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Classification tree in iris example
The famous iris data set gives the measurements in centimeters of
the variables sepal length and width and petal length and width,
respectively, for 50 flowers from each of 3 species of iris. The
species are Iris setosa, versicolor, and virginica.
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50/0/0

versicolor
0/49/5

virginica 
0/1/45

0.5 1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

Petal width

P
et

al
 le

ng
th

●●
●
●
●

●

●
●
●

● ●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

● ●
●
●
●●

●●
●
●

●
●

●
●
●

●●●

●

●

●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●

●
●

●

●

●

setosa
versicolor
virginica

2 / 28



Regression tree in baseball players’ salary example
I Data: 322 major league baseball players on 20 variables
I Response: Salary is measured in 1000’s, and log-transformed

to make it more bell-shaped.
I Variable: Years (number of years played in the major leagues)

and Hits (the number of hits made in the previous year).

|Years< 4.5

Hits< 117.55.107
n=90

5.998
n=90

6.74
n=83
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CART

I Some tree-related terms: root, leaf, internal node, tree size,
tree depth.

I Tree partitions the feature space into a set of rectangles, and
fit a simple model in each leaf (terminal node).

I a constant in regression
I a class in classification

I A tree is constructed in two steps:
I growing: binary split on each region repeatedly.
I pruning: weakest link pruning (collapse internal node).

I A key advantage of the CART is its interpretability. The
feature space partition is fully described by a single tree (a
nice graphical representation).

I CART is emplemented in rpart library in R.

I A major competitor of CART is C5.0
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Algorithm of building a regression tree
8.1 The Basics of Decision Trees 309

Algorithm 8.1 Building a Regression Tree

1. Use recursive binary splitting to grow a large tree on the training
data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of α.

3. Use K-fold cross-validation to choose α. That is, divide the training
observations into K folds. For each k = 1, . . . ,K:

(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.

(b) Evaluate the mean squared prediction error on the data in the
left-out kth fold, as a function of α.

Average the results for each value of α, and pick α to minimize the
average error.

4. Return the subtree from Step 2 that corresponds to the chosen value
of α.

For each value of α there corresponds a subtree T ⊂ T0 such that

|T |∑

m=1

∑

i: xi∈Rm

(yi − ŷRm)2 + α|T | (8.4)

is as small as possible. Here |T | indicates the number of terminal nodes
of the tree T , Rm is the rectangle (i.e. the subset of predictor space) cor-
responding to the mth terminal node, and ŷRm is the predicted response
associated with Rm—that is, the mean of the training observations in Rm.
The tuning parameter α controls a trade-off between the subtree’s com-
plexity and its fit to the training data. When α = 0, then the subtree T
will simply equal T0, because then (8.4) just measures the training error.
However, as α increases, there is a price to pay for having a tree with
many terminal nodes, and so the quantity (8.4) will tend to be minimized
for a smaller subtree. Equation 8.4 is reminiscent of the lasso (6.7) from
Chapter 6, in which a similar formulation was used in order to control the
complexity of a linear model.
It turns out that as we increase α from zero in (8.4), branches get pruned

from the tree in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of α is easy. We can select a value of
α using a validation set or using cross-validation. We then return to the
full data set and obtain the subtree corresponding to α. This process is
summarized in Algorithm 8.1.

Figure from ISLR 2013.
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How to grow a regression tree in Step 1?

I How to split? Binary split (multiway splits fragment the data
too fast, leaving insufficient data at next level down).

I Where to split? Find the variable j and splitting point s to
minimize

∑

xi∈R1(j ,s)

(yi − ĉ1)2 +
∑

xi∈R2(j ,s)

(yi − ĉ2)2

I What constant should be used for each region? Use the
average of yi in the region Rm to minimize SSE.

I Repeat the splitting process on each of the two resulted
regions till some stopping criterion is met.

I We can control the tree structure by the following options in
rpart.control in R.

