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Outline

I Linear regression models and least squares

I Subset selection
I Shrinkage methods

I Ridge regression
I The lasso
I Subset, ridge and the lasso
I Elastic net

I Shrinkage method for classification problem.
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Linear Regression & Least Squares

I Input vector: XT = (X1,X2, . . . ,Xp)

I Real valued output vector: Y = (y1, y2, . . . , yn)

I Linear regression model has the form

f (X ) = β0 +

p∑

j=1

Xjβj

I Least squares estimate minimizes

RSS(β) =
n∑

i=1

(yi − (β0 +

p∑

j=1

Xjβj))2

= (y − Xβ)T (y − Xβ)
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Least Square Estimate

I Differentiate RSS(β) w.r.t. β:

∂RSS

∂β
= −2XT (y − Xβ) (1)

∂2RSS

∂ββT
= +2XTX (2)

I Assume X has full column rank, (2) is positive definite.

I Set first derivative to zero:

XT (y − Xβ) =⇒ β̂ols = (XTX)−1XTy

I Variance of β̂ols : Var(β̂ols) = (XTX)−1σ2.
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Gauss-Markov Theorem

I Suppose we have: Yi =

p∑

j=1

Xijβj + εi

I We need the following assumptions:
I E (εi ) = 0, ∀i
I Var(εi ) = σ2, ∀i
I Cov(εi , εj) = 0, ∀i 6= j

I Gauss-Markov Theorem says that:
ordinary least squares estimator (OLS) is the best linear
unbiased estimator (BLUE) of β.

I E (β̂ols) = β
I Among all the linear unbiased estimators β̂, OLS estimator has

the minimum

p∑

j=1

E [(β̂j − βj)2] =

p∑

j=1

Var(β̂j)
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Body Fat Example
This is a study of the relation of amount of body fat (Y ) to several
possible X variables, based on a sample of 20 healthy females
25-34 years old. There are three X variables: triceps skinfold
thickness (X1); thigh circumference (X2); and midarm
circumference (X3).
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Body Fat Example (cont)

fit<-lm(Y~.,data=bfat)

summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 117.085 99.782 1.173 0.258

X1 4.334 3.016 1.437 0.170

X2 -2.857 2.582 -1.106 0.285

X3 -2.186 1.595 -1.370 0.190

Residual standard error: 2.48 on 16 degrees of freedom

Multiple R-Squared: 0.8014, Adjusted R-squared: 0.7641

F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06
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Remarks

I Estimation:
I OLS is unbiased but when some input variables are highly

correlated, β̂’s may be highly variable.
I To see if a linear model f̂ (x) = xT β̂ is a good candidate, we

can ask ourselves two questions:

1. Is β̂ close to the true β?
2. Will f̂ (x) fit future observations well?

I Bias-variance trade-off.

I Interpretation:
I Determine a smaller subset that exhibit the strongest effects
I Obtain a “big picture” by sacrifice some small details
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Is β̂ close to the true β?

I To answer this question, we might consider the mean
squared error of our estimate β̂:

I Squared distance of β̂ to the true β:

MSE (β̂) = E[||β̂ − β||2] = E[(β̂ − β)T (β̂ − β)]

= E[(β̂ − Eβ̂ + Eβ̂ − β)T (β̂ − Eβ̂ + Eβ̂ − β)]

= E[||β̂ − Eβ̂||2] + 2E[(β̂ − Eβ̂)T (Eβ̂ − β)] + ||Eβ̂ − β||2

= E[||β̂ − Eβ̂||2] + ||Eβ̂ − β||2

= tr(Variance) + ||Bias||2

I For OLS estimate, we have

MSE (β̂) = σ2tr[(xTx)−1]
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Will f̂ (x) fit future observation well?

I Just because f̂ (x) fits our data well, this doesn’t mean that it
will be a good fit to a new dataset.

I Assume y = f (x) + ε where Eε = 0 and Var(ε) = σ2ε
I Denote D as the training data to fit the model f̂ (x ,D)

I Expected prediction error (squared loss) at an input point
x = xnew can be decomposed as

Err(xnew ) = ED
[
(Y − f̂ (X ,D))2|X = xnew

]

= ED
[
(Y − f (X ))2|X = xnew

]

+ED
[
(f (X )− ED f̂ (X ,D))2|X = xnew

]

+ED
[
(ED f̂ (X ,D)− f̂ (X ,D))2|X = xnew

]

= σ2ε + Bias2{f̂ (xnew )}+ Var{f̂ (xnew )}
= Irreducible Error + Bias2 + Variance
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Subset Selection

I Best-subset selection
I an efficient algorithm leaps and bounds procedure - Furnival

and Wilson (1974)
I feasible for p as large as 30 to 40.

