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What is statistical learning
I Statistical learning is the science of learning from the data

using statistical methods.
I Predict the price of a stock in 6 months from now, on the

basis of company performance measures and economic data.
I Predict whether a patient, hospitalized due to a heart attack,

will have a second attack based on patient’s demographic, diet
and clinical measurements.

I Identify the risk factors for prostate cancer.
I Given a collection of text documents, we want to organize

them according to their content similarities.

I Statistical learning plays a key role in data mining, artificial
intelligence and machine learning.

I We can divide all statistical learning problems into supervised
and unsupervised situations.

I Supervised learning is where both the predictors, Xi ’s, and the
response, Yi , are observed (e.g. regression/classification).

I In unsupervised learning, only Xi ’s are observed (e.g.
clustering/market bastet analysis).
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Handwritten Digit Recognition

I Data come from the handwritten ZIP codes on envelopes
from U.S. postal mail.

I Each image is a segment from a five digit ZIP code, isolating
a single digit.

I The images are 16× 16 eight-bit graysclae maps, with each
pixel ranging in intensity from 0 to 255.

I Images are nomralized to have approximately the same size
and orientation.

I Task: predict from 16× 16 matrix of pixel intensities, the
identity of each image (0, 1, . . . , 9).

I Results:
I Single layer neural network: 80.0%
I Two layer network: 87%
I Constrained neural network: 98.4%
I Tangent distance with 1-NN: 98.9%
I Support vector machine: 99.2%
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Handwritten Digit Recognition (cont.)

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 11

Figure 11.9: Examples of training cases from ZIP code

data. Each image is a 16× 16 8-bit grayscale represen-

tation of a handwritten digit.

Figure from EOSL 2009
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A Recent Project with Dr. Chakraborty
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Statistical Science
2001, Vol. 16, No. 3, 199–231

Statistical Modeling: The Two Cultures
Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to

reach conclusions from data. One assumes that the data are generated

by a given stochastic data model. The other uses algorithmic models and

treats the data mechanism as unknown. The statistical community has

been committed to the almost exclusive use of data models. This commit-

ment has led to irrelevant theory, questionable conclusions, and has kept

statisticians from working on a large range of interesting current prob-

lems. Algorithmic modeling, both in theory and practice, has developed

rapidly in fields outside statistics. It can be used both on large complex

data sets and as a more accurate and informative alternative to data

modeling on smaller data sets. If our goal as a field is to use data to

solve problems, then we need to move away from exclusive dependence

on data models and adopt a more diverse set of tools.

1. INTRODUCTION

Statistics starts with data. Think of the data as

being generated by a black box in which a vector of

input variables x (independent variables) go in one

side, and on the other side the response variables y
come out. Inside the black box, nature functions to

associate the predictor variables with the response

variables, so the picture is like this:

y xnature

There are two goals in analyzing the data:

Prediction. To be able to predict what the responses

are going to be to future input variables;

Information. To extract some information about

how nature is associating the response variables

to the input variables.

There are two different approaches toward these

goals:

The Data Modeling Culture

The analysis in this culture starts with assuming

a stochastic data model for the inside of the black

box. For example, a common data model is that data

are generated by independent draws from

response variables = f(predictor variables,

random noise, parameters)

Leo Breiman is Professor, Department of Statistics,
University of California, Berkeley, California 94720-
4735 (e-mail: leo@stat.berkeley.edu).

The values of the parameters are estimated from

the data and the model then used for information

and/or prediction. Thus the black box is filled in like

this:

y xlinear regression 
logistic regression
Cox model

Model validation. Yes–no using goodness-of-fit

tests and residual examination.

Estimated culture population. 98% of all statisti-

cians.

The Algorithmic Modeling Culture

The analysis in this culture considers the inside of

the box complex and unknown. Their approach is to

find a function f�x�—an algorithm that operates on

x to predict the responses y. Their black box looks

like this:

y xunknown

decision trees
neural nets

Model validation. Measured by predictive accuracy.

Estimated culture population. 2% of statisticians,

many in other fields.

