
Ensemble methods – Bagging and Random Forest

Bin Li

IIT Lecture Series

1 / 36

Model selection vs. model combination

I Model selection:
I Many models, which one to choose?
I Goal: good interpretability and/or better predictive

performance.

I Model combination:
I Many models, how to combine?

I Equally averaging (bagging, random forest).
I Exponentially weighted model averaging (adaboost)
I Weight optimization using stacking.

I Goal: Better predictive performance.

I Takeaway message:
I Model selection: works better if one model is significantly

more accurate than other models – no ambiguity of which
single model is better.

I Equally weighted averaging: works better if all models have
similar prediction accuracy, but are different – some ambiguity
of which single model is better.

2 / 36

Rashomon effects

I Rashomon is a wonderful Japanese movie
in which four people, from different
vantage points, witness an incident in
which one person dies and another is
supposedly raped. When they come to
testify in court, they all report the same
facts, but their stories of what happened
are very different.

I In statistics, “Rashomon Effect” means
there is often a multitude of different
models giving about the same minimum
error rate.

I The effect is most obvious in selecting the
best model on high dimensional data,
such as subset selection in linear
regression.

Figure from wikipedia.org.

3 / 36

Rashomon effects (cont.)

I Suppose there are 30 variables and we want to find the best
five variable linear regressions.

I There are about 140,000 five-variable subsets in competition.
Usually we pick the one with the lowest RSS (on training or
test set if available). But generally there are many
five-variable equations that have RSS within 1.0% of the
lowest RSS. For example (see Breiman 1996):

I Picture 1: y = 2.1 + 3.8x3 − 0.6x8 + 83.2x12 − 2.1x17 + 3.2x27

I Picture 2:
y = −8.9 + 4.6x5 + 0.01x6 + 12.0x15 + 17.5x21 + 0.2x22

I Picture 3:
y = −76.6 + 9.3x2 + 22.0x7 − 13.2x8 + 3.4x11 + 7.2x28

Which one is better? The problem is that each one tells a
different storyabout which variables are important.

I It also occurs with trees and neural nets, etc.

I The Rashomon Effect is closely related to model instability.

4 / 36

A simulation example of regression tree

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

X

Y

A single tree

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

X
Y

Average of 100 trees

I Single tree uses the whole dataset. RMSE: 0.152.

I 100 trees use bootstrap samples. RMSE: 0.130.

5 / 36

A simulation example of classification tree

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

+
+ +
+ + +
+ + + +
+ + + + +
+ + + + + +
+ + + + + + +
+ + + + + + + +
+ + + + + + + + +
+ + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + + +
+ + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

o o
o o

o o
o o

o o
o o

o o
o o

o o
o o

o o
o o

o o
o o

o o
o o

o o
o o

o o
o o

o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o
o o o o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o

o o o o o o o o o o
o o o o o o o o o

o o o o o o o o
o o o o o o o

o o o o o o
o o o o o

o o o o
o o o

o o
o

A single tree

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Averaged trees
Voted trees

100 trees

I Single tree misclassification rate: 0.060.

I 100 trees misclassification rates: 0.034 (voted), 0.035
(averaged).

6 / 36

Bagging (Bootstrap Aggregating)

I Breiman, “Bagging Predictors”, Machine Learning, 1996.

I Fit classification or regression models to bootstrap samples
from the data and combine by voting (classification) or
averaging (regression/classification).

I When does it work?
I Unstable models with similar performance.

I Stable models: e.g. linear regression, logistic regression,
pruned trees.

I Unstable models: e.g. unpruned trees, neural network, subset
selection in regression and classification.

I Model is a nonlinear or adaptive function of the data.
I Parametric bootstrapping in previous example converges to

original fit with B →∞.

I How does it work? Variance reduction through averaging. No
effects on bias.

