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Many environmental scientists are analysing spatial data by geostatisticalmethods and interpolating from sparse
sample data by kriging to makemaps. They recognize its merits in providing unbiased estimates with minimum
variance. Several statistical packages nowhave the facilities they require, as do some geographic information sys-
tems. In the latter kriging is an option for interpolation that can be done at the press of a few buttons. Unfortu-
nately, the ease conferred by this allows one to krige without understanding and to produce unreliable and
evenmisleading results. Crucial for soundkriging is a plausible function for the spatial covariances or,morewide-
ly, of the variogram. The variogrammust be estimated reliably and thenmodelled with valid mathematical func-
tions. This requires an understanding of the assumptions in the underlying theory of randomprocesses onwhich
geostatistics is based. Here we guide readers through computing the sample variogram and modelling it by
weighted least-squares fitting. We explain how to choose the most suitable functions by a combination of
graphics and statistical diagnostics. Ordinary kriging follows straightforwardly from themodel, but small changes
in the model function and its parameters can affect the kriging error variances. When kriging is automated these
effects remain unknown.We explain the choices to bemadewhen kriging, i.e. whether the support is at points or
over blocks, and whether the predictions are global or within moving windows.

© 2013 Elsevier B.V. All rights reserved.
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Random process

I Features of the environment, such as soil, are the product of
many physical, chemical and biological processes.

I These processes are physically determined, but their
interactions are so complex that the variation appears to be
random.

I Two common approaches:
I Treat them as random processes and fit statistical models such

as kriging.
I Use geostatistical simulation to approximate these complex

processes.

I Here we only focus on the statistical modelling approach,
particularly variogram and kriging.
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Stationarity

I Allows us to assume that there is the same degree of variation
from place to place.

I A simple model to represent the random process:

Z (s) = µ+ ε(s)

I Z (s) is a random variable of interest at place s.
I µ is the mean of the process.
I ε(s) is a random error with mean 0 and a semivariance γ(h).

I Stationary model with trend (also called external drift):
Z (s) = f (s) + ε(s), where f (s) is the trend component.

4 / 18



Semivariance

I Semivariance (also called variogram) is defined as:

γ(h) =
1

2
Var [Z (s)− Z (s + h)]

I Z (s) and Z (s + h) are values of Z at places s and s + h.

I Lag h: separation between samples in both direction and
distance.

I Assumption: the semivariance only depends on h.

I Isotropic variogram: γ(|h|) = 1
2Var [Z (s)− Z (s + h)], where

|h| is the distance of h.
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Variogram

I Two types of variogram
I Theoretical variogram models: e.g. spherical, power,

exponential models. Continuous and usually smooth.
I Sample variogram: estimate of γ(h) from the sample data. A

finite set of discrete lags (i.e. h).

I Sample variogram can be computed by the method of
moments attributed to Matheron (1965):

γ̂(h) =
1

2m(h)

m(h)∑
j=1

[Z (sj)− Z (sj + h)]2 ,

where m(h) is the number of paired samples are lag h.
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Lag interval and bin width

either at shorter intervals along the rows and columns of the grid or in a
nested arrangement. Webster and Lark (2013) illustrate several options.

3.2.2. Lag interval and bin width
For data on a regular grid or at equal intervals on transects the natu-

ral increment in the experimental variogram is one interval.Where data
are irregularly scattered, the comparisons must be grouped by distance
and perhaps by direction also; Fig. 4 shows the geometry of the group-
ing. The practitioner must choose both the length of the step, h, and the
width of the bin, w, within which the squared differences are averaged
for each step. Usually the two are coordinated such that each compari-
son is placed in one and only one bin. Choosing h andw requires judge-
ment. If h is short andw is narrow then there will be many estimates of
γ(h), each based on few comparisons and subject to large error, and the
variogramwill appear ‘noisy’. If in contrast h is large andw is wide there
might be too few estimates of γ(h) to reveal the form of the variogram.
You should graph the experimental values so that you can select
sensibly.