I Forward- and backward-stepwise selection
I FS selection is a greedy algorithm producing a nested sequence

of model
I BS selection sequentially deletes predictor with the least

impact on the fit

I Two-way stepwise-selection strategies
I consider both forward and backward moves at each step
I step function in R package uses AIC criterion
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Ridge Regression – A Shrinkage Approach

I Shrinks the coefficients by imposing a constraint.

β̂R = arg min
β

RSS subject to

p∑

j=1

β2j ≤ C

I Equivalent Lagrangian form:

β̂R = arg min
β

RSS + λ

p∑

j=1

β2j , λ ≥ 0.

I Solution of ridge regression:

β̂R = (XTX + λI)−1XTy
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Ridge Regression (cont’d)

I Apply correlation transformation on X and Y

I The estimated standardized regression coefficients in ridge
regression is:

β̂R = (rXX + λI)−1rYX

I rXX is the correlation matrix of X (i.e. XTX on transformed X)
I rYX is the correlation matrix between X and Y (i.e. X′y on

transformed X and y)

I λ is a tuning parameter in ridge regression
I λ reflects the amount of bias in the estimators. λ ↑⇒ bias ↑
I λ stabilize the regression coefficient β. λ ↑⇒ VIF ↓

I Three ways to choose λ
I Based on ridge trace of β̂R and VIF
I Based on external validation or cross-validation
I Use generalize cross-validation.
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Correlation Transformation and Variance Inflation Factor

I Correlation transformation is used to standardized variables:

Y ∗i =
1√

n − 1

(
Yi − Ȳ

sY

)
and X ∗ij =

1√
n − 1

(
Xij − X̄j

sXj

)

I For OLS, the VIFj for the j th variable is defined as the j th

diagonal element of the matrix r−1XX .

I It is equal to 1/(1− R2
j ), where R2

j is the R-square when Xj is
regressed on the rest p − 1 variables in the model.

I Hence, when VIFj is 1, it indicates Xj is not linearly related to
the other X ’s. Otherwise VIFj will be greater than 1.

I In ridge regression, the VIF values are the diagonal elements
of the following matrix:

(rXX + λI)−1 rXX (rXX + λI)−1
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Body Fat Example (cont’d)

I When λ is around 0.02, VIFj are all close to 1

I When λ reaches 0.02, β̂R stabilize.

I Note: horizontal axis is not equally spaced (in log scale)
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Body Fat Example (cont’d)
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Average of MSE in OLS and ridge: 0.0204 and 0.0155.
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Bias and Variance of Ridge Estimate

Eβ̂R = E
[(

XTX + λI
)−1

XT (Xβ + ε)

]

=
(
XTX + λI

)−1
XTXβ

= β − λ
(
XTX + λI

)−1
β

Hence, the ridge estimate β̂R is biased. The bias is:

Eβ̂R − β = −λ
(
XTX + λI

)−1
β

Var(β̂R) = Var

{(
XTX + λI

)−1
XT (Xβ + ε)

}

= Var

{(
XTX + λI

)−1
XT ε

}

=
(
XTX + λI

)−1
XTX

(
XTX + λI

)−1
σ2
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Bias-variance tradeoff

Figure from Hoerl and Kennard, 1970.
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Data Augmentation to Solve Ridge

β̂R = arg min
β





n∑

i=1

(yi − xiβ)2 +

p∑

j=1

(0−
√
λβj)

2





= arg min
β

{
n+p∑

i=1

(yλi − zλi β)2

}
= (yλ − zλβ)T (yλ − zλβ),

where

zλ =




x1,1 x1,2 · · · x1,p
...

...
...

...
xn,1 xn,2 · · · xn,p√
λ 0 · · · 0

0
√
λ · · · 0

0 0 · · ·
√
λ




=

(
X√
λIp

)
and yλ =




y1
...

yn
0
0
...
0



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Lasso

Lasso is a loop of rope that is designed to be thrown around a
target and tighten when pulled. Figure is from Wikipedia.org.
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LASSO: Least Absolute Shrinkage and Selection Operator

I Shrinks the coefficients by imposing the constraint:

β̂R = arg min
β

RSS subject to

p∑

j=1

|βj | ≤ C

I Equivalent Lagrangian form:

β̂R = arg min
β

RSS + λ

p∑

j=1

|βj |, λ ≥ 0.