7 / 36

Variance reduction in Bagging

I Set of estimators: f̂1(x), f̂2(x), . . . , f̂k(x)

I Simple average: f̂ B(x) = 1
k

∑k
i=1 f̂i (x)

I Variance:

Var(f̂ B(x)) = E
(
f̂ B(x)− Ef̂ B(x)

)2

= E

 1

k2

(
k∑

i=1

f̂i (x)− Ef̂i (x)

)2


=
1

k2

k∑
i=1

Var
{
f̂i (x)

}
+

1

k2

∑
i 6=j

Cov
{
f̂i (x), f̂j(x)

}
I Assume:

Covariance constant: Cov
{
f̂i (x), f̂j(x)

}
≈ ρσ2

Variance constant: Var
{
f̂i (x)

}
≈ σ2

Then: Var(f̂ B(x)) ≈ ρσ2 + 1−ρ
B σ2

8 / 36

Example: bagging with trees

I Generate a sample of size N = 30, with two class and p = 5
features

I Each feature is generated from N(0, 1)

I Pairwise correlation is 0.95

I The response Y was generated according to

Pr(Y = 1|x1 ≤ 0.5) = 0.2 and Pr(Y = 1|x1 > 0.5) = 0.8

I Bayes error is 0.2

I Test sample size is 2000

I Classification trees were fitted on training data and 200
bootstrap samples

9 / 36

Example: bagging with trees (cont.)

284 8. Model Inference and Averaging

|

x.1 < 0.395

0 1

0
1 0

1
1 0

Original Tree

|

x.1 < 0.555

0

1 0

0
1

b = 1

|

x.2 < 0.205

0 1

0 1

0 1

b = 2

|

x.2 < 0.285

1 1
0

1 0

b = 3

|

x.3 < 0.985

0

1

0 1

1 1

b = 4

|

x.4 < −1.36

0

1
1 0

1
0

1 0

b = 5

|

x.1 < 0.395

1 1 0 0

1

b = 6

|

x.1 < 0.395

0 1

0 1

1

b = 7

|

x.3 < 0.985

0 1

0 0

1 0

b = 8

|

x.1 < 0.395

0

1

0 1
1 0

b = 9

|

x.1 < 0.555

1 0

1

0 1

b = 10

|

x.1 < 0.555

0 1

0

1

b = 11

FIGURE 8.9. Bagging trees on simulated dataset. The top left panel shows the
original tree. Eleven trees grown on bootstrap samples are shown. For each tree,
the top split is annotated.

Figure from EOSL 2009.

10 / 36

Example: bagging with trees (cont.)
8.7 Bagging 285

0 50 100 150 200

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

Number of Bootstrap Samples

Te
st

 E
rr

or

Bagged Trees

Original Tree

Bayes

Consensus
Probability

FIGURE 8.10. Error curves for the bagging example of Figure 8.9. Shown is
the test error of the original tree and bagged trees as a function of the number of
bootstrap samples. The orange points correspond to the consensus vote, while the
green points average the probabilities.

bagging helps under squared-error loss, in short because averaging reduces
variance and leaves bias unchanged.

Assume our training observations (xi, yi), i = 1, . . . , N are indepen-
dently drawn from a distribution P, and consider the ideal aggregate es-
timator fag(x) = EP f̂∗(x). Here x is fixed and the bootstrap dataset Z∗

consists of observations x∗
i , y

∗
i , i = 1, 2, . . . , N sampled from P. Note that

fag(x) is a bagging estimate, drawing bootstrap samples from the actual
population P rather than the data. It is not an estimate that we can use
in practice, but is convenient for analysis. We can write

EP [Y − f̂∗(x)]2 = EP [Y − fag(x) + fag(x)− f̂∗(x)]2

= EP [Y − fag(x)]
2 + EP [f̂

∗(x)− fag(x)]
2

≥ EP [Y − fag(x)]
2. (8.52)

The extra error on the right-hand side comes from the variance of f̂∗(x)
around its mean fag(x). Therefore true population aggregation never in-
creases mean squared error. This suggests that bagging—drawing samples
from the training data— will often decrease mean-squared error.

The above argument does not hold for classification under 0-1 loss, be-
cause of the nonadditivity of bias and variance. In that setting, bagging a

Figure from EOSL 2009.
11 / 36

Why bagging trees and bagging in general

I Trees can capture complex interaction structures in the data.