In this paper I will argue that the focus in the

statistical community on data models has:

• Led to irrelevant theory and questionable sci-

entific conclusions;

199
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Data and the Black Box
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• Led to irrelevant theory and questionable sci-

entific conclusions;

199

I Prediction. To be able to predict what the responses are
going to be to future input variables.

I Information. To extract some information about how nature
is associating the response variables to the input variables.

I Two different approaches towards the above goals.
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Two Cultures

I Data Modeling Culture from statisticians.
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I Start with assuming a stochastic model for the black box;
I Estimate parameters of the model from the data;
I Use fitted model to do prediction;
I Use hypothesis test and CI to do inference.

I The Algorithmic Modeling Culture from CS people.
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I Approximate the black box by some complicated function;
I Estimate the function from some algorithm;
I Both prediction and information are based on fitted functions;
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Ozone Project

I Predictors: daily and hourly readings of over 450
meteorological variables for a period of seven years.

I Response: hourly values of ozone concentration in the Basin.

I Objetive: predict ozone concentration 12 hours in advance.

I Training set: the first five years data. Test set: the last two
years data.

I Model: multiple linear regressions (including quadratic terms
and interactions) with variable selection.

I Results: A failure. The false alarm rate of the final predictor
was too high.

I Q: What are the possible reasons make MLR unsuccessful in
Ozone project?
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Chlorine Project

I Predictors: mass spectrum predictor with molecular weight
ranges from 30 to over 10,000.

I Response: contains chlorine or not.

I Training set: 25,000 compounds with known chemical
structure and mass spectra. Test set: 5,000 known
compounds.

I Model: Linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA) and decision trees.

I Results: LDA and QDA were difficult to adapt to the variable
dimensionality. Decision tree with 1,500 yes-no questions:
success with 95% prediction accuracy.

I Q: What are the possible reasons make tree successful in
Chlorine project?
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Perceptions on Statistical Analysis

I Focus on finding a good solution, that’s what consultants get
paid for.

I Live with the data before you plunge into modeling.

I Search for a model that gives a good solution, either
algorithmic or data.

I Predictive accuracy on test sets is the criterion for how good
the model is.

I Computers are an indispensable partner. Programming is a
necessary skill for statisticians.
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What research in the university was like?

I A friend of Leo Breiman, a prominent statistician from the
Berkeley Statistics Department, visited me in Los Angeles in
the late 1970s. After I described the decision tree method to
him, his first question was, “What’s the model for the data?”

I In Annals of Statistics and JASA, almost every article
contains a statement of the form:
Assume that the data are generated by the following model . . .

I Consider data modeling as the template for statistical analysis.

I The conclusions are about the model’s but not the nature’s
mechanism.

I If the model is a poor emulation of nature, the conclusions
maybe wrong.
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A Study for Gender Discrimination

A study was done several decades ago by a well-known member of
a university statistics department to assess whether there was
gender discrimination in the salaries of the faculty.

All personnel files were examined and a data base set up which
consisted of salary as the response variable and 25 other variables
which characterized academic performance. Such as papers
published, quality of journals published in, teaching record,
evaluations, etc.

Gender appears as a binary predictor variable.

A linear regression was carried out on the data and the gender
coefficient was significant at the 5% level. This was believed as
strong evidence of sex discrimination.
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A Study for Gender Discrimination (cont.)

I Can the data gathered answer the question
posed?

I Is inference justified when your sample is the
entire population?

I Should a data model be used?

I The deficiencies in analysis occurred because the
focus was on the model and not on the problem.
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Problems in Current Data Modeling

I The linear regression model led to many erroneous conclusions
that appeared in journal articles waving the 5% significance
level without knowing whether the model fit the data.

I The author set up a simulated regression problem in seven
dimensions with a controlled amount of nonlinearity. Standard
tests of goodness-of-fit (i.e. lack-of-fit test) did not reject
linearity until the nonlinearity was extreme.

I An acceptable residual plot does not imply that the model is a
good fit to the data.

