
Generalized additive model example in R

This is a study of the relationship between atmospheric ozone concentration, O3 and other meteorolog-
ical variables in the Los Angeles Basin in 1976. To simplify matters, let’s only focus on three predictors:
temperature measured at El Monte, temp, inversion base height at LAX, ibh, and inversion top tem-
perature at LAX, ibt. The cases with missing values were removed for simplicity. The data were first
presented by Breiman and Friedman (1985). First, let’s fit a linear model for reference purpose.

> library(faraway)

> data(ozone)

> olm <- lm(O3~temp+ibh+ibt,ozone)

> summary(olm)

Call:

lm(formula = O3 ~ temp + ibh + ibt, data = ozone)

Residuals:

Min 1Q Median 3Q Max

-11.3224 -3.1913 -0.2591 2.9635 13.2860

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.7279822 1.6216623 -4.765 2.84e-06 ***

temp 0.3804408 0.0401582 9.474 < 2e-16 ***

ibh -0.0011862 0.0002567 -4.621 5.52e-06 ***

ibt -0.0058215 0.0101793 -0.572 0.568

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 4.748 on 326 degrees of freedom

Multiple R-squared: 0.652, Adjusted R-squared: 0.6488

F-statistic: 203.6 on 3 and 326 DF, p-value: < 2.2e-16

Note that ibt is not significant in this model. One task among others in a regression analysis is to
find the right transformation on the predictors. Additive models can help here. Let’s fit an additive
model using the Gaussian response as the default. We used the loess smoother here by specifying lo in
the model formula for all three predictors.

> library(gam)

> amgam <- gam(O3 ~ lo(temp) + lo(ibh) + lo(ibt), data=ozone)

> summary(amgam)

Call: gam(formula = O3 ~ lo(temp) + lo(ibh) + lo(ibt), data = ozone)

Deviance Residuals:

Min 1Q Median 3Q Max



-13.1146 -2.3624 -0.2092 2.1732 12.4447

(Dispersion Parameter for gaussian family taken to be 18.6638)

Null Deviance: 21115.41 on 329 degrees of freedom

Residual Deviance: 5935.096 on 318.0005 degrees of freedom

AIC: 1916.049

Number of Local Scoring Iterations: 2

Anova for Parametric Effects

Df Sum Sq Mean Sq F value Pr(>F)

lo(temp) 1 11958.2 11958.2 640.7153 < 2.2e-16 ***

lo(ibh) 1 1117.3 1117.3 59.8646 1.358e-13 ***

lo(ibt) 1 3.5 3.5 0.1898 0.6634

Residuals 318 5935.1 18.7

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Anova for Nonparametric Effects

Npar Df Npar F Pr(F)

(Intercept)

lo(temp) 2.5 7.4550 0.0002456 ***

lo(ibh) 2.9 7.6205 8.243e-05 ***

lo(ibt) 2.7 7.8434 9.917e-05 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

> 1-5935.1/21115

[1] 0.7189155

Compared to the linear model, the R2 of GAM is improved by more than 10%. However, the loess
fit does use more degrees of freedom (i.e. the effective number of parameters is estimated by the trace of
the projection matrix). The gam package uses a score test for testing the significance for each predictor.
But the p-values are only approximate at best and should be viewed with some skepticism. It is generally
better to fit the model without the predictor of interest and then construct the F -test.

> amgamr <- gam(O3 ~ lo(temp) + lo(ibh) , data=ozone)

> anova(amgamr,amgam,test="F")

Analysis of Deviance Table

Model 1: O3 ~ lo(temp) + lo(ibh)

Model 2: O3 ~ lo(temp) + lo(ibh) + lo(ibt)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 321.67 6044.6

2 318.00 5935.1 3.6648 109.47 1.6005 0.179

Although the p-value from F -test is still an approximation, we can see some evidence that ibt is not
significant. Let’s examine the fit for all three variables.