I minsplit: the minimum size for a node to split.
I minbucket: the minimum size for a terminal node (leaf size).
I maxdepth: maximum depth of any node of the final tree, with

the root node counted as depth 0.
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Baseball player example

|Years< 4.5

Years< 3.5

Hits< 114

Hits>=42

Hits< 106

Hits< 117.5

Years< 6.5

Hits< 50.5

4.638
n=36

5.188
n=7

5.264
n=19

5.316
n=14

5.85
n=14

5.689
n=26

5.73
n=12

6.215
n=52

6.74
n=83

|Years< 4.5

Years< 3.5

Hits< 114

Hits< 117.5

Years< 6.5

Hits< 50.54.727
n=43

5.264
n=19

5.583
n=28

5.689
n=26

5.73
n=12

6.215
n=52

6.74
n=83

fit1 <- rpart(log(Salary) ~ Hits + Years, data=Hitters)

fit2 <- rpart(log(Salary) ~ Hits + Years, data=Hitters,

control = rpart.control(minbucket=10, minsplit=30))
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How to prune a regression tree in Step 2?

I A very large tree often overfit the data, while a small tree
might not capture the important structure.

I Tree size |T | is a tuning parameter governing the model
complexity and should be adaptively chosen from the data.

I Cost complexity criterion:

Cα(T ) =

|T |∑

m=1


 ∑

xi∈Rm

(yi − ĉm)2


 + α|T |

I For each α, find a subtree Tα (collapse any number of
internal nodes) to minimize Cα(T )

I large (small) α result in small (large) trees.

I Estimate the value of α through cross-validation.

8 / 28



Revisit baseball player example

I First, randomly divided the data set in half, yielding 132/131
obs. in training/test sets.

I Built a large regression tree on the training data using nine of
the features.

I Varied α in order to create subtrees with different size of trees.

I Performed six-fold cross-validation in order to estimate the
cross-validated MSE of the trees as a function of α.

I We can see the CV error is a reasonable approximation of the
test error (on slide 12).

I The unpruned regression tree is shown on next slide.

I The optimal tree that minimizes both CV and test errors is
shown on Slide 3 with only three leafs.

9 / 28



Unpruned tree in baseball player example310 8. Tree-Based Methods

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5
Runs < 47.5

Walks < 52.5

RBI < 80.5
Years < 6.5

5.487

6.407 6.549

4.622 5.183
5.394 6.189

6.015 5.571

6.459 7.007
7.289

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression
tree on the Hitters data, using nine of the features. First, we randomly
divided the data set in half, yielding 132 observations in the training set
and 131 observations in the test set. We then built a large regression tree
on the training data and varied α in (8.4) in order to create subtrees with
different numbers of terminal nodes. Finally, we performed six-fold cross-
validation in order to estimate the cross-validated MSE of the trees as
a function of α. (We chose to perform six-fold cross-validation because
132 is an exact multiple of six.) The unpruned regression tree is shown
in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a
function of the number of leaves,2 while the orange curve indicates the
test error. Also shown are standard error bars around the estimated errors.
For reference, the training error curve is shown in black. The CV error
is a reasonable approximation of the test error: the CV error takes on its

2Although CV error is computed as a function of α, it is convenient to display the
result as a function of |T |, the number of leaves; this is based on the relationship between
α and |T | in the original tree grown to all the training data.

Figure from ISLR 2013.
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CV errors vs. tree size 8.1 The Basics of Decision Trees 311
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FIGURE 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of termi-
nal nodes in the pruned tree. Standard error bands are displayed. The minimum
cross-validation error occurs at a tree size of three.

minimum for a three-node tree, while the test error also dips down at the
three-node tree (though it takes on its lowest value at the ten-node tree).
The pruned tree containing three terminal nodes is shown in Figure 8.1.