I Published applications to data often show little care in
checking model fit . . . The question of how well the model fits
the data is of secondary importance compared to the
construction of an ingenious stochastic model.
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Limitations of Data Modeling

I Enforcing the form of the model in data modeling.

I Relatively low prediction accuracy on data generated from
complex systems.

I Old saying: “If all a man has is a hammer, then every problem
looks like a nail.”

I Approaching problems by looking for a data model imposes an
a priori straight jacket that restricts the ability of statisticians
to deal with a wide range of statistical problems.

I Takeaway message: to solve a wider range of data problems,
we need a larger set of tools!
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Estimating unknown function f
I Suppose we observe Yi and Xi = (Xi1,Xi2, . . . ,Xip) for

i = 1, . . . , n.
I We believe that there is a relationship between Y and at least

one of the X ’s. So we model the relationship as

Yi = f (Xi) + εi with E{εi} = 0,

where f is an unknown function and ε is a random error.
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Income vs. education and seniority
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Figure from ISLR 2013
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Estimating unknown function f (cont.)
I The accuracy of estimating f depends on

I the size of variation for the εi ’s.
I the complexity of fitted function f̂
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Why do we estimate f?

I Two main reasons: prediction and inference.
I Make accurate predictions of Y based on a new value of X .
I Which particular predictors actually affect the response?
I Is the relationship positive or negative?
I Is the relationship a simple linear one or is it more complicated

etc.?

I Two examples:
I Interested in predicting how much money an individual will

donate based on observations from 90,000 people on which we
have recorded over 400 different characteristics. For a given
individual should I send out a mailing?

I Wish to predict median house price based on 14 variables.
Understand which factors have the biggest effect on the
response and how big the effect is. For example how much
impact does a river view have on the house value etc.
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How Do We Estimate f ?

I Use the training data {(X1,Y1), (X2,Y2), . . . , (Xn,Yn) and a
statistical method to estimate f .

I Two groups of statistical learning methods:
I Parametric methods:

I Make some assumption about the functional form of f (e.g.
MLR).

I Pros: estimating f =⇒ estimating a set of parameters
(relatively easy task). Easy to interpret the model.

I Cons: The form of model is too rigid. Low prediction accuracy
when f is complicated.

I Non-parametric methods:
I Do not make explicit assumption about the functional form of

f (e.g. neural network, tree).
I Pros: accurately fit a wider range of possible shapes of f .
I Cons: Large number of observations is required to obtain an

accurate estimate of f .
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A linear regression estimate
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Even if the standard deviation is low, we will still get a bad answer
if we use the wrong model.
Figure from ISLR 2013
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A thin-plate spline estimate
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Non-linear regression methods are more flexible and can potentially
provide more accurate estimates.
Figure from ISLR 2013
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A poor estimate

Years of Education

S
en

io
rit

y

In
c
o
m

e

Non-linear regression methods can also be too flexible and produce
poor estimates for f .
Figure from ISLR 2013
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Trade-off between model flexibility and interpretability
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Training vs. test error: Example 1
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Left: LR (orange), two smoothing spline fits (blue and green).
Right: training MSE (grey), testing MSE (red), minimum possible
test MSE (dash).
Figure from ISLR 2013
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Example 2 (f is close to linear)
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Left: LR (orange), two smoothing spline fits (blue and green).
Right: training MSE (grey), testing MSE (red), minimum possible
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Figure from ISLR 2013
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Example 3 (f is far from linear)
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Bias variance tradeoff

I Two competing forces govern the choice of learning method,
i.e. bias and variance.

I Bias refers to the error that is introduced by modeling a real
life problem (that is usually extremely complicated) by a much
simpler problem.

I For example, linear regression assumes that there is a linear
relationship between Y and X , which is unlikely in real life.

I In general, the more flexible/complex a method is the less bias
it will have.

I Variance refers to how much your estimate for f would change
by if you had a different training data set.

I Generally, the more flexible a method is the more variance.
I In general, the more flexible/complex a method is the less bias

it has.