3.2.3. Marginal distribution
Another attribute of data that can affect the reliability of variograms

is themarginal distribution. Long upper tails in the distributions of pos-
itively skewed data inflate variances and distort the variogram.We rec-
ommend that you compute histograms and box-plots and calculate the
skewness coefficient to assess the distribution.

The distributions of many environmental variables are positively
skewed, some strongly so. In many instances they are approximately
log-normal, as Ahrens (1965) noted for the chemical elements in the
earth. If the skewness coefficient of your data exceeds 1 then try fitting
a three-parameter log-normal curve to them, and if that fits well then
youwould dowell to transform the data to logarithms and do all further
analyses on the logarithms, as in the example of exchangeable K+ in the
soil at Broom's Barn Farm. After kriging (see below) you may wish to
transform your predictions back to the original scale of measurement,
and there are standard formulae for that (see Webster and Oliver,
2007, page 185). If the skewness is less pronounced, with a coefficient
between 0.5 and 1, transformation to square roots might normalize
the distribution approximately. Other variables, such as proportions of
particle-size fractions in the soil, are constrained between 0 and 1,
and for these you might find it efficient to transform them to angles
by φ ¼ arcsin

ffiffiffi

q
p

where q is the proportion.
Outliers cause more serious distortions in geostatistics. They are not

simply extremes or near extremes in a frequency distribution, but are
unexpectedly large or small values (Barnett and Lewis, 1994). They are
values that seemhighly unlikely to belong to the populations of interest.
Examples include the phosphorus concentration in the soil under

Fig. 4. The geometry in two dimensions for discretizing the lag into bins by distance and
direction. The shaded area is one bin.

Table 2
Parameters of models fitted to experimental variograms of log10K+ at Broom's Barn.

Estimates of parameters Diagnostics

Data set and model Variance explained/%
c0 c r/m a/m β α RSSa

Full set (434)
Spherical 0.00453 0.01524 397 0.00368 99.4
Exponential 0.00158 0.01981 180 0.01943 96.7
Power 0 0.00778 0.388 0.05727 91.2

Subset (87)
Spherical 0.00811 0.01151 376 0.01184 40.9
Exponential 0.00135 0.01601 110 0.01127 43.8
Power 0 0.01092 0.248 0.01254 43.1

The symbols for the parameters are defined in the text.
a RSS is the sum of squares of the residuals from the fitted function.

Fig. 5. Box-plot computed from a field of 400 values simulatedwith a spherical variogram
functionwith c0 = 0, c = 1and r = 75 and contaminatedwith five outliers,■, which are
three times beyond the interquartile range, and ● are the near outliers.

61M.A. Oliver, R. Webster / Catena 113 (2014) 56–69

The geometry in 2D for discretizing the lag into bins by distance
and direction. Shaded area is one bin.

Figure from Oliver and Webster (2014).
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Variogram (cont.)

to overcome this impasse we must make a further assumption, namely
that the process is stationary.

2.1. Stationarity

The notion of stationarity underpins geostatistics and allows us to
assume that there is the same degree of variation from place to place.
We can represent the random process by the model

Z xð Þ ¼ μ þ ε xð Þ; ð1Þ

where μ is themean of the process and ε(x) is a random quantity with a
mean of zero and a covariance, C(h), given by

C hð Þ ¼ E ε xð Þε x þ hð Þ½ �; ð2Þ

which is equivalent to

C hð Þ ¼ E Z xð Þ−μf g Z x þ hð Þ−μf g½ � ¼ E Z xð ÞZ x þ hð Þ−μ2
h i

: ð3Þ

In these equations h is the separation between samples in both dis-
tance and direction; Z(x) and Z(x + h) are the values of Z at places x
and x + h, and E denotes the expectation. If the mean is not constant
then the covariance cannot exist, and we invoke Matheron's (1965)
somewhat weaker assumption of intrinsic stationarity in which the
expected differences are zero, i.e. E[Z(x) − Z(x + h)] = 0, and the co-
variance is replaced by half the variance of the differences, the
semivariance:

γ hð Þ ¼ 1
2
var Z xð Þ−Z x þ hð Þ½ � ¼ 1

2
E Z xð Þ−Z x þ hð Þf g2
h i

: ð4Þ

Like the covariance, the semivariance depends onh and only onh, and
as a function of h it is the variogram, γ(h). The variogram is more gener-
ally useful than the covariance function because of theseweaker assump-
tions, and so it has become the central tool of geostatistics. For second-
order stationary processes the covariance function and variogram are
equivalent:

γ hð Þ ¼ C 0ð Þ−C hð Þ; ð5Þ

where C(0)σ2 is the variance of the random process. We mention one
more function of h, namely the correlogram: ρ(h) = C(h)/σ2.

We close this section by emphasizing that randomness and station-
arity are assumed attributes of ourmodels of variation; they are not prop-
erties of either the real world or of data, and there is no formal test for
them. Rather, they are useful in that they help us to understand the com-
plexity of the real world and to predict its conditions at unvisited places.

3. The variogram

The variogram as defined above is that of the random process Z(x)
which we assume to have given rise to the actual realization on the
ground; it is a theoretical function.

There are two other variograms that must be recognized.

• The regional variogram is that of a particular realization of the ran-
dom process in a finite region. You might compute if you had com-
plete information of the region and a computer with infinite
capacity. It can differ from the theoretical variogram in that a region
does not necessarily encompass all the variation in the assumed the-
oretical process. It is sometimes called the ‘non-ergodic variogram’ for
this reason (see for example Brus and de Gruijter, 1994). We can get
close to the regional variogram with dense data from satellite and
proximal sensors when we compute their experimental variograms.

• The experimental variogram is one that we estimate from data, z(xi),

i = 1,2,…. It is usually computed by the method of moments and at-
tributed to Matheron (1965):

γ̂ hð Þ ¼ 1
2m hð Þ

Xm hð Þ

j¼1

z x j

� �
−z x j þ h

� �n o2
; ð6Þ

where m(h) is the number of paired comparisons at lag h. By
incrementing h in steps we obtain an ordered set of values, as
shown by the points plotted in each of the graphs in Fig. 1. This is
the experimental variogram, also known as the sample variogram
because it is based on a sample. It estimates points on the regional
variogram.

3.1. Computing and modelling variograms

By programming Equation (6) we can compute the experimental
variogram from data. The result depends on the precise way we apply
the program and the decisionswemake, whichwe discuss aftermodel-
ling. These choices affect the outcome and should be stated clearly in
any paper for the Journal.

The experimental variogram consists of semivariances at a finite set
of discrete lags, whereas the underlying function is continuous for all h,
Equation (4). Therefore, the next step is to fit a smooth curve or surface
to the experimental values, one that describes the principal features of
the sequence while ignoring the point-to-point erratic fluctuation. The
curve must have a mathematical expression that can describe the vari-
ances of random processes with changing lag and guarantee non-
negative variances in your predictions. The choice is limited to a few

Fig. 1. Experimental variograms of log10K+ at Broom's Barn Farm. In the left-hand col-
umn are the ones computed from 87 data, and on the right are the ones computed
from all 434 data. The lags have been binned over all directions and incremented in
steps of 40 m, the sampling interval on the grid. The solid lines show the models
fitted to them with (a) spherical model, (c) exponential model,(e) power function,
and computed from 434 data and fitted with (b) spherical model, (d) exponential
model and (f) power function.

58 M.A. Oliver, R. Webster / Catena 113 (2014) 56–69

Left(right): computed from 87 (434) samples. Curves: power
variogram model.

Figure from Oliver and Webster (2014).
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Sill, nugget and range

I Variogram shows the spatial correlation from the collected
data or specified model.

I Range: the distance where the variogram first flattens out.
I Samples separated within the range are spatially correlated.
I Outside range: not spatially correlated.

I Nugget: semivariance at distance “zero”.
I Environmental variability at the scale of sampling (geological

micro-structure).
I Error inherent in the measurements (sampling design and

sampling unit size).

I Sill: the value variogram attains at the range (the value on
y -axis).