I Trees can handle mix-type of data (categorical and numerical)
and miss values.

I With large depth, trees have relatively low bias but high
variance.

I If the underlying f (X) is smooth, bagging tends to reduce
bias by “sanding off” the corners of the step functions.

I Bagging is NOT limited to tree methods and bootstrap
samples (Buja and Stuetzle, 2006).

I Sometimes (not often) bagging does not work:
I Bagging is unstable with respect to the training set when

extreme outliers exist. It may actually increase variance.
I Bag a stable model may make it worse.
I sometime bagging can make bias worse (e.g. f (x) is a step

function).

12 / 36

Bagging CART on benchmark datasets (Breiman, 1996)
I Classification problems:

Dataset # cases # vars # classes CART(%) Bagged CART(%) Decrease (%)
Waveform* 300 (1800) 21 3 29.1 19.3 34
Heart 1395 16 2 4.9 2.8 43
Breast Cancer 699 9 2 5.9 3.7 37
Ionosphere 351 34 2 11.2 7.9 29
Diabetes 768 8 2 25.3 23.9 6
Glass 214 9 6 30.4 23.6 22
Soybean 683 35 19 8.6 6.8 21

I Regression problems:

Dataset # cases # vars CART Bagged CART Decrease
Boston housing 506 12 20.0 11.6 42%
Ozone 330 8 23.9 18.8 21%
Friedman #1* 200(1000) 10 11.4 6.1 46%
Friedman #2* 200(1000) 10 31,100 22,100 29%
Friedman #3* 200(1000) 10 0.0403 0.0242 40%

I For all real datasets, 90% randomly selected as training set, rest as test set. All
the results are based on 100 random splits.

I For large data sets:

Dataset Size #Var #classes CART(%) Bagged CART(%) Decrease (%)
Letter 15,000(5,000) 16 26 12.6 6.4 49
Satellite 4435(2,000) 36 6 14.8 10.3 30
Shuttle 43,500(14,500) 9 7 0.062 0.014 77
DNA 2,000(1,186) 60 3 6.2 5.0 19

13 / 36

Wisdom of Crowds

I Assume weak classifiers are independent

I S(x) ∼ Bin(k , p) and Pr(S > k/2)→ 1 as k gets large.

I Known as “Wisdom of Crowds” outside statistics (Surowiecki,
2004).

0.
2

0.
4

0.
6

0.
8

1.
0

Number of classifiers: k

P
ro

ba
bi

lit
y

101 102 103 104 105

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

Bin(k,p=0.51)

I Collective knowledge of a diverse and independent body of
people typically exceeds the knowledge of any single
individual, and can be harnessed by voting.

14 / 36

Random forest – a refinement of bagged trees

I Grow a forest of many trees. In R the randomForest

package, the default number of trees is 500.

I Just like bagging, every tree in the random forest is grown on
a bootstrap sample from the training data.

I At each node of a tree:
I Randomly select m variables at random out of all M possible

variables (independently for each node).
I Find the best split from the randomly selected m variables (the

splitting variable is often sub-optimal).

I Grow the trees to maximum depth without pruning.

I Use majority vote (classification) or average (regression) to
get predictions for new data.

I Random forest tries to improve on bagging by further
decorrelating the trees.

I Like bagging, improvement in prediction obtained by random
forests is mainly a result of variance reduction.

15 / 36

Can a fully grown random tree be predictive?

I With a large number of predictors the eligible predictor set
will be quite different from node to node.

I Important variables will make it into the tree (eventually).

I Explains in part why the trees must be grown out to absolute
maximum full size

I A single tree in an RF forest can be predictive because it is a
form of nearest neighbor classifier, one of the oldest and
robust model-free machine learning technologies.

I To reach a node in the tree a record must satisfy the condition
at every parent (e.g. AGE>35, INCOME<60,
EDUCATION>12, CITY=YES etc.)

I Reaching a terminal node means being very similar to the
training records that occupy that node.