I It can be shown the expected MSE for a new Y at xnew is:

E [MSE(xnew )] = Irreducible Error + Bias2 + Variance
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Bias-variance tradeoff in splines

I 100 datasets with N = 25 points each

I Fit a model with 24 Gaussian basis functions

I Use regularized least squares with varying lambda

The Bias-Variance decomposition Bootstraping and Bagging Bayesian Linear Regression

To minimize the expected loss, there is a tradeoff between the bias and the
variance of a learning algorithm.
Flexible models (e.g., many parameters or low regularization) have low bias and
high variance.
Rigid models (e.g., few parameters or large regularization) have high bias and
low variance.
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Bias, variance and MSE curves in example 1-3
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The classification setting
I For a classification problem we can use the error rate i.e.

Error rate =
n∑

i=1

I (yi 6= ŷi )/n

The error rate represents the misclassifications rate.
I The Bayes error rate refers to the lowest possible error rate

that could be achieved if somehow we knew exactly what the
“true” probability distribution of the data looked like.

I By the Bayes rule:

f̂ (x) = arg max
k

Pr(y = k|X = x).

I Decision boundary between class k and l is determined by the
equation:

Pr(y = k |X = x) = Pr(y = l |X = x).

I In real life problems the Bayes error rate can’t be calculated
exactly.
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K-Nearest Neighbors (KNN)

I k Nearest Neighbors is a flexible approach to estimate the
Bayes classifier.

I For any given X we find the k closest neighbors to X in the
training data, and examine their corresponding Y .

I If the majority of the Y ’s are orange we predict orange
otherwise guess blue.

I The smaller that k is the more flexible the method will be.
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KNN example with k = 3
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Figure from ISLR 2013
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KNN with k = 1 and k = 100
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KNN: K=1 KNN: K=100

Dash line is the class boudary from the Bayes classifier.
k = 1 overfits (too complex) and k = 100 underfits (too simple).
Figure from ISLR 2013
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A good choice of k (Figure from ISLR 2013)
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The class boundary for the knn with k = 10 is very similar to the
one from Bayes classifier.
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Training vs. test error rates in knn example
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Training error rates keep going down as k decreases.
Test error rate at first decreases but then starts to increase.
Figure from ISLR 2013
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A fundamental picture

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 7

High Bias
Low Variance

Low Bias
High Variance
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Model Complexity

Training Sample

Test Sample

Low High

Figure 7.1: Behavior of test sample and training sam-

ple error as the model complexity is varied.

Figure from EOSL 2001.
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A cautionary note

I George Box, a famous statistician and son-in-law of R.A.
Fisher, once said:
“All models are wrong, but some are useful.”

I In practice, there is really NO true model but a good model.
I A good model should achieve at least one of the following:

I an interpretable model that can be explained by some known
facts or knowledge;

I reveals some unknown truth or relationship among the
variables or observations;

I a model with accurate prediction on new samples.

I The optimal model depends on:
I the purpose of the study;
I the complexity of the underlying mechanism;
I the quality of the data and signal-noise-ratio;
I the sample size.
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Simulation study I

I Data: 500 samples with 25 input variables and 1 numeric response Y .

I Data generating mechanism: yi =
∑15

j=1 xi + εi where εi ∼ N(0, 32).
I Input variables: X = (X1, . . . ,X25) ∼ MVN(0,Σ) where

ρ(Xi ,Xj) = 0.5∀i 6= j and 1 o/w.

> library(MASS) #mvrnorm is in MASS library

> mu <- rep(0,25)

> Sigma <- matrix(0.5,25,25)+diag(.5,25)

> n <- 500

> set.seed(1)

> x <- mvrnorm(n,mu,Sigma)

> y <- as.vector(x%*%c(rep(1,15),rep(0,10)))+rnorm(n,sd=3)

> data1 <- data.frame(x,y)[1:50,]; data2 <- data.frame(x,y)

I The best subset selection is applied here using regsubsets function in
library(leaps) in R.

I Two groups of models are generated using the first 50 obs (data1). and
full data (n = 500, data2)

40 / 49



Simulation study I (cont.)