I Partial sill: Sill minus nugget effect
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Illustration of a variogram
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Pure nugget Figure from Oliver and Webster (2014).

it has a variable part which we can calculate as

A ¼ n lnRþ 2p; ð9Þ

where n is the number of estimated semivariances and R is the mean
of the squared residuals. We can usually increase p to improve the fit,
i.e. to diminish R, but if in doing so we do not diminish A then the elab-
oration is of little worth.

6. If you are still unsure which model to choose specifically for kriging
then do a cross-validation and choose the model that produces a
mean squared error closest to the mean kriging variance; we de-
scribe it below after we have introduced kriging.

Likelihood methods of choosing and fitting models are also gaining
ground among geostaticians, especially to incorporate trend and exter-
nal drift (Kerry and Oliver, 2007a; Lark, 2012; Lark andWebster, 2006;
Lark et al., 2006). However, in 90% of investigations the above approach
should be satisfactory if applied with understanding.

3.2. Reliability of the empirical variogram

Several factors affect the reliability of the experimental variogram;
they include the following:

• Size of sample.
• Lag interval and bin width.
• Marginal distribution of the data.
• Anisotropy.
• Trend.

We consider these in turn.

3.2.1. Sample size
Themost important factor determining the reliability, or accuracy, of

the empirical variogram and over which we have control is the size of
the sample on which it is based. In general the more data you have
the greater is the accuracy. Fig. 2, computed by repeated grid sampling
from a large two-dimensional simulated field, shows how the confi-
dence intervals narrow as the number of data increases and the sam-
pling interval decreases. Note also

(a) that the same data are usedmany times over in the calculation of
the semivariances with the result that estimates are correlated
with one another, and therefore one cannot use the classical for-
mula for confidence intervals based on χ2;

(b) that the confidence intervals widen as the lag distance increases;
and

(c) that the confidence intervals for the smaller samples are wide at
all lags; clearly variograms computed from fewer than 100 data
(see Fig. 2) are unreliable, a claim we have made forcibly before
(Webster and Oliver, 1992).

In the above illustration, the sampling interval decreases as the size
of sample increases. As a result the spread of values of γ̂ hð Þ narrows at
short lags. But the sampling interval itself is important for another rea-
son; it determines the utility of the empirical variogram. If the interval is
larger than the correlation range of the process or in the realization then
the empirical variogramwill beflat: ‘pure nugget’ in the jargon. It is use-
less for prediction and tells us only that all variation occurs within a
shorter distance. Fig. 3 derived from Oliver's first survey of the soil in
the Wyre Forest of England is an example (see Oliver and Webster,
1987). The sampling interval was approximately 165 m; later after
more intense sampling the spatial correlation was found to extend to
no more than about 70 m.

We can further illustrate the effect of sample size and intensity with
actual data from the survey of the 80-ha Broom's Barn Farm in Suffolk
(Webster and McBratney, 1987). The topsoil was sampled at 40-m in-
tervals on a square grid to give 434 data. The exchangeable potassium

(K+) concentration was measured, and Table 1 summarizes the statis-
tics. The data were transformed to common logarithms (log10) to stabi-
lize the variance because the skewness coefficient is 2.04 (see
Section 3.2.3 below). Fig. 1(b) shows the experimental variogram com-
puted from all 434 data plotted as a series of points; they follow a
smooth progression to which the spherical model fits well. In Fig. 1(a)
the variogram has been computed from only 87 points. The progression
is now erratic because the estimates are less reliable, and the fitted
spherical model appears poor and we cannot be confident that we
have chosen wisely. Fig. 1(c,e) shows that the exponential and power
functions, respectively, appear to fit this experimental variogram equal-
ly well.

