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Nonparametric regression

I In the traditional regression analysis, the form of the
regression function has been specified. For example, we might
use linear model:

y = β0 + β1x + β2x2 + β3x3 + ε

a cubic polynomial.

I However in some situations we don’t have enough information
to make an assumption like this, or we don’t want to. Instead
we might want to only assume: y = f (x) + ε
with some smoothness assumptions on f (x), such as

I the continuity of the regression function f (x) and its
derivatives f ′(x), f ′′(x).

I So we would like to find a nonparametric estimate of f (x)
based on the data.
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Battery voltage drop example
The battery voltage drop in a guided missile motor was observed
over the first 20 seconds of the launch. The data was collected to
develop a digital-analog simulation model of the missile.
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Cubic fit of battery data
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Voltage Drop vs. Time − Cubic Fit
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Residuals from Cubic Model

Both the plots of the fits and the residuals from the cubic model
suggests that this is not a good model.
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Quartic fit of battery data
However the quartic model

y = β0 + β1x + β2x2 + β3x3 + β3x4 + ε

seems reasonable based on the the following two plots.
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Piecewise polynomials

I Instead of using the quartic model, we can use piecewise
polynomial function f (x) by dividing the domain of X into
contiguous intervals, and representing f by a separate
polynomial in each interval.

I The top right panel on next slides shows a piecewise linear fit
which needs six parameters.

I Usually we would prefer the lower left panel, which is also
piecewise linear, but restricted to be continuous at the two
knots. In this case, since there are two restrictions, we only
needs four parameters.

I A more direct way to proceed in this case is to use a basis
that incorporates the constraints:

h1(X ) = 1, h2(X ) = X , h3(X ) = (X−ξ1)+, h4(X ) = (X−ξ2)+

where subscript + denotes the positive part.
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Piecewise polynomials (cont.)

142 5. Basis Expansions and Regularization
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .

Figure from HTF 2009.
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Piecewise polynomials (cont.)

I We often prefer smoother functions, and these can be
achieved by increasing the order of the local polynomial.

I Figure on the next slide shows a series of piecewise-cubic
polynomials fit to the same data with increasing orders of
continuity at the knots.

I The function in the lower right panel is continuous, and has
continuous first and second derivatives at the knots. It is
known as a cubic spline.

I Note cubic spline is the lowest order of splines with
continuous first and second derivatives. It is claimed that
cubic splines are the lowest-order spline for which the
knot-discontinuity is not visible to the human eye.

I We can show that the function in lower right panel on next
slides has the following six basis:

h1(X ) = 1, h3(X ) = X 2, h5(X ) = (X − ξ1)3+
h2(X ) = X , h4(X ) = X 3, h6(X ) = (X − ξ2)3+
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Piecewise cubic polynomials

5.2 Piecewise Polynomials and Splines 143
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

Figure from HTF 2009.
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B-spline and natural spline basis
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B-splines

I These fixed-knot splines are also known as regression splines.

I In practice, one needs to select the order of the spline, the
number of knots and their placement.

I One simple approach is to parameterize a family of splines by
the number of basis functions or degrees of freedom, and have
the observations xi determine the positions of the knots.

I For example: bs(x,df=7) in R generates a basis matrix of
cubic-spline functions evaluated at the N observations in X ,
with the 7− 3 = 4 interior knots (ns() function omits by
default the constant term in the basis) at the appropriate
percentiles of X (20, 40, 60 and 80th.)

I One can be more explicit, bs(x, degree=1, knots =

c(0.2, 0.4, 0.6)) generates a basis for linear splines, with
three interior knots.

I The B-spline basis allows for efficient computations even when
the number of knots is large.
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Natural splines

I The behavior of polynomials fit to data tends to be erratic
near the boundaries, and extrapolation can be dangerous.

I Extrapolation problem is even worse with splines. The
polynomials fit beyond the boundary knots behave more wildly
than the corresponding global polynomials in that region (see
the figure in next slide).

