Neural Networks

Bin Li

IIT Lecture Series

23

Artificial neuron

> Like real neurons, artificial neurons basically consist of:

» inputs (like synapses), which are multiplied by weights
(strength of the respective signals), and then computed by an
activation function) which determines the activation of the

neuron.
» The output function computes the output of the artificial

neuron.
» Neural networks combine artificial neurons in order to process

information.

Weights

Function -y

Inputs

)

23

» Most widely used neural network.

» Just nonlinear statistical models,

closely related to projection pursuit
regression.

> Inputs: Xi, Xa,..., Xp.
» Hidden layer: 21,2, ..., 2Zum.

Each Z,, is a modelled as a function
of linear combination of inputs.

Outputs: Y1, Y2,..., Yk. Each Y is
a modelled as a function of linear
combination of Zp,’s.

For regression: K = 1; K-class
classification: one for each class.

Sometimes an additional bias unit
feeds into every unit of hidden and
output layers. Captures the intercepts
aom and Bok in the model.

Single hidden layer neural networks

Figure from EOSL 2009

23

Projection pursuit regression

>

Projection pursuit regression (PPR) is an extension of additive model
using derived features developed by Friedman and Stuetzle (1981).

PPR has the form: £(X) = 3™ | gm(w, X)
» The functions g, are unspecified and estimated along with the
directions w,, using some flexible smoothing method.
» The scalar variable V;, = w,] X is the projection of X onto the

unit direction vector w,,. We seek w,, so that the model fits
well, hence the name “projection pursuit”.

PPR is very general and generates a surprisingly large class of models.
» For example [X1.Xo = (X1 + X2)? — (X1 — X2)?]/4.
Higher-order products can be presented similarly.

» If M is large enough, PPR can approximate any continuous
functions in RP, a universal approximator.

If M =1, known as single index model in econometrics. In practice, PPR
model typically uses fewer terms (e.g. M =5 or 10).

PPR can be implemented in R using ppr function.

23

Mathematical model for artificial neural networks

> Derived features Z, (called hidden unit) in the hidden layer is a function
of linear combination of inputs.

Zm = o(aom+alX), m=1,....M

> Usually the activation function o(v) is the sigmoid
o(v)=1/(1+¢e7").
> Radial basis function network.
> Ti: a linear combination of Z,.

Te=Poc+BZ k=1,... K,
» The output function:
fk(X) :gk(T), k= 1,...,K

» For regression, use identity function g(T) = T.
» For classification, use softmax function:

ek

T = ——n
&T) Z/K:I el

23

Neural networks as a statistical model

» The values of the hidden units Z,'s can be viewed as a basis expansion of
the original inputs X. Note the parameters of the basis functions are
learned from the data!

> If the activation function o(v) is the identity function, then

> for regression: it is a traditional linear regression model.
> for K-classification: it is a linear multilogit model.

» Neural network is a nonlinear generalization of the linear model for both
regression and classification.

> Viewing the NN model as PPR model:
gm(W,,T,X) = Bmo(aom + a;X).

> PPR uses a flexible g, while NN uses a far simpler sigmoid
function with 3 parameters.

> PPR uses few terms (M =5 or 10) while NN uses 20 or 100.

> By using nonlinear activation function o, it greatly enlarges the class of
linear models. The rate of activation of the sigmoid depends on ||am||.

> if [|am|| is small — o is approximately linear.
> if ||am|| is large — o is approximately a step function.

6

23

Sigmoid function

o
S
— alpha=0.1
© --- alpha=0.5
= o] alpha=1
é alpha=10
I ©
~ O
o
0
+ S
—
N
—~—
— N
o
Q . e zamT D __._: ‘_T:
© T T
-10 -5

10

23

Fitting neural networks

> A single hidden layer NN has unknown parameters, called weights.
Denote 0 as complete set of weights which consists of

{aom,am; m=1,2,..., M} M(p + 1) weights
{B()k,ﬁk; k=1,2,.4.7K} K(I\/l+1)weights

> For regression, use SSE as measure of fit: R(0) = >, > (vik — fu(xi))*.

> For classification, use cross-entropy: R(0) = —>".>", vi log fi(x;).

> The generic approach to minimizing R(6) is by gradient descent, known
as back-propagation (also called delta rule). It iteratively updates the
estimate of weights by a two-pass procedure:

> forward pass: fixed current weights and predict fi(x;).
> backward pass: compute the gradients and update the weights.

Back-propagation is simple and local nature. Training can be carried
online and on a parallel architecture computer.

> Back-propagation can be very slow. Other choices are conjugate
gradients and variable metric methods with faster convergence.

23

Issues in training neural networks

>

Model is overparametrized. Optimization problem is nonconvex and
unstable.
Initial values of weights: random values near zero (i.e. start with a
roughly linear model).
Regularization to avoid overfitting.

> early stopping: Use a validation set to determine when to stop.