I nvmax: the maximum size of subsets to examine.

I nbest: the number of subsets of each size to record.

I There are some other useful option. For details, type
?regsubsets in R.

> library(leaps)

> sout1 <- summary(regsubsets(y ~ ., data = data1, nvmax = 15,nbest=5))

> res1 <- cbind(apply(sout1$which[,-1],1,sum),Cp=sout1$cp,bic=sout1$bic)

> sout2 <- summary(regsubsets(y ~ ., data = data2, nvmax = 25,nbest=5))

> res2 <- cbind(apply(sout2$which[,-1],1,sum),Cp=sout2$cp,bic=sout2$bic)

> par(mfrow=c(2,2))

> plot(res1[,1],res1[,2],xlim=c(1,15),ylim=c(0,50),

+ xlab="Model size",ylab="Mallow Cp")

> plot(res1[,1],res1[,3],xlim=c(1,15),ylim=range(res1[,3]),

+ xlab="Model size",ylab="BIC")

> plot(res2[,1],res2[,2],xlim=c(1,25),ylim=c(0,200),

+ xlab="Model size",ylab="Mallow Cp")

> plot(res2[,1],res2[,3],xlim=c(1,25),ylim=range(res2[,3]),

+ xlab="Model size",ylab="BIC")
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Sample size effect
●

●●
●

●●

●
●●
●●

●
●●
●●

●
●●●●

●
●●●
●

●
●●●●

●●
●●●

●●●
●● ●●

●●● ●●●●●
●●●●●

●●●●●
●●●●●

2 4 6 8 10 12 14

0
10

20
30

40
50

Model size

M
al

lo
w

 C
p

n=50

●
●

●
●
●

●

●●●
●

●●●

●●

●
●●●●

●
●●
●●

●
●●●●

●
●●●
●

●
●●●●

●●
●●●

●●
●●● ●

●●●●
●●●
●●

●●●●●
●●
●●●

●●●●●

2 4 6 8 10 12 14

−
80

−
70

−
60

−
50

−
40

−
30

−
20

Model size

B
IC

n=50

●

●

●
●●

●
●●●●

●●●
●●

●
●●●●

●●
●●
●

●
●
●●●

●●
●●●

●●●●
●

●●●
●●

●

●●●●

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●

5 10 15 20 25

0
50

10
0

15
0

20
0

Model size

M
al

lo
w

 C
p

n=500

●●
●●
●

●●●●
●

●
●●●●

●●
●●●

●●●●
●

●●
●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●● ●
●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●

5 10 15 20 25

−
12

00
−

10
00

−
80

0
−

60
0

−
40

0

Model size

B
IC

n=500

42 / 49



Noise effect

I We set two levels of standard deviation on εi : 1 and 6 with
SNR=122 and 3.4, respectively.

I We use the BIC (common criterion to select models) to select
the optimal model size (highlighted by red vertical line).

I Others are kept the same as previous (n = 500).
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Simulation study II: bias-variance tradeoff

I Data:
yi = 2sin(1.5xi ) + xi + εi ,
where εi ∼ N(0, 1)

I Training set: dat has 20
observation.

I Fit the data using
polynomial regressions.

I dat2 has X values on a
fine grid and the true
function values without
noise.

> n <- 20

> set.seed(1)

> dat<-data.frame(x = runif(n, 0, 9.5))

> dat$y<-with(dat,2*sin(1.5*x)+x+rnorm(n,sd=1))

> dat2 <-data.frame(x=seq(from=1,to=9,le=81))

> dat2$y<-with(dat2,2*sin(1.5*x)+x)

> plot(dat$x,dat$y, xlab="X", ylab="Y")

> lines(dat2$x,dat2$y,col="red",lwd=2)
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Fitting on various orders of polynomial regressions

I Fit the data using
polynomial
regressions from order
1 to 10.

I Predict on a fine grid
of X in dat2.