I The near neighbor predictor mechanism:
I Find historical record that looks as similar as possible to the

new record.
I Predict that new record behaves just like historical record.

16 / 36

Spam email example

I Response: spam or normal email.

I Input variables: relative frequencies of 57 most commonly
occurring words and punctuation marks in email message.

I Training set: 3065 obs (about 40% spams); test set: 1536 obs
(about 39% spams).

I Average percentage of words or characters in an email
message equal to the indicated word or character.

george you hp free ! re edu remove

spam 0.00 2.26 0.02 0.52 0.51 0.13 0.01 0.28
email 1.27 1.27 0.90 0.07 0.11 0.42 0.29 0.01

I Objective: predict the email is spam or not.

17 / 36

Spam email example

0 500 1000 1500 2000 2500

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0

Number of trees

Te
st

 e
rr

or

Bagging
RF

18 / 36

Choice of m

The inventors make the following recommendation

I For classification, the default value for m is b√pc and the
minimum node size is one

I For regression, the default value for m is bp/3c and the
minimum node size is five

Small m: low correlation (small variance) and large bias (if true f
is complex).
Large m: high correlation and low bias.

An example: Xj and ε are all iid Gaussian. 500 training sets of size
100. One test set of size 600.

Y =
1√
50

50∑

j=1

Xj + ε

19 / 36

Choice of m (cont.)

15.4 Analysis of Random Forests 599

• conditional on Z: due to the bootstrap sampling and feature sampling
at each split, and

• a result of the sampling variability of Z itself.

In fact, the conditional covariance of a pair of tree fits at x is zero, because
the bootstrap and feature sampling is i.i.d; see Exercise 15.5.

1 4 7 13 19 25 31 37 43 49

0.
00

0.
02

0.
04

0.
06

0.
08

Number of Randomly Selected Splitting Variables m

C
or

re
la

tio
n

be
tw

ee
n

Tr
ee

s

FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest
regression algorithm, as a function of m. The boxplots represent the correlations
at 600 randomly chosen prediction points x.

The following demonstrations are based on a simulation model

Y =
1√
50

50∑

j=1

Xj + ε, (15.8)

with all the Xj and ε iid Gaussian. We use 500 training sets of size 100, and
a single set of test locations of size 600. Since regression trees are nonlinear
in Z, the patterns we see below will differ somewhat depending on the
structure of the model.

Figure 15.9 shows how the correlation (15.6) between pairs of trees de-
creases as m decreases: pairs of tree predictions at x for different training
sets Z are likely to be less similar if they do not use the same splitting
variables.

In the left panel of Figure 15.10 we consider the variances of single tree
predictors, VarT (x; Θ(Z)) (averaged over 600 prediction points x drawn
randomly from our simulation model). This is the total variance, and can be

Figure from EOSL 2009.

20 / 36

Choice of m (cont.)

600 15. Random Forests

decomposed into two parts using standard conditional variance arguments
(see Exercise 15.5):

VarΘ,ZT (x; Θ(Z)) = VarZEΘ|ZT (x; Θ(Z)) + EZVarΘ|ZT (x; Θ(Z))

Total Variance = VarZf̂rf(x) + within-Z Variance
(15.9)

The second term is the within-Z variance—a result of the randomization,
which increases as m decreases. The first term is in fact the sampling vari-
ance of the random forest ensemble (shown in the right panel), which de-
creases as m decreases. The variance of the individual trees does not change
appreciably over much of the range of m, hence in light of (15.5), the vari-
ance of the ensemble is dramatically lower than this tree variance.

0 10 20 30 40 50

1.
80

1.
85

1.
90

1.
95

Single Tree

m

V
ar

ia
nc

e

Within Z
Total

0 10 20 30 40 50

0.
65

0.
70

0.
75

0.
80

0.
85

Random Forest Ensemble

m

M
ea

n
S

qu
ar

ed
 E

rr
or

 a
nd

 S
qu

ar
ed

 B
ia

s

V
ar

ia
nc

e

Mean Squared Error
Squared Bias
Variance 0.

0
0.

05
0.