8.1.2 Classification Trees

A classification tree is very similar to a regression tree, except that it is
classification
treeused to predict a qualitative response rather than a quantitative one. Re-

call that for a regression tree, the predicted response for an observation is
given by the mean response of the training observations that belong to the
same terminal node. In contrast, for a classification tree, we predict that
each observation belongs to the most commonly occurring class of training
observations in the region to which it belongs. In interpreting the results of
a classification tree, we are often interested not only in the class prediction
corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.
The task of growing a classification tree is quite similar to the task of

growing a regression tree. Just as in the regression setting, we use recursive
binary splitting to grow a classification tree. However, in the classification
setting, RSS cannot be used as a criterion for making the binary splits.
A natural alternative to RSS is the classification error rate. Since we plan

classification
error rateto assign an observation in a given region to the most commonly occurring

class of training observations in that region, the classification error rate is
simply the fraction of the training observations in that region that do not
belong to the most common class:

Figure from ISLR 2013.
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Classification tree

I Response is a categorical variable with K ≥ 2 classes.

I The only changes in the tree algorithm is the criteria for
splitting nodes and pruning the tree

I CART uses the majority class (of a node) to classify the new
observation falls into this node.

I Three commonly used measures of node impurity in
classification trees: misclassification error, Gini index
(
∑

k p(1− p)) and cross-entropy (−∑
k p log p).

I For two classes, three measures are 1−max(p, 1− p),
2p(1− p) and −p log p − (1− p) log(1− p)

I Gini and entropy are differentiable and easier to optimize.
They are used to grow trees.

I Misclassification rate is used to guide pruning.
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Heart disease example

I Data consist of 303 patients who presented with chest pain.

I A binary outcome with Yes (the presence of heart disease
based on an angiographic test) and No (no heart disease).

I There are 13 predictors including Age, Sex, Chol (a
cholesterol measurement), and other heart and lung function
measurements. Three of them are qualitative: Sex, Thal
(Thalium stress test) and ChestPain. Rest are all numeric.

I An unpruned tree is shown on next slide.

I Cross-validation results in a tree with six terminal nodes (see
slide 17).
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Unpruned tree
8.1 The Basics of Decision Trees 313

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157
Chol < 244

MaxHR < 156
MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b

ChestPain:a

Oldpeak < 1.1

RestECG < 1

No
No
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No

No Yes
No No No Yes
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FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross
-validation error, training, and test error, for different sizes of the pruned tree.
Bottom Right: The pruned tree corresponding to the minimal cross-validation
error.

assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.

Thal:a indicates the the 1st value of the Thal variable (i.e. normal vs. fixed or
reversible defects).
ChestPain:bc indicates the 2nd and 3rd values of the ChestPain variable. Possible
values are typical angina, atypical angina, non-anginal pain, and asymptomatic.

Figure from ISLR 2013.
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A surprising phenomenon

I Some splits yield two leafs with the same predicted value (e.g.
the RestECG<1 split near the bottom right of the unpruned
tree.)

I The split is performed to increased node purity. All 9 patients
corresponding to the right-hand leaf have a response value of
Yes. 7 out of 11 patients corresponding to the left-hand leaf
have a response value of Yes.

I Does node purity matter? For a new patient belongs to the
right-hand leaf region, we can be pretty certain the response
value is Yes. In contrast, if a patient belongs to the region
given by the left-hand leaf, then the response value is
probably Yes, but we are much less certain.

I Although the split RestECG<1 does not reduce the
classification error, it improves the Gini index and the
cross-entropy, which are more sensitive to node purity.
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CV plot and pruned tree

8.1 The Basics of Decision Trees 313

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157
Chol < 244

MaxHR < 156
MaxHR < 145.5
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Ca < 0.5
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FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross
-validation error, training, and test error, for different sizes of the pruned tree.
Bottom Right: The pruned tree corresponding to the minimal cross-validation
error.

assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.

Left: CV, training, and test errors, for different sizes of the pruned tree.

Right: The pruned tree corresponding to the minimal CV error.

Figure from ISLR 2013.
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Trees vs. linear models

I CART has a very different flavor from the classical linear
models for regression and classification.