> par(mfrow=c(1,3),mar=c(5,5,2,2),cex.lab=3,cex.axis=2)

> plot(amgam,residuals=TRUE,se=TRUE,pch=".")
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> detach(package:gam, unload = TRUE) #close the gam library

We can see for ibt, the confidence band can hold a constant function, which reinforces the conclusion
that it is not significant. For variable temp, we can clearly see an ‘elbow’ around 60o, while for ibh it
reaches maximum around 1000. The partial residuals allow us to identify the outliers and influential
observations. Although it seems no problem in this data, loess smoother is recommended where such
problem arises. Allowing more choice of smoother is the favorite feature of gam package.

Another method of fitting GAM is provided by mgcv package of Wood (2000). Although splines are
the only choice of smoother in the mgcv package, it has an automatic choice in the amount of smoothing
as well as wider functionality.

> library(mgcv)

> ammgcv <- gam(O3 ~ s(temp)+s(ibh)+s(ibt),data=ozone)

We see that the R2 is about the same as the gam fit. We can also examine the transformation used
for each variable. We can see that the fitted transformations are again similar to gam fit. Variable ibt

does not appear to be significant.

> par(mfrow=c(1,3),mar=c(5,5,2,2),cex.lab=3,cex.axis=2)

> plot(ammgcv)
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We can also test whether there is a nonlinear trend for variables temp by fitting a model with a linear
term of temp and then make the F -test. The test result confirms that there is really a change in the trend
of temperature.

> am1 <- gam(O3 ~ s(temp)+s(ibh),data=ozone)

> am2 <- gam(O3 ~ temp+s(ibh),data=ozone)

> anova(am2,am1,test="F")



Analysis of Deviance Table

Model 1: O3 ~ temp + s(ibh)

Model 2: O3 ~ s(temp) + s(ibh)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 323.67 6950

2 320.97 6054 2.7031 895.98 17.573 7.943e-10 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

We can also do the bivariate transformations in mgcv. Suppose we suspect there is an interaction
between temperature and IBH. We can fit a model with this interaction, and compare to previous additive
model. We can see that in fact fewer d.f. was used to fit the bivariate model. And the results show the
additive model fits better than the interaction model. Hence, in spite of the significant p-value, we suspect
there is no interaction between temperature and IBH. A side-effect of the interaction model is that variable
ibt becomes significant.

> amint <- gam(O3 ~ s(temp,ibh)+s(ibt),data=ozone)

> summary(amint)

Family: gaussian

Link function: identity

Formula:

O3 ~ s(temp, ibh) + s(ibt)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7758 0.2409 48.88 <2e-16 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp,ibh) 6.346 8.040 14.881 < 2e-16 ***

s(ibt) 2.917 3.679 9.805 6.16e-07 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

R-sq.(adj) = 0.702 Deviance explained = 71%

GCV = 19.767 Scale est. = 19.152 n = 330

> anova(ammgcv,amint,test="F")

Analysis of Deviance Table

Model 1: O3 ~ s(temp) + s(ibh) + s(ibt)

Model 2: O3 ~ s(temp, ibh) + s(ibt)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 319.33 5977.9

2 319.74 6123.6 -0.40915 -145.66 19.017 0.001411 **



---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

We can graphically examine the bivariate contour plot as the following. The left plot shows a per-
spective view of the contour plot on the left. Based on both the left and right plots, we conclude there is
no obvious interaction between temperature and IBH.

> par(mfrow=c(1,3),mar=c(5,5,2,2),cex.lab=3,cex.axis=2)

> plot(amint)

> vis.gam(amint,theta=-45,color="gray")
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linear predictor

One use for additive models is as an exploratory tool for standard parametric regression modeling. We
can use the fitted function to help us find suitable simple transformation on the predictors. In this case,
we have found both predictors temp and ibh can be modeled as piecewise linear regression (also known
as segmented regression.) We can define the right and left “hockey-stick” functions as follows, and fit a
parametric model using cutoff points of 60 and 1000 for temp and ibh, respectively. The cutoff points are
picked based on the figures above.