Of the three graphs on the left-hand side of Fig. 1, the exponential
model, Fig. 1(c), appears to provide the best fit visually to the experi-
mental values, whereas the power function, Fig. 1(e), appears to fit
the least well. For comparison, we fitted these functions to the
variogram of the full set of data, Fig. 1(d,f). The power function,
Fig. 1(f), deviates from the experimental values at both the short and
long lag distances. The lack of fit of the exponential function, Fig. 1(d),
is less obvious but perceptible. The choice of function for the full set of
data could be done visually, but for the sub-sample diagnostic informa-
tion from the model fitting is needed. Table 2 gives the model type, the
parameters and the diagnostics. For the full set of data, the spherical
function clearly fits best with the smallest residual sum of squares
(RSS) and the largest percentage variance explained. For the subset of
87 there is little to choose between the three, but the diagnostics pro-
vide a weak indication in favour of the exponential function.

Most introductory statistical texts instruct their readers to sample at
random so as to obtain unbiased estimates, and they describe ways of
designing schemes for the purpose. In geostatistics the randomness is
assumed to be in the underlying process – it is part of the model – and
we can take a more relaxed attitude to sampling provided we avoid
bias. Grids are convenient in thefield and provide even cover for kriging.
As above, however, if they are coarse they might miss the short-range
variation crucial for estimating themost important part of the variogram.
They are best supplemented with extra sampling points within the grid,

Fig. 3. Experimental variogram of topsoil sand from a survey in theWyre Forest, England.

Table 1
Summary statistics of exchangeable potassium (K+) at Broom's Barn.

K+/mgl−1 Log10(K+) K+/mg l−1 Log10(K+)

Number of data 434 434 87 87
Minimum 12.0 1.079 14.0 1.146
Maximum 96.0 1.982 70.0 1.845
Mean 26.3 1.398 26.7 1.404
Median 25.0 1.398 26.0 1.415
Std dev. 9.039 0.134 9.403 0.138
Variance 87.71 0.0180 88.42 0.019
Skewness 2.04 0.39 1.76 0.39

60 M.A. Oliver, R. Webster / Catena 113 (2014) 56–69

I No spatial correlation exists;

I sampling interval is larger than the correlation range.
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A variogram model

One of the most popular functions is the isotropic
spherical-plus-nugget model.

γ(h) = c0 + c

{
3h

2r
− 1

2

(
h

r

)3
}

for 0 < h ≤ r

= c0 + c for h > r

= 0 for h = 0,

I in which h = |h| is the lag distance;

I c0 is the nugget;

I c0 + c is the sill;

I c is the partial sill;

I r is the range.
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Variogram models
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How to model variogram?

I Plot the sample variogram.

I Choose several models that appear to have the right shape
and fit each model based on the sampled data.

I Plot the fitted models together with the sample variogram
and assess whether the fit looks reasonable.

I If more than one models seem to fit well, then
I we can choose the one with the smallest RSS;
I or run CV and choose the one that produce a mean squared

error closest to mean kriging variance.

I Spherical, exponential, Gaussian and power models are
popular variogram models. In case of having outlying samples,
use robust variogram estimators, such as Cressie-Hawkins,
Dowd, and Genton estimators.
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Two robust variogram estimators

I Cressie-Hawkins estimator (Cressie and Hawkins, 1980).

2γ̂CH(h) =

{
1

m(h)

∑m(h)
j=1 |z(xj)| − z(xj + h)|1/2

}4

0.457 + 0.494
m(h) + 0.045

m2(h)

I Dowd’s estimator (Dowd, 1984). 2

γ̂D(h) = 2.198{median|yj(h)|}2,

where yj(h) = z(xj)− z(xj + h), j = 1, 2, . . . ,m(h).
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Robust variogram estimators

former dung heaps in arable fields and hydrocarbons left by spilled oil
on derelict industrial land (brown-field). They can also be mistakes in
a chemical analysis or transcription of data. Like data in long tails of a
distribution they inflate variograms; but in these instances they can fal-
sify descriptions of theprocesses of interest, and they certainly do if they
are mistakes.

A histogram or box-plot should help you to identify outliers beyond
the limits of themain distribution. Having identified an outlier youmust
then decidewhat to dowith it. If it seems amistake then remove it from
the data or replace it with a correct value. If it seems genuine but seems

to belong to some population other than the one you are investigating
then again remove it. These instructions might seem obvious when
stated, but many authors do not notice such anomalies until referees
and editors point them out.