10
0.

15
0.

20
FIGURE 15.10. Simulation results. The left panel shows the average variance of
a single random forest tree, as a function of m. “Within Z” refers to the average
within-sample contribution to the variance, resulting from the bootstrap sampling
and split-variable sampling (15.9). “Total” includes the sampling variability of
Z. The horizontal line is the average variance of a single fully grown tree (with-
out bootstrap sampling). The right panel shows the average mean-squared error,
squared bias and variance of the ensemble, as a function of m. Note that the
variance axis is on the right (same scale, different level). The horizontal line is
the average squared-bias of a fully grown tree.

15.4.2 Bias

As in bagging, the bias of a random forest is the same as the bias of any
of the individual sampled trees T (x; Θ(Z)):

Figure from EOSL 2009.

21 / 36

OOB error in random forest
I In bootstrapping, the probability of a case not being picked

into the bootstrap sample is about one third.

lim
n→∞

(
1− 1

n

)n

=
1

e
≈ 0.368

I About 1/3 of the trees in RF did not use a particular case in
fitting. We say that case is “out of bag” or “OOB” for those
trees.

I In RF, the predictions of OOB samples from these trees
provides an estimate of generalization error on new data,
similar to K -fold CV.

I RF can be fit in one sequence, with “cross-validation” being
performed along the way.

I Once the OOB error stabilizes, the training process can be
terminated.

I OOB samples are also used to estimate relative variable
importance.

22 / 36

OOB rrror in spam data

0 500 1000 1500 2000 2500

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0

Number of trees

Te
st

 e
rr

or

OOB_RF
RF

23 / 36

When RF performs poorly
I When the number of variables is large, but the fraction of relevant

variables small, random forests are likely to perform poorly with small m.
Because, at each split the chance can be small that the relevant variables
will be selected.

I A simulation example: 50 simulations with a training sample of 300, and
a test sample of 500

15.4 Analysis of Random Forests 597

Te
st

 M
is

cl
as

si
fic

at
io

n
E

rr
or

0.
10

0.
15

0.
20

0.
25

0.
30

Bayes Error

(2, 5) (2, 25) (2, 50) (2, 100) (2, 150)

Number of (Relevant, Noise) Variables

0.52 0.34 0.25 0.19 0.15

Random Forest
Gradient Boosting

FIGURE 15.7. A comparison of random forests and gradient boosting on prob-
lems with increasing numbers of noise variables. In each case the true decision
boundary depends on two variables, and an increasing number of noise variables
are included. Random forests uses its default value m =

√
p. At the top of each

pair is the probability that one of the relevant variables is chosen at any split.
The results are based on 50 simulations for each pair, with a training sample of
300, and a test sample of 500.

15.4 Analysis of Random Forests

In this section we analyze the mechanisms at play with the additional
randomization employed by random forests. For this discussion we focus
on regression and squared error loss, since this gets at the main points,
and bias and variance are more complex with 0–1 loss (see Section 7.3.1).
Furthermore, even in the case of a classification problem, we can consider
the random-forest average as an estimate of the class posterior probabilities,
for which bias and variance are appropriate descriptors.

15.4.1 Variance and the De-Correlation Effect

The limiting form (B → ∞) of the random forest regression estimator is

f̂rf(x) = EΘ|ZT (x; Θ(Z)), (15.4)

where we have made explicit the dependence on the training data Z. Here
we consider estimation at a single target point x. From (15.1) we see that

Figure from EOSL 2009.

24 / 36

Overfitting and the effect of tree size598 15. Random Forests

50 30 20 10 5

1.
00

1.
05

1.
10

Minimum Node Size

M
ea

n
S

qu
ar

ed
 T

es
t E

rr
or

Shallow Deep

FIGURE 15.8. The effect of tree size on the error in random forest regres-
sion. In this example, the true surface was additive in two of the 12 variables,
plus additive unit-variance Gaussian noise. Tree depth is controlled here by the
minimum node size; the smaller the minimum node size, the deeper the trees.