> rhs <- function(x,c) ifelse(x > c, x-c, 0)

> lhs <- function(x,c) ifelse(x < c, c-x, 0)

> par(mfrow=c(1,2))

> plot(1:100,rhs(1:100,50),type="l",xlab="x",ylab="rhs(x,50)")

> plot(1:100,lhs(1:100,50),type="l",xlab="x",ylab="lhs(x,50)")

> olm2 <- lm(O3 ~ rhs(temp,60)+lhs(temp,60)+rhs(ibh,1000)+lhs(ibh,1000),ozone)

> summary(olm2)

Call:

lm(formula = O3 ~ rhs(temp, 60) + lhs(temp, 60) + rhs(ibh, 1000) +

lhs(ibh, 1000), data = ozone)

Residuals:

Min 1Q Median 3Q Max

-13.2042 -2.6307 -0.2887 2.3179 12.6720

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.6038321 0.6226512 18.636 < 2e-16 ***

rhs(temp, 60) 0.5364407 0.0331849 16.165 < 2e-16 ***

lhs(temp, 60) -0.1161735 0.0378660 -3.068 0.00234 **

rhs(ibh, 1000) -0.0014859 0.0001985 -7.486 6.72e-13 ***

lhs(ibh, 1000) -0.0035544 0.0013138 -2.705 0.00718 **



---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 4.342 on 325 degrees of freedom

Multiple R-squared: 0.7098, Adjusted R-squared: 0.7062

F-statistic: 198.7 on 4 and 325 DF, p-value: < 2.2e-16
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Compared this model with the first ordinary linear regression model, the fit is better and about as good
as the GAM fit. It is unlikely for us to discover these transformation without the help of the intermediate
additive models. Compared to GAMs, this model has compact form and simpler interpretation.

For GAM, we can predict new values with standard error:

> predict(ammgcv,data.frame(temp=60,ibh=2000,ibt=100),se=T)

$fit

1

11.01278

$se.fit

1

0.9727755

If we try to make predictions for predictor values outside the original range of data, we will need to
linearly extrapolate the spline fits, which is highly dangerous. See the SE is much larger although this
likely does not fully reflect the uncertainty.

> predict(ammgcv,data.frame(temp=120,ibh=2000,ibt=100),se=T)

$fit

1

35.51078

$se.fit

1

5.726077



We should also examine the usual diagnostics. We can see that although the residuals look normal,
there is some nonconstant variance.

> par(mfrow=c(1,2),cex.lab=2,cex.axis=1.5)

> plot(predict(ammgcv),residuals(ammgcv),xlab="Predicted",ylab="Residuals")

> qqnorm(residuals(ammgcv),main="")
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The ozone data has a response with relatively small integer values. Furthermore, the diagnostic plot
above shows nonconstant variance. This suggests that a Poisson response might be suitable.

> table(ozone$O3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 38

2 9 29 27 25 21 22 10 18 13 9 18 10 14 8 10 9 7 11 6 2 7 6 6 2 9 3 4 4 2 1 1 3 1 1

> gammgcv <- gam(O3 ~ s(temp)+s(ibh)+s(ibt),family=poisson,scale=-1,data=ozone)

> summary(gammgcv)

Family: poisson

Link function: log

Formula:

O3 ~ s(temp) + s(ibh) + s(ibt)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.29269 0.02304 99.49 <2e-16 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp) 3.816 4.736 16.817 4.20e-14 ***

s(ibh) 3.737 4.568 10.603 1.04e-08 ***

s(ibt) 1.348 1.623 0.574 0.529

---



Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

R-sq.(adj) = 0.712 Deviance explained = 72.9%

GCV = 1.5062 Scale est. = 1.4573 n = 330

We have set scale=-1 because negative values for this parameter indicate that the dispersion should
be estimated rather than fixed at one. Since we do not truly believe the response is Poisson, it seems better
to allow for over-dispersion. The default of not specifying scale would fix the dispersion at one. We see
that the estimated dispersion is indeed somewhat bigger than one. We see that IBT is not significant and
the selected transformations are quite similar to those fitted previously.

> par(mfrow=c(1,3),mar=c(5,5,2,2),cex.lab=3,cex.axis=2)

> plot(gammgcv,residuals=TRUE)
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> detach(package:mgcv, unload = TRUE) #close the mgcv library

Reference
Julian J. Faraway (2006) Extending the Linear Model with R: Generalized Linear, Mixed Effects and

Nonparametric Regression Models (1st edition) by Chapman and Hall/CRC.