I Linear regression assumes a model of the form
f (x) = β0 +

∑
j βjxj

I Regression trees assume a model of the form
f (x) =

∑
k ck1x∈Rk

I Which is better? It depends on the problem at hand.
I If the relationship between the predictors and the response is

approximately linear and additive, linear model or GAM wins.
I If instead there is a highly non-linear and complex relationship

between X ’s and Y , tree may win.
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Trees vs. linear models

I Top row: the true decision
boundary is linear. A linear
boundary (left) outperforms a
decision tree (right) that
performs splits parallel to the
axes.

I Bottom row: the true decision
boundary is nonlinear. A linear
model is unable to capture the
true decision boundary (left),
whereas a decision tree (right) is
successful.

8.1 The Basics of Decision Trees 315
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FIGURE 8.7. Top Row: A two-dimensional classification example in which
the true decision boundary is linear, and is indicated by the shaded regions.
A classical approach that assumes a linear boundary (left) will outperform a de-
cision tree that performs splits parallel to the axes (right). Bottom Row: Here the
true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).

8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

▲ Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

▲ Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

▲ Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

▲ Trees can easily handle qualitative predictors without the need to
create dummy variables.

Figure from ISLR 2013.
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Regression tree in automobile example
I Data: 60 makes of cars based on April, 1990 issue of

Consumer Reports
I Response: mileage per gallon
I Variable: weight
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19 / 28



Automobile example (cont.)

> attach(car.test.frame)

> fit1 <- rpart(Mileage ~ Weight, car.test.frame)

> pred1 <- predict(fit1,car.test.frame)

> 1-sum((pred1 - Mileage)^2)/sum((Mileage-mean(Mileage))^2)

[1] 0.7427057

>

> fit.1 <- lm(Mileage ~ Weight, car.test.frame)

> summary(fit.1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.3493466 1.9794137 24.43 <2e-16 ***

Weight -0.0081928 0.0006728 -12.18 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.562 on 58 degrees of freedom

Multiple R-squared: 0.7189, Adjusted R-squared: 0.714

F-statistic: 148.3 on 1 and 58 DF, p-value: < 2.2e-16
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Issues about CART

I When splitting a predictor having q unordered values, there
are 2q−1 − 1 possible partitions into two groups. CART tends
to favor categorical predictors with many levels (large q) and
lead to severe overfitting. Such variables should be avoided or
collapsed to fewer levels.

I CART has two ways to handle missing values in predictor
variables.

I Categorical predictors: add a new category for “missing”
I Surrogate variables: for example, assume that the split

(‘age<40’, ‘age≥40’) has been chosen. The surrogate
variables are found by reapplying the partitioning algorithm
(without recursion) to predict the two categories ’age<40’ vs.
’age≥40’ using the other predictor variables.

I Trees have high variance. Often a small change in the data
can result in a very different tree. This instability is due to the
hierarchical nature of the process.
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Revisit baseball player example
I Both trees are generated using about 90% (290 obs.) of the

whole data.
I We can see the tree structure, splitting variables and splitting

points differ in two trees.

|CAtBat< 1322

CHits< 182

Hits>=39.5

CHits< 132

Walks< 59.5

CRuns< 217.5

AtBat< 369.5

CRBI< 277

CRBI< 312.5

4.51 4.979

5.481

5.405

5.801

6.105

6.169 6.645

6.418 7.024

|CAtBat< 1452

CHits< 182

Hits>=49.5

Hits< 117.5

Walks< 43.5 CRBI< 273

Walks< 60.5
4.681 5.21

5.46

6.023 6.534 6.196

6.682 7.066
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Pros and Cons of trees

I Very easy to explain (IF/AND/THEN) to people (even easier
to explain than linear models!)

I Some believe that decision trees mirror human
decision-making.

I Trees can be displayed graphically, and are easily interpreted
even by a non-expert (especially if they are small).

I Easily handle qualitative predictors without the need to create
dummy variables.

I Can naturally handle the missing values in the predictors.