Varf̂rf(x) = ρ(x)σ2(x). (15.5)

Here

• ρ(x) is the sampling correlation between any pair of trees used in the
averaging:

ρ(x) = corr[T (x; Θ1(Z)), T (x; Θ2(Z))], (15.6)

where Θ1(Z) and Θ2(Z) are a randomly drawn pair of random forest
trees grown to the randomly sampled Z;

• σ2(x) is the sampling variance of any single randomly drawn tree,

σ2(x) = VarT (x; Θ(Z)). (15.7)

It is easy to confuse ρ(x) with the average correlation between fitted trees
in a given random-forest ensemble; that is, think of the fitted trees as N -
vectors, and compute the average pairwise correlation between these vec-
tors, conditioned on the data. This is not the case; this conditional corre-
lation is not directly relevant in the averaging process, and the dependence
on x in ρ(x) warns us of the distinction. Rather, ρ(x) is the theoretical
correlation between a pair of random-forest trees evaluated at x, induced
by repeatedly making training sample draws Z from the population, and
then drawing a pair of random forest trees. In statistical jargon, this is the
correlation induced by the sampling distribution of Z and Θ.

More precisely, the variability averaged over in the calculations in (15.6)
and (15.7) is both

Figure from EOSL 2009.

25 / 36

Measure of relative variable importance

I For a single decision tree T , Breiman et al. (1984) proposed

I2
h(T) =

T−1∑

t=1

î2t I (v(t) = h)

as a measure of relevance for each predictor variable Xh.

I The sum is over the T − 1 internal nodes of the tree.

I At each internal node, the variable chosen is the one that
gives maximal estimated improvement î2t in squared error risk
over that for a constant fit over the entire region.

I The squared relative importance of variable Xh is the sum of
such squared improvements (weighted by node size) over all
internal nodes for which it was chosen as the splitting variable.

I This importance measure is easily generalized to ensemble
trees by simply averaged over the trees.

26 / 36

Another measure of variable importance

I Random forests also use the OOB samples to construct a
different variable importance measure based on the prediction
strength of each variable.

I When the bth tree is grown, the OOB samples are passed
down the tree, and the prediction accuracy is recorded.

I The values for the jth variable are randomly permuted in the
oob samples, and the accuracy is again computed.

I The decrease in accuracy as a result of this permuting is
averaged over all trees, and is used as a measure of the
importance of variable j in the random forest.

I The variable importance from the permutation approach is
often more uniform over the variables.

27 / 36

Relative variable importance in Spam example

over
pm
font
receive
;
email
650
internet
(
will
money
meeting
business
000
hpl
you
re
1999
our
total
your
george
edu
free
longest
average
hp
$
remove
!

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

30 40 50 60 70 80 90
MeanDecreaseAccuracy

650
;
meeting
over
mail
receive
re
email
all
will
(
internet
1999
business
hpl
edu
george
000
you
our
money
total
hp
longest
average
your
free
remove
$
!

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150
MeanDecreaseGini

Relative variable importance

MeanDecreaseAccuracy is based on the permutation approach.

MeanDecreaseGini is based on the traditional rough-and-ready approach.

28 / 36

Partial dependence plot

I Consider S ⊂ {1, 2, . . . , p} and C is the complement of S. Partial
dependence of f (X) on XS is its marginal average of f estimated by

f̄S(XD) =
1

N

N∑
i=1

f (XS , xiC)

where {xiC}N1 are the values of XC occurring in data.

I Partial dependence function defined above represents the effect of XS on
f (X) after accounting for the average effects of the other variables XC on
f (X) (not ignoring XC).

I Useful when the variables in XS do not have strong interactions with
those in XC .

I The trend/shape of the partial dependence plot is more meaningful than
the values on vertical axis.

I For K -classification, there are K partial dependence, one for each class.
The plot can help reveal how the log-odds of realizing that class depend
on the respective input variables.

29 / 36

Partial dependence plots in Spam example

0.0 0.5 1.0 1.5 2.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Relative frequency of !

P
ar

tia
l d

ep
en

de
nc

e

0.0 0.5 1.0 1.5 2.0
−

1.
5

−
1.