I A natural cubic spline adds additional constraints, namely that
the function is linear beyond the boundary knots. This frees
up four d.f. (two constraints each in both boundary regions).

I Natural splines can spent more profitably by sprinkling more
knots in the interior region.

I The price paid in bias near the boundaries, but assuming the
function is linear near the boundaries (where we have less
information anyway) is often considered reasonable.

I A natural cubic spline with K knots is represented by K basis
functions.
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Pointwise variance curves for four different models5.2 Piecewise Polynomials and Splines 145
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FIGURE 5.3. Pointwise variance curves for four different models, with X con-
sisting of 50 points drawn at random from U [0, 1], and an assumed error model
with constant variance. The linear and cubic polynomial fits have two and four
degrees of freedom, respectively, while the cubic spline and natural cubic spline
each have six degrees of freedom. The cubic spline has two knots at 0.33 and 0.66,
while the natural spline has boundary knots at 0.1 and 0.9, and four interior knots
uniformly spaced between them.

the pointwise variances for a variety of different models. The explosion of
the variance near the boundaries is clear, and inevitably is worst for cubic
splines.
A natural cubic spline adds additional constraints, namely that the func-

tion is linear beyond the boundary knots. This frees up four degrees of
freedom (two constraints each in both boundary regions), which can be
spent more profitably by sprinkling more knots in the interior region. This
tradeoff is illustrated in terms of variance in Figure 5.3. There will be a
price paid in bias near the boundaries, but assuming the function is lin-
ear near the boundaries (where we have less information anyway) is often
considered reasonable.
A natural cubic spline with K knots is represented by K basis functions.

One can start from a basis for cubic splines, and derive the reduced ba-
sis by imposing the boundary constraints. For example, starting from the
truncated power series basis described in Section 5.2, we arrive at (Exer-
cise 5.4):

N1(X) = 1, N2(X) = X, Nk+2(X) = dk(X)− dK−1(X), (5.4)

Figure from HTF 2009.
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Old Faithful geyser example
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R code

> fit1 <- lm(waiting~ns(eruptions,df=10),data=faithful)

> pred1 <- predict(fit1,newdata=data)

> plot(x,pred1,type="l",xlab="Duration",ylab="Waiting",

+ xlim=range(x),ylim=range(c(pred1,waiting)))

> points(eruptions,waiting,col="blue",pch="o")

> fit2 <- lm(waiting~bs(eruptions,df=10),data=faithful)

> pred2 <- predict(fit2,newdata=data)

>

> par(mfrow=c(2,1)

> plot(x,pred2,type="l",xlab="Duration",ylab="Waiting",

+ xlim=range(x),ylim=range(c(pred1,waiting)))

> points(eruptions,waiting,col="blue",pch="o")

> title("bs() fit")

> plot(x,pred1,type="l",xlab="Duration",ylab="Waiting",

+ xlim=range(x),ylim=range(c(pred1,waiting)))

> points(eruptions,waiting,col="blue",pch="o")

> title("ns() fit")
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Smoothing splines

I To avoid knot selection problem in regression splines,
smoothing splines uses a maximal set of knots.

I The complexity of the fit is controlled by regularization.
I Considering the following problem: among all functions f (x)

with second continuous derivatives minimize the penalized
residual sum of squares

RSS(f , λ) =
n∑

i=1

(yi − f (xi ))2 + λ

∫ b

a
(f ′′(x))2dt

where λ is a fixed smoothing parameter.
I The first term measures the closeness of the data where the

second term penalizes the curvature of the function, and λ
establishes the tradeoff between the two.

I If λ = 0: f can be any function that interpolates the data.
I If λ =∞: the least squares straight line fit, since no second

derivative can be tolerated.
16 / 50



Smoothing splines (cont.)

I Even though the criterion is defined on an infinite-dimensional
function space, it ends up it has an explicit, finite-dimensional
unique minimizer!

I The optimizer is a natural cubic spline with knots at the
unique values of xi , i = 1, . . . , n. This is a piecewise cubic
polynomial.