> weight decay: add a penalty to loss: R(8) + (3. B2, + 3. a2,).
> weight elimination: use another penalty:

2
+ A < ﬁkm am/2)
1452 1+o,

. This has the effect of shrinking smaller weights more than weight

decay does.
Scaling of the inputs has a large effect on quality of the solution.
Standardize all inputs to mean zero and variance one.
Number of hidden units and layers: generally better to have too many
than too few. Then train them with regularization.
Multiple local minima: try several random starting configurations and use
the best one or bagging.

23

Regularization effects on prediction

Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

/
:
{

Training Error: 0.160
Test Error: 0.223
Bayes Error: 0.210

Training Error: 0.100
Test Error: 0.259

Bayes Error: 0.210

The left panel uses no weight decay, and overfits the training data. The right
panel uses weight decay, and achieves close to the Bayes error rate (broken
purple boundary). Both use the softmax activation function and cross-entropy

error.

Figure from EOSL 2009
10/23

Regularization effects on weights

No weight decay Weight decay

SRR RESNERRE SRARRTESNRR
T2 T2
T T
1 1
EEEEEEEEE TEEEEEEEE

Heat maps of the estimated weights from the training of neural
networks. The display ranges from bright green (negative) to
bright red (positive). We see that weight decay has dampened the
weights in both layers: the resulting weights are spread fairly
evenly over the ten hidden units.

Figure from EOSL 2009

11/23

Simulation examples

v

Two additive error models:

> Sum of sigmoids: Y = o(af X) +o(al X) + @

» Radial: ¥ =[], ¢(Xm) + 2
p = 2 for "Sum of sigmoids” model with a; = (3,3) and a, = (3, —3).
p = 10 for “radial” model where ¢(t) is the standard normal’s pdf.

€1 and e, are mean zero Normal error with signal-to-noise ratio is 4 (i.e.
Var(f(X))/Var(e) = 4.

» Train set: 100 obs. Test set: 10,000 obs.

Fit neural networks with and without “weight decay” and various number
of hidden units based on 10 random starting weights.

For figure on next slide, fixed weight decay parameter A = 0.0005, a mild
amount of regularization.

For the figure on slide 17, fixed weight decay parameter A = 0.1, a much
stronger regularization.

12 /23

Simulation example: number of hidden units effect

Sum of Sigmoids Radial
o
@ o
g
N
— — o
[g W -
o o | T m
E o m U "‘ g u‘_" 1 -
H - - - - D D ° - _ -
0 | = - 4 N - = - R
- sopB2 4 Egoed Bed
[, P = =] e
o
- -~~~ e Y |
0123 456 78 910 0123456 78 910
Number of Hidden Units Number of Hidden Units

> Boxplots of test error relative to the Bayes error (broken horizontal line).

Zero hidden units is linear least squares regression.

» NN perfectly suits sigmoid example with 2-unit model perform the best. With
more hidden units, overfits. Some does worse than linear model.

> Radial example is most difficult to NN (spherically symmetric with no preferred
directions). NN performs increasingly worse than the mean (a constant fit
achieves a relative error of 5).

v

13/23

Simulation example: weight decay effect

No Weight Decay Weight Decay=0.1
(=2 (=2
o™ ™
o | -
o — N
8 - g
o o - o o
5 o 5 N
& HH= - H o
wn wn
— —
D -
& oo -
-
o 1 ________| o 1 ________|
- -
0123456 78 910 0123456 78 910
Number of Hidden Units Number of Hidden Units

» With no weight decay, overfitting becomes even more severe for larger
numbers of hidden units.

> The weight decay value A = 0.1 produces good results for all numbers of
hidden units. No overfitting as the number of units increases.

14 /23

Simulation example: weight decay effect (cont.)
Sum of Sigmoids, 10 Hidden Unit Model

16 18 20 22

Test Error

10 12 14
|
I

Weight Decay Parameter

FIGURE 11.8. Bozxplots of test error, for simulated data example. True function
is a sum of two sigmoids. The test error is displayed for ten different starting
weights, for a single hidden layer neural network with ten hidden units and weight
decay parameter value as indicated.

Figure from EOSL 2009
15/23

Neural network packages in R

Neural networks have many variants and usage (as described in previous slide).
Here | only listed some packages for feed-forward (from input to output without
direct circles, different from recurrent neural networks) multi-layer perceptrons.

>

nnet is the R standard neural network package. It implements a
multi-layer perceptron with one hidden layer. For weight adjustment, it
does not use back-propagation, but a general quasi-Newton optimization
procedure, the BFGS algorithm.

neuralnet implements standard back-propagation. It allows multiple
hidden layers and units. It provides functions to visualize the fitted
networks.

AMORE implements the “"TAO-robust backpropagation learning algorithm”,
which is a back-propagation learning algorithm designed to be robust
against outliers in the data.

monmlp implements a multi-layer perceptron with partial monotonicity
constraints. The algorithm allows for the definition of monotonic relations
between inputs and outputs, which are then respected during training.

RSNNS is the most comprehensive neural network package in R. It includes
several types of NNs with different tasks (supervised and unsupervised).
On the other hand, there are many options for the main functions. You
have to know what they are and what to use!