To show the effect of outliers Kerry and Oliver (2007b) created a
normally distributed random field, N (0,1), of 400 values on a 10-m
grid generated by a spherical function with c0 = 0, c = 1 and r = 75
m, Equation (7). Five grid nodeswere contaminated by a secondary pro-
cess drawn from a normally distributed random population with unit
variance and mean of 1.5. These values were added to the original
values of the primary process to give values greater than4.0 and a skew-
ness coefficient of 1.5. Fig. 5, a box-plot of the field, shows these clearly.
We computed and modelled an experimental variogram from all the
values, Fig. 6(a). The nugget variance has increased dramatically to
0.617 and the sill variance to 1.341, showing the effect of adjacent dispa-
rate values, and bothmuch larger than those of the generator, shown by
the lower line. Fig. 6(b) shows the experimental variogram and model
for the same field, but with the outliers removed. The parameters are al-
most identical to those of the generator, namely c0 = 0, c ≈ 1.0 and
r = 73.6 units. Clearly, a variogram containing outliers would mislead
us if those outliers belong to a process other than the one in which we
are interested; we should remove them if we suspect them as
contaminants.

There are situations, however, in which it is difficult to decide
whether what seem to be outliers belong to a different process or
where the locations of areas with very large values of some pollutant
need to be known. In such situations you may wish to retain these
values when you subsequently krige, and if you do then you should
use one of the robust variogram estimators, such as those of Cressie
and Hawkins (1980), Dowd (1984) and Genton (1998). All of these
downplay the effects of outliers. Their formulae are listed in Appendix
A. We illustrate their merits below.

Experimental variogramswere computedwith the three robust esti-
mators above and Matheron's method of moments for the simulated
fields with skewness coefficients of zero and 1.5. Fig. 7(a) shows that
the experimental values for the four estimators give similar results
and follow the spherical generating function of the simulated field
closely. For the field contaminated with five outliers, both variograms
computed by the Matheron and Genton estimators, Fig. 7(b), depart
considerably from the generating function, but the sill of the former is
the more inflated. The variograms estimated by Cressie and Hawkins's
and Dowd'smethods, Fig. 7(b), are similar to each other and to the gen-
erating function. These variograms could be modelled and used for
kriging with the outliers remaining in the data. Although these results
illustrate the success of the Cressie and Hawkins and Dowd estimators,
you should try them all to see which performs best for your data.

Fig. 7. Experimental variograms computed by Matheron's method of moments (×) and the robust estimators of Cressie and Hawkins (●), Dowd ( ) and Genton (⋆).

Fig. 6. Experimental variograms (symbols) and fittedmodels (solid lines) computed from
a field of 400 values simulated with a spherical variogram function with zero nugget
(lower line in (a)): (a) contaminatedwith five outliers and (b)with the outliers removed.
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x: Matheron’s method of moments; dots: Cressie and Hawkins; o: Dowd; *: Genton

Figure from Oliver and Webster (2014).
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Anisotropy

3.2.4. Anisotropy
In many instances variation is anisotropic, yet investigators either

fail to detect it, disregard it when they have detected it or model it im-
properly. The result is that they present misleading views of the true
situations.

If the anisotropy is geometric, which is often approximately the case,
then a simple linear transformation of the spatial coordinates will make
the variation isotropic. The equation for the transformation is

Ω ϑð Þ ¼ A2cos2 ϑ−φð Þ þ B2sin2 ϑ−φð Þ
n o1=2

; ð10Þ

whereΩ(ϑ) defines the anisotropy, φ is the direction of maximum con-
tinuity and ϑ is the direction of the lag. For a spherical or exponential
variogram, A is the distance parameter in the direction of greatest con-
tinuity, i.e. the maximum value, and B is the distance parameter in the
perpendicular direction, the direction of least continuity or greatest var-
iation, and is theminimum. For a power function, the roles ofA and B are

reversed: A has the larger gradient in the direction of the greatest rate of
change and B has the smaller gradient in the direction of least change.