I Trees generally do not have the same level of predictive
accuracy as some of the other regression and classification
approaches.
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Revisit the automobile example in R

> set.seed(1)

> fit1<-rpart(Mileage ~ Wt, car.test.frame,

+ control = rpart.control(xval=10,

+ minbucket=4, minsplit=10, cp=0))

> fit1

1) root 60 1354.58 24.58

2) Wt>=2567.5 45 361.20 22.47

4) Wt>=3087.5 22 61.32 20.41

8) Wt>=3637.5 6 3.33 18.67 *

9) Wt< 3637.5 16 32.94 21.06

18) Wt< 3322.5 10 16.50 20.50

36) Wt>=3192.5 6 10.00 20.00 *

37) Wt< 3192.5 4 2.75 21.25 *

19) Wt>=3322.5 6 8.00 22.00 *

5) Wt< 3087.5 23 117.65 24.43

10) Wt>=2747.5 15 60.40 23.80

20) Wt< 2882.5 6 19.33 23.33 *

21) Wt>=2882.5 9 38.89 24.11 *

11) Wt< 2747.5 8 39.87 25.62 *

3) Wt< 2567.5 15 186.93 30.93

6) Wt>=2280 9 76.88 28.88 *

7) Wt< 2280 6 16.00 34.00 *

|Wt>=2568

Wt>=3088

Wt>=3638

Wt< 3322

Wt>=3192

Wt>=2748

Wt< 2882

Wt>=2280

18.67
n=6

20
n=6

21.25
n=4

22
n=6

23.33
n=6

24.11
n=9

25.62
n=8

28.89
n=9

34
n=6
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cptable output in R

I We can output the cross-validation results for a grown tree
with different cp values.

I The last two columns are important.
I xerror: cross-validation error (10-fold CV in automobile

example).
I xstd: standard error of validation errors.

> print(fit1$cptable)

CP nsplit rel error xerror xstd

1 0.595349123 0 1.0000000 1.0319924 0.17931937

2 0.134528190 1 0.4046509 0.4875114 0.07613003

3 0.069426843 2 0.2701227 0.3795295 0.05610012

4 0.018490814 3 0.2006958 0.3367415 0.05225040

5 0.012828427 4 0.1822050 0.3179277 0.04552389

6 0.006228853 5 0.1693766 0.2857965 0.04105127

7 0.002768379 6 0.1631477 0.2852686 0.04046187

8 0.001607710 7 0.1603794 0.2895803 0.03988263

9 0.000000000 8 0.1587717 0.2930557 0.04001814
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Select optimal cp value
I Ideally, we should choose the cp value to minimize CV error.

In practice, we may use instead the 1-SE rule. Any risk within
1-SE of the achieved minimum is considered as being
equivalent to the minimum (i.e. considered to be part of the
at plateau).

I In automible example: the best tree has 4 splits (5 leaves)
using 1-SE rule (0.2853+0.0405=0.3258).
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Pruned tree in automobile example

> fit2 <- prune(fit1, cp=.0128)

> fit2

n= 60

node), split, n, deviance, yval

* denotes terminal node

1) root 60 1354.583000 24.58333

2) Wt>=2567.5 45 361.200000 22.46667

4) Wt>=3087.5 22 61.318180 20.40909

8) Wt>=3637.5 6 3.333333 18.66667 *

9) Wt< 3637.5 16 32.937500 21.06250 *

5) Wt< 3087.5 23 117.652200 24.43478

10) Wt>=2747.5 15 60.400000 23.80000 *

11) Wt< 2747.5 8 39.875000 25.62500 *

3) Wt< 2567.5 15 186.933300 30.93333

6) Wt>=2280 9 76.888890 28.88889 *

7) Wt< 2280 6 16.000000 34.00000 *

> par(mar=c(1,1,1,1),xpd=NA)

> plot(fit2,uniform=F)

> text(fit2, use.n=TRUE)

|Wt>=2568

Wt>=3088

Wt>=3638 Wt>=2748

Wt>=2280

18.67
n=6

21.06
n=16

23.8
n=15

25.62
n=8

28.89
n=9

34
n=6

Note: The depth of the branches is proportional to the reduction
in error due to the split.
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