16

23

Main function and its options in neuralnet package

1’

neuralnet (formula, data, hidden = 1, threshold = 0.0
= NULL,

stepmax = 1le+05, rep = 1, startweights
learningrate.limit = NULL,
learningrate.factor = list(minus = 0.5, plus = 1.2),

learningrate=NULL, lifesign = "none",
lifesign.step = 1000, algorithm = "rprop+",
err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL,
constant.weights = NULL, likelihood = FALSE)

» formula: a symbolic description of the model to be fitted.

> hidden: a vector of integers specifying the number of hidden neurons
(vertices) in each layer.

> threshold: a numeric value specifying the threshold for the partial
derivatives of the error function as stopping criteria.

> stepmax: the maximum steps for the training of the neural network.
Reaching this maximum leads to a stop of the neural network's training
process.

> rep: the number of repetitions for the neural network’s training.

> startweights: a vector containing starting values for the weights. The
weights will not be randomly initialized.

23

Main function and its options in neuralnet package

(cont.)

>

learningrate: a numeric value specifying the learning rate used by
traditional backpropagation. Used only for traditional backpropagation.

algorithm: a string containing the algorithm type to calculate the neural
network. The following types are possible: backprop, rprop+, rprop-,
sag, or slr. backprop refers to back-propagation, rprop+ and rprop-
refer to the resilient back-propagation with and without weight
backtracking, while sag and slr induce the usage of the modified
globally convergent algorithm (grprop).

err.fct: a differentiable function that is used for the calculation of the
error. Alternatively, the strings 'sse’ and ‘ce’ which stand for the sum of
squared errors and the cross-entropy can be used.

act.fct: a differentiable function that is used for smoothing the result of
the cross product of the covariate or neurons and the weights.
Additionally the strings, 'logistic’ and "tanh’ are possible for the logistic
function and tangent hyperbolicus.

linear.output: logical. If act.fct should not be applied to the output
neurons, then set linear output to TRUE, otherwise to FALSE.

18/23

Infertility example

» This data set contains data of a case-control study that
investigated infertility after spontaneous and induced abortion
(Trichopoulos et al., 1976).

» The data set consists of 8 variables on 248 observations, 83
women, who were infertile (cases), and 165 women, who were
not infertile (controls).

> Response: case is a binary variable with 1=case and
O=control.

» Seven input variables: education (3 levels); age; parity
(count); induced and spontaneous (number of prior induced
and spontaneous abortions); stratum and pooled.stratum
(matched set number).

19/23

Infertility example (cont.)

> library(datasets)
> str(infert)

’data.frame’: 248 obs.

$ education

$ age : num 26 42
$ parity :num 616
$ induced :num 112
$ case :num 111
$ spontaneous :num 200
$ stratum :int 12 3
$ pooled.stratum: num 3 1 4
> table(infert$case)

0 1
165 83

> head(infert)
education age parity
0-5yrs 26
0-5yrs 42
0-5yrs 39
0-5yrs 34
6-11yrs 35
6-11yrs 36

OO WN -
B wWwbk oo

39 34

NP O RN

[S I SN}
[N SI N

1
0
1
0
7

32 36

of 8 variables:
: Factor w/ 3 levels "O-5yrs","6-11yrs",..
35 36 23 32 21 28 ...

D 0O = ON
© B O
o= ON

N
N
(%))
e
©

induced case spontaneous

1

N = NN

1

N N

= =, O OON

stratum pooled.stratum

1

DO WN

3
1
4
2
32
36

20/23

Infertility example (cont.)

> set.seed(1)

> indx <- sample(1:248,size=248,replace=F)

> datl <- infert[indx[1:200],] #train set

> dat2 <- infert[indx[201:248],] #test set

>

> set.seed(2)

> nn <- neuralnet(case”age+parity+induced+spontaneous,

+ data=datl, hidden=4, err.fct="ce",linear.output=FALSE)
> nn

Call: neuralnet(formula=case”age+parity+induced+spontaneous,
data=datl, hidden=4, err.fct="ce", linear.output=FALSE)

1 repetition was calculated.

Error Reached Threshold Steps
1 95.54252438 0.009925027434 17321
> names (nn)

[1] "call" "response"

[4] "model.list" "err.fct"

[7] "linear.output" "data"

[10] "weights" "startweights"

[13] "result.matrix"

"covariate"

"act.fct"
"net.result"
"generalized.weights"

21/23

Infertility example (cont.)

> out <- cbind(nn$covariate,nn$net.result[[1]])
> dimnames(out) <- list(NULL, c("age", "parity","induced",

+ "spontaneous", "nn-output"))
> head(out)
age parity induced spontaneous nn-output
[1,1 32 1 0 1 0.6545318157
[2,] 21 1 0 1 0.1661967105
[3,1 28 2 2 0 0.4609267548
[4,] 28 2 1 0 0.1226684520
(5,1 38 3 0 2 0.9204410272
[6,1 28 1 0 1 0.6540600521
> plot(nn)
> predl <- compute(nn,subset(dat2,select=c("age","parity",
+ "induced","spontaneous")))$net.result
> table(round(predl) ,dat2$case)
0 1
028 6

1 410

Neural network plot

case

induced

spontaneous

Error: 95.542524 Steps: 17321

23/23