I When C is sufficiently small (or λ is sufficiently large), some
of the coefficients will be exactly zero. Lasso does subset
selection in a continuous way.
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Prostate Cancer Example

I Eight input variables:
I Log caner volume (lcavol)
I log prostate weight (lweight)
I Age (age)
I log of benigh prostatic hyperplasia (lbph)
I Seminal vesicle invasion (svi)
I Log capsular penetration (lcp)
I Gleason score (gleason)
I Percent of Gleason scores 4 or 5 (pgg45)

I Response variable: log of prostate-specific antigen (lpsa)

I Sample size: 97 subjects
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Estimated Coefficients in Prostate Cancer Example

I Training set: 67 obs.; testing set: 30 obs.

I Ten-fold cross-validation to determine λ in ridge and lasso

I Following table is from HTF 2009

Term OLS Best Subset Ridge Lasso PCR

Intercept 2.465 2.477 2.452 2.468 2.497
lcavol 0.680 0.740 0.420 0.533 0.543

lweight 0.263 0.316 0.238 0.169 0.289
age -0.141 0 -0.046 0 -0.152

lbph 0.210 0 0.162 0.002 0.214
svi 0.305 0 0.227 0.094 0.315
lcp -0.288 0 0.001 0 -0.051

gleason -0.021 0 0.040 0 0.232
pgg45 0.267 0 0.133 0 -0.056

Test error 0.521 0.492 0.492 0.279 0.449
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Solution Path for Ridge and Lasso

Ridge Lasso

df (λ) = trace[X(XTX + λI)−1XT ] s =
8∑

j=1

|β̂lasso |/
8∑

j=1

|β̂ols |

Figure from HTF 2009.
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Best Subset, Ridge and Lasso

Estimator Formula

Best subset (size M) β̂j × I [rank(|β̂j |) ≤ M]

Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0)

Best subset

(0,0)

Ridge

(0,0)

Lasso

Figure from HTF 2009.
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Geometric View of Ridge and Lasso

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

β̂ β̂2
. .β

1

β 2

β1
β

Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1|+ |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

Figure from HTF 2009.
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Comparison of Prediction Performance

I Model: y = βT x + σε, where ε ∼ N(0, 1).

I Training set: 20; test set: 200; 50 replications.

I Simulation 1: β = 0.85× (1, 1, 1, 1, 1, 1, 1, 1)T , σ = 3

Method Median MSE Avg. # of 0’s

OLS 6.50 (0.64) 0.0
Lasso 4.87 (0.35) 2.3
Ridge 2.30 (0.22) 0.0

Subset 9.05 (0.78) 5.2

I Simulation 2: β = (5, 0, 0, 0, 0, 0, 0, 0)T , σ = 2

Method Median MSE Avg. # of 0’s

OLS 2.89 (0.04) 0.0
Lasso 0.89 (0.01) 3.0
Ridge 3.53 (0.05) 0.0

Subset 0.64 (0.02) 6.3

Both tables are from Tibshirani (1996).
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Stability in β̂ in Simulation 1
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Stability in β̂ in Simulation 2
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Other Issues

I Bridge regression family

β̂B = arg min
β

RSS + λ

p∑

j=1

|βj |q, q > 0.

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

Figure 3.13: Contours of constant value of
∑

j |βj |q
for given values of q.

I Best subset selection

I Bayesian interpretation

I Computation of Lasso & piecewise linear solution path
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Piecewise Linear Solution Path in Lasso
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Limitations of LASSO

I In the p > n case, the lasso selects at most n variables before
it saturates. The number of selected variables is bounded by
the number of samples. This seems to be a limiting feature
for a variable selection method.

I If there is a group of variables among which the pairwise
correlations are very high, then the lasso tends to select only
one variable from the group and does not care which one is
selected.

I For usual n > p situations, if there are high correlations
between predictors, it has been empirically observed that the
prediction performance of the lasso is dominated by ridge
regression (Tibshirani, 1996).
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Elastic Net Regularization

β̂ENET = arg min
β

RSS + λ1

p∑

j=1

|βj |+ λ2

p∑

j=1

β2j

I The L1 part of the penalty generates a sparse model.
I The quadratic part of the penalty

I Removes the limitation on the number of selected variables;
I Encourages grouping effect;
I Stabilizes the L1 regularization path.