> pred <- matrix(0,length(dat2$x),10)

> for (i in 1:10){

+ poly.fit <- lm(y~poly(x,i,raw=T),dat)

+ pred[,i]<-predict(poly.fit,dat2)

+ }

> matplot(dat2$x, pred, xlab="X", ylab="Y",

+ xlim=c(0,9.5), ylim=range(c(dat$y,pred)),

+ lty=1:10,lwd=2,type="l",

+ col=rainbow(10, start=3/6, end=4/6))

> points(dat$x, dat$y)

> lines(dat2$x, dat2$y, col="red", lwd=2)
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Repeat 50 times on randomly generately Y
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Remarks on previous figure

I Variance: how much ŷ
varies from one training
set D to another.

I Bias: the difference
between the true value at
X = x∗ and expected
value of ŷ |X = x∗

(average of datasets).

I Model too “simple” ⇒
does not fit data well (a
biased solution).

I Model too “complex” ⇒
small change of data
makes a big change on ŷ
(a high variance solution).

> iter <- 50

> pred <- list()

> for (it in 1:iter){

+ set.seed(it)

+ dat$y <- 2*sin(1.5*dat$x)+dat$x+rnorm(n,sd=1)

+ pred[[it]] <- matrix(0,length(dat2$x),10)

+ for (i in 1:10){

+ pred[[it]][,i] <- predict(lm(y~poly(x,i,raw=T),dat),dat2)

+ }

+ }

> par(mfcol=c(2,3))

> plot(dat2$x,pred[[1]][,1],xlab="X",ylab="Y",type="n")

> for (i in 1:iter){

+ lines(dat2$x,pred[[i]][,1])

+ }

> lines(dat2$x,dat2$y,col="red",lwd=2)

> segments(3,-2,3,6,lwd=2,col=rgb(0,0,1,alpha=0.5))

> title("Order=1")

> plot(density(pred.2[,1],bw=0.1),main="",xlab="X")

> lines(rep(dat2$y[ind],2),c(0,0.2),col="blue")

> lines(rep(mean(pred.2[,1]),2),c(0,0.2),col="red",lty=2)
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MSE curves among 50 repetitions

I Curves on the background are
the MSE for each sample againt
polynomial order.

I Solid red line is the average
MSE among 50 samples.

I Left: low variance but high bias
⇒ Riight: high variance low
bias.

I Optimal order is around 6 (true
function has 4 reflection pts).
> mse <- matrix(0,iter,10)

> FUN1 <- function(x) mean((x-dat2$y)^2)

> for (it in 1:iter){

+ mse[it,] <- apply(pred[[it]],2,FUN1)

+ }

> plot(1:10,mse[1,],log="y",ylab="MSE",

+ xlab="Polynomial order",xlim=c(1,10),

+ ylim=range(mse),type="n")

> for (it in 1:iter){

+ lines(1:10,mse[it,]col="blue",lwd=0.3)

+ }

> lines(1:10,apply(mse,2,mean),col="red")
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Bias-variance tradeoff in MSE

I Since we know the true function,
here MSE = bias2 + Variance.

I Bias is estimated by using the
average over 50 replications as
E(f̂ ).

I Variance is estimated by using

the variance of f̂ over 50
replications.
> bias2 <- vari <- rep(0,10)

> for (i in 1:10){

+ tmp1 <- matrix(0,length(dat2$x),iter)

+ for (it in 1:iter){

+ tmp1[,it] <- pred[[it]][,i]

+ }

+ tmp2 <- apply(tmp1,1,mean)

> #bias2[i]: mean bias^2 for ith order

+ bias2[i] <- mean((dat2$y-tmp2)^2)

> #tmp3: variance of est. on grid for ith order

+ tmp3 <- apply(tmp1,1,var)

+ vari[i] <- mean(tmp3)

+ }

> plot(1:10,apply(mse,2,mean),xlab="Polynomial order",

+ ylab="",col="blue",ylim=range(c(bias2,vari)),

+ type="l",lwd=2)

> lines(1:10,bias2,col="red",lwd=2,lty=2)

> lines(1:10,vari,col="orange",lwd=2,lty=4)
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