0
−

0.
5

Relative frequency of george

P
ar

tia
l d

ep
en

de
nc

e

30 / 36

Others

I The proximity plot gives an indication of which observations
are effectively close together in the eyes of the RF.

I RF impute the missing values based on proximity measure.

I RF can also do the unsupervised learning such as clustering.

I randomForest package in R, maintained by Andy Liaw,
available from the CRAN website

I FORTRAN code written by Leo Breiman and Adele Cutler is
freely available at
http://www.math.usu.edu/~adele/forests/

I The Weka machine learning archive
http://www.cs.waikato.ac.nz/ml/weka/

at Waikato University, New Zealand, offers a free java

implementation of random forests

31 / 36

http://www.math.usu.edu/~adele/forests/
http://www.cs.waikato.ac.nz/ml/weka/

Other ideas to generate ensemble candidates

I Use different learning algorithms (e.g. different loss functions).
I Use different variations of data-processing.

I different transformations of features
I different subsets (selection) of features

I Use different tuning parameter configurations.
I e.g. varying span values for loess smoother or K for nearest

neighbor.

I Use randomization:
I randomly select training data (e.g. bagging)
I randomly select features or randomly select basis functions
I randomization the algorithm especially if it contains some

combinatoric elements (e.g. random forest).

32 / 36

A simulation example

I y = f (x) + ε, where SNR=1/4. Function f is
the red curve on the right plot.

I Data: randomly generate 500 obs (X has 100
levels from 1 to 100). Each level has 5
replicates.

I Fit a cubic splines on each bootstrap data

with

I Method 1: df=5 (i.e. 2 interior knots).

I Method 2: randomly select df from a

Unif[5, 50]

I Method 3: df=50 (i.e. 47 interior

knots)

I Bagging B = 100 times. Average the
predicted values on x = 1, . . . , 100 for each
method.

I RMSE for Method 1-3 are 0.47, 0.29 and
0.40, respectively.

0 20 40 60 80 100

−
2

0
2

4
6

x

y

33 / 36

A simulation example (cont.)

0 20 40 60 80 100

−
1

0
1

2
3

4
5

X

Y
DF=5

0 20 40 60 80 100

−
1

0
1

2
3

4
5

X

Y

DF=5−50

0 20 40 60 80 100

−
1

0
1

2
3

4
5

X

Y

DF=50

●●
●●●●●●●●●
●

●

●

●

DF5 DF5_50 DF50

0.
4

0.
6

0.
8

1.
0

R
M

S
E

34 / 36

The success of ensemble methods

I “What are the best of the best techniques at winning Kaggle
competitions?

I Ensembles of decision trees
I Deep learning

account for 90% of top 3 winners – by Jeremy Howard, Chief
Scientist of Kaggle, in KDD 2013.

I The first place winner of the “Best Classification Challenge”
of the 2013 IEEE GRSS Data Fusion Contest used ensemble
classification methods to combine multiple classifiers. See
http://hyperspectral.ee.uh.edu/?page_id=695

I “Lessons from the Netflix Prize Challenge” by Robert Bell and
Yehuda Koren.

I “We found no perfect model. Instead, our best results came
from combining predictions of models that complemented each
other. While our winning entry, a linear combination of many
prediction sets, achieved an improvement over Cinematch of
8.43%, the best single set of predictions reached only 6.57%.”

35 / 36

http://hyperspectral.ee.uh.edu/?page_id=695

Reference

I Bühlmann P. and B. Yu (2002) Analyzing Bagging, The
Annals of Statistics, 30, 927-961.

I Buja, A. and W. Stuetzle (2006) Observations on Bagging,
Statistica Sinica, 16(2), 323-352.

I Hastie, T., Tibshirani, R. and Friedman, J. (2009) The
Elements of Statistical Learning, Springer.

I Leo Breiman (1996) Bagging predictors, Machine Learning,
24: 123-140.

I Leo Breiman (2001) Random forest, Machine Learning, 45:
5-32.

36 / 36

	Reference