I The elastic net objective function can be expressed as:

β̂ENET = arg min
β

RSS + λ


α

p∑

j=1

|βj |+ (1− α)

p∑

j=1

β2j



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A Simple Illustration: ENET vs. LASSO

I Two independent “hidden” factors z1 and z2

z1 ∼ U(0, 20) z2 ∼ U(0, 20)

I Response vector y = z1 + 0.1z2 + N(0, 1)

I Suppose only observe predictors:

x1 = z1 + ε1, x2 = −z1 + ε2 x3 = z1 + ε3

x4 = z2 + ε4, x5 = −z2 + ε5 x6 = z2 + ε6

(3)

I Fit the model on (x1, x2, x3, x4, x5, x6, y).

I An “oracle” would identify x1,x2,x3 (the z1 group) as the
most important variables.
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Simulation Studies
ElasticNet Hui Zou, Stanford University 17

Simulation example 1: 50 data sets consisting of 20/20/200

observations and 8 predictors. β = (3, 1.5, 0, 0, 2, 0, 0, 0) and σ = 3.

cor(xi,xj) = (0.5)|i−j|.

Simulation example 2: Same as example 1, except βj = 0.85 for all j.

Simulation example 3: 50 data sets consisting of 100/100/400

observations and 40 predictors.

β = (0, . . . , 0
| {z }

10

, 2, . . . , 2
| {z }

10

, 0, . . . , 0
| {z }

10

, 2, . . . , 2
| {z }

10

) and σ = 15; cor(xi, xj) = 0.5

for all i, j.

Simulation example 4: 50 data sets consisting of 50/50/400

observations and 40 predictors. β = (3, . . . , 3
| {z }

15

, 0, . . . , 0
| {z }

25

) and σ = 15.

xi = Z1 + εxi , Z1 ∼ N(0, 1), i = 1, · · · , 5,
xi = Z2 + εxi , Z2 ∼ N(0, 1), i = 6, · · · , 10,
xi = Z3 + εxi , Z3 ∼ N(0, 1), i = 11, · · · , 15,
xi ∼ N(0, 1), xi i.i.d i = 16, . . . , 40.
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Simulation ResultsElasticNet Hui Zou, Stanford University 18

Median MSE for the simulated examples

Method Ex.1 Ex.2 Ex.3 Ex.4

Ridge 4.49 (0.46) 2.84 (0.27) 39.5 (1.80) 64.5 (4.78)

Lasso 3.06 (0.31) 3.87 (0.38) 65.0 (2.82) 46.6 (3.96)

Elastic Net 2.51 (0.29) 3.16 (0.27) 56.6 (1.75) 34.5 (1.64)

No re-scaling 5.70 (0.41) 2.73 (0.23) 41.0 (2.13) 45.9 (3.72)

Variable selection results

Method Ex.1 Ex.2 Ex.3 Ex.4

Lasso 5 6 24 11

Elastic Net 6 7 27 16
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Other Issues

I Elastic net with scaling correction: β̂enet = (1 + λ2)β̂ENET .

I Keep the grouping effect and overcome the double shrinkage
by the quadratic penalty (too much shrinkage/bias towards
zero).

I The elastic net solution path is also piecewise linear.

I Solviing elastic net is essentially solving a LASSO problem
with augmented data.

I Coordinate descent algorithm efficiently solves the elastic net
solution.

I Elastic net can also be used in classification and other
problems like GLM.

I The glmnet package in R use coordinate descent algorithm
solves elastic-net type problems.
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South African heart disease
I A subset of Coronary Risk-Factor Study (CORIS) survey.
I 462 white males between 15 and 64 from Western Cape,

South Africa.
I Response variable: presence (160) or absence (302) of

myocardial infarction.
I Seven input variables: systolic blood pressure (sbp), obesity,

tobacco, ldl, famhist, alcohol, age. Table below is from EOSL
(2009).

Variable Coef SE Z score

Intercept -4.130 0.964 -4.285
sbp 0.006 0.006 1.023

tobacco 0.080 0.026 3.034
ldl 0.185 0.057 3.219

famhist 0.939 0.225 4.178
obesity -0.035 0.029 -1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184
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Solution path for L1 regularized logistic regression
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FIGURE 4.13. L1 regularized logistic regression coef-
ficients for the South African heart disease data, plotted
as a function of the L1 norm. The variables were all
standardized to have unit variance. The profiles are
computed exactly at each of the plotted points.

Figure from EOSL, 2009.
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