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Many environmental scientists are analysing spatial data by geostatistical methods and interpolating from sparse
sample data by kriging to make maps. They recognize its merits in providing unbiased estimates with minimum
variance. Several statistical packages now have the facilities they require, as do some geographic information sys-
tems. In the latter kriging is an option for interpolation that can be done at the press of a few buttons. Unfortu-
nately, the ease conferred by this allows one to krige without understanding and to produce unreliable and
even misleading results. Crucial for sound kriging is a plausible function for the spatial covariances or, more wide-
ly, of the variogram. The variogram must be estimated reliably and then modelled with valid mathematical func-
tions. This requires an understanding of the assumptions in the underlying theory of random processes on which
geostatistics is based. Here we guide readers through computing the sample variogram and modelling it by
weighted least-squares fitting. We explain how to choose the most suitable functions by a combination of
graphics and statistical di Ordinary kriging i ardly from the model, but small changes
in the model function and its parameters can affect the kriging error variances. When kriging is automated these
effects remain unknown. We explain the choices to be made when kriging, i.e. whether the support is at points or
over blocks, and whether the predictions are global or within moving windows.

© 2013 Elsevier B.V. All rights reserved.
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Random process

Features of the environment, such as soil, are the product of
many physical, chemical and biological processes.

These processes are physically determined, but their
interactions are so complex that the variation appears to be
random.
Two common approaches:
» Treat them as random processes and fit statistical models such
as kriging.
» Use geostatistical simulation to approximate these complex
processes.
Here we only focus on the statistical modelling approach,
particularly variogram and kriging.
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Stationarity

> Allows us to assume that there is the same degree of variation
from place to place.

» A simple model to represent the random process:

Z(s) = i+ e(s)

» Z(s) is a random variable of interest at place s.
> 1 is the mean of the process.
» ¢(s) is a random error with mean 0 and a semivariance (h).

» Stationary model with trend (also called external drift):
Z(s) = f(s) + €(s), where f(s) is the trend component.
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Semivariance
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Semivariance (also called variogram) is defined as:
1
~v(h) = 5 Var[Z(s) — Z(s + h)]

Z(s) and Z(s + h) are values of Z at places s and s + h.
Lag h: separation between samples in both direction and
distance.

Assumption: the semivariance only depends on h.

Isotropic variogram: ~(|h|) = i Var[Z(s) — Z(s + h)], where

|h| is the distance of h.
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Variogram

» Two types of variogram

» Theoretical variogram models: e.g. spherical, power,
exponential models. Continuous and usually smooth.

» Sample variogram: estimate of y(h) from the sample data. A
finite set of discrete lags (i.e. h).

» Sample variogram can be computed by the method of
moments attributed to Matheron (1965):

1 m(h)
A(h) = 2m(h) Z [Z(s;) — Z(s; + W),

where m(h) is the number of paired samples are lag h.
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Lag interval and bin width
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The geometry in 2D for discretizing the lag into bins by distance
and direction. Shaded area is one bin.

Figure from Oliver and Webster (2014).



Variogram (cont.)

Variance
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Left(right): computed from 87 (434) samples. Curves: power
variogram model.

Figure from Oliver and Webster (2014).
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Sill, nugget and range
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Variogram shows the spatial correlation from the collected
data or specified model.
Range: the distance where the variogram first flattens out.
» Samples separated within the range are spatially correlated.
» OQutside range: not spatially correlated.
Nugget: semivariance at distance “zero”.
» Environmental variability at the scale of sampling (geological
micro-structure).
» Error inherent in the measurements (sampling design and
sampling unit size).
Sill: the value variogram attains at the range (the value on
y-axis).
> Partial sill: Sill minus nugget effect
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lllustration of a variogram
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Pure n ugget Figure from Oliver and Webster (2014).
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» No spatial correlation exists;

» sampling interval is larger than the correlation range.
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A variogram model

One of the most popular functions is the isotropic
spherical-plus-nugget model.

3h 1 /h\°
pr— _— p— <
v(h) C0+C{2r 2<r>}for0<h_r

c+cforh>r
= 0for h=0,

v

in which h = |h| is the lag distance;

v

co is the nugget;

v

co + c is the sill;

v

c is the partial sill;

v

r is the range.
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Variogram models
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How to model variogram?

» Plot the sample variogram.

» Choose several models that appear to have the right shape
and fit each model based on the sampled data.

» Plot the fitted models together with the sample variogram
and assess whether the fit looks reasonable.

» If more than one models seem to fit well, then

» we can choose the one with the smallest RSS;
» or run CV and choose the one that produce a mean squared
error closest to mean kriging variance.

» Spherical, exponential, Gaussian and power models are
popular variogram models. In case of having outlying samples,
use robust variogram estimators, such as Cressie-Hawkins,
Dowd, and Genton estimators.
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Two robust variogram estimators

» Cressie-Hawkins estimator (Cressie and Hawkins, 1980).

{m(h) Zm(h) |Z(XJ)| — Z(X + h)|1/2}

29cH(h) =

0.494 | 0.045

» Dowd's estimator (Dowd, 1984). 2
Ap(h) = 2.198{median|y;(h)|}?,

where y;(h) = z(xj) — z(x; + h), j = 1,2,..., m(h).
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Robust variogram estimators
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Figure from Oliver and Webster (2014).
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Anisotropy
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Left: 2D anisotropic sample variogram of a simulated field.
Right: 90° and 135° are on the top; 0° and 45° are at the bottom.

Figure from Oliver and Webster (2014).
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Kriging

» The most popular methods for spatial prediction.

» Solves a set of linear equations, which contains variogram, to
provide the best linear unbiased predictions (BLUP). Best in
the sense of minimum variance.

» Returns the observed values at sampled locations.

> Interpolates the values at unsampled locations using the
sampled data and the experimental or modeled variogram.

» Provides the standard errors of the interpolated values.

» Serves well in most situations with its assumptions easily
satisfied.

» Robust w.r.t. moderate departures from those assumptions
and a less than optimal choice of the variogram model.
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