Statistics/La revue canadienne de statistique

This content downloaded from 130.39.62.90 on Tue, 30 May 2017 13:49:50 UTC
All use subject to http://about.jstor.org/terms



 150  YU ET AL  Vol. 38, No. 1

 upper right plot shows the corresponding variances. We find that BGAS uniformly outperforms
 SRS and Maximin by showing higher predictive R2 but lower variances of these R2. The lower
 panel of Figure 6 compares predictive performance when n2 is chosen at different values. One
 can see that the differences in PR2 and their variances are negligible when n2 ranges from 5 to
 30. These changes become significant when n2 is 50, where PR2 is lower with a higher variance.

 Note that theoretically, there should be a little gain in PR2 or predictive accuracy when n2 is
 small. But a smaller n2 results in a greater number of times to run the BGAS algorithm and to
 initiate a new simulation process. To draw the same number of simulations, the time to run the

 BGAS algorithm and to initiate a new simulation process is approximately inversely proportional
 to n2. In designing the BGAS algorithm, we try to best approximate the posterior variance so that
 we can choose multiple design points without rerunning models or incurring too much error. As
 in this simulation, the predictive error is approximately the same when n2 is between 5 and 30.
 In practice, we can set up a cost function on both time and the loss of predictive accuracy when
 n2 > 1, then solve for the best n2.

 5. CONCLUSIONS AND DISCUSSSIONS

 Architectural design space exploration has recently become very challenging because of the
 large number of parameters introduced by advanced circuit integration technology. In this paper
 we propose an adaptive design scheme with BART being the predictive model, aiming to
 efficiently sample a small proportion of the design space with high predictive accuracy. Other
 predictive models that can estimate the uncertainty of prediction well can also be used in this
 sampling scheme. Compared with other methods in the literature, BART has the following
 advantages: (1) BART stochastically searches the model space and provides a simulation from the
 posterior distributions of interest, which can be readily used in the adaptive design; (2) tree-based
 methods are particularly well suited for the discrete (either ordinal or nominal variables) design
 space parameters; (3) BART can achieve extremely accurate predictions which has been proven
 empirically and theoretically; (4) BART is highly robust with regard to the tuning parameter
 values so that the practitioners need minimal knowledge to tune the model; (5) BART also comes
 with model interpretation tools which can help us understand the underlying mechanism. In this
 paper, we demonstrate the success of BGAS using a real data set and two simulation studies.
 Other statistical modeling methods such as Gaussian Process regression (Seo et al., 2000) and
 Treed Gaussian Process Models (Gramacy & Lee, 2008) are designed especially for computer
 experiments. As a future field of research, we will explore the possibility of using the Gaussian
 process at the tree terminal nodes in BART. And then the proposed sampling scheme could be
 used with the new model. Most likely, the predictive performance could be further improved.

 The proposed method can also be used to find optimal designs from huge spaces. Instead of
 randomly selecting candidate design points, we choose design points that are predicted of extreme
 values. Since BART automatically provides a posterior interval prediction, we could sample all
 the points whose posterior intervals overlap that of the predicted extreme value.

 APPENDIX

 Proof of Lemma 3.1. Before yi is sampled, by Assumption 2, the predictive variance for yi and
 yi is

 cov(yi,y2)

 var(yi)

 var(y2)

 var(/o) + var(/i) + var(^i) = \

 var(/o) + var(/2) + var(e2) = 2

 var(/o) = \ 2
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 After y\ is observed, we have var(/o) = 0 by Assumption 1, while the posterior variance var(/2)
 and var(62) would not change because of their independence to y\. Thus, the posterior variance

 for y2 becomes var(/2) + varfe) ? \ ? var(/o) ? a\~ P^i^i- ?

 Proof of Lemma 3.2.

 1. For the linear model y = x? + e, where ~ N(0, 2). Assume Xo is the design matrix used
 to build the linear model, and x; is a design point not in Xo. Then after x7 is sampled, the
 predictive variance for design point x? becomes

 var/ = xJ(XoX0 + xyx';)-1x;a2

 = [ ^ ^? - ;a + ;?( () )-1 7?)-1( )-1 ; ;?( )-1 ?] 2
 ;( () )-1 ; ;?( ) )-1 ? ^ ^ 2  1 -

 (x;(X?)X0)-1x?)(l + ^ ^ )-^,)

 2 -^
 PlJ 2 + 2

 2. Let x? = argminy{xy(XQXo) ;}. After 7? is sampled, the predictive variance for x?
 becomes

 var?  1 - Pkj x a2 + aj

 >4 1 -

 2 ?2  .2^2

 2 + 2  a2 + 2'
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