Fig. 8 displays a two-dimensional experimental variogram in which
the effective range varies with changes in direction. It shows semi-
variances, shaded from light (small) to dark (large), that have been
computed from a field of 100 000 simulated values on a grid of
100 × 100with unit interval generatedwith an anisotropic exponential
function. The anisotropy is evident, with continuitymost pronounced in
the direction approximately−20° (≈70° clockwise from north).

Fig. 9 shows the same semivariances projected into the familiar one-
dimensional form with lag distance on the abscissa. It also shows by
dashed lines the envelope of the fitted anisotropic exponential model:

γ h;ϑð Þ ¼ c0 þ c 1− exp − hj j
Ω ϑð Þ

� �� �
; ð11Þ

where |h| = h is the lag distance, c is the maximum of the correlated
variance and Ω(ϑ) is as defined in Equation (Deutsch & Journel, 1998)
above. Table 4 lists the values of the parameters of the model.

For irregularly scattered data, one must group the separations by
both direction and distance, as in Fig. 4. The angle, α, within which
data are included in estimating the semivariance should initially allow
complete cover, e.g. α = π/4 for four principal directions; all compari-
sons will then fall within one and only one of those directions. The
procedure loses some directional information. If it reveals anisotropy
then you should narrow α to emphasize its expression and hope to ob-
tain a better idea of the direction of maximum continuity, φ in Equation
(10). As α becomes smaller, however, the number of paired compari-
sons in each estimate of γ(h) becomes fewer and the error in it in-
creases, unless you increase the size of the sample. Binning is a
compromise, but it always leads to an underestimate of the anisotropy
ratio, A/B, even with very large samples.

3.2.5. Trend
Trend in geostatistics is gradual variation in space. It adds to the ran-

dom variation that we have already encountered. Equation (6) esti-
mates the theoretical variogram, γ(h), only where the underlying
process is wholly random. We can represent the two together theoreti-
cally by the model:

Z xð Þ ¼ u xð Þ þ ε xð Þ: ð12Þ

Fig. 8. Two-dimensional anisotropic experimental variogram of a simulated field of
100 000 values computed to 11 intervals on the principal axes.

Fig. 9. The same experimental variogram as in Fig. 8 butwith values projected into one di-
mension and the envelope of the fitted anisotropic exponential model shown by the
dashed lines. The directions are in 45° segments anticlockwise from φ = 23.8°.

Table 3
Diagnostics from cross-validation of variogram models fitted to experimental variograms
of log10K+ at Broom's Barn and typical punctual kriging variances.

Data set
and model

Kriging
varianceaME MSE MSDR

Full set (434)
Spherical 0.000363 0.00761 1.031
Exponential 0.002321 0.00744 0.590
Power 0.000827 0.00753 0.634

Subset (87)
Spherical 0.001394 0.01314 0.977 0.00866
Exponential 0.004374 0.01366 0.703 0.00159
Power 0.001934 0.01341 0.903 0.01100

a At the centres of grid cells surrounded by data at 16 grid nodes.

Table 4
Parameters of the anisotropic exponential function fitted to the experimental variogramof
the simulated anisotropic field, Figs. 9 and 10, accounting for 76.6% of the variance.

c0 c φ A B A/B

0.327 0.545 23.8° 4.261 1.246 3.82

The symbols for the parameters are defined in the text.
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Left: 2D anisotropic sample variogram of a simulated field.
Right: 90o and 135o are on the top; 0o and 45o are at the bottom.

Figure from Oliver and Webster (2014).
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Kriging

I The most popular methods for spatial prediction.

I Solves a set of linear equations, which contains variogram, to
provide the best linear unbiased predictions (BLUP). Best in
the sense of minimum variance.

I Returns the observed values at sampled locations.

I Interpolates the values at unsampled locations using the
sampled data and the experimental or modeled variogram.

I Provides the standard errors of the interpolated values.

I Serves well in most situations with its assumptions easily
satisfied.

I Robust w.r.t. moderate departures from those assumptions
and a less than optimal choice of the variogram model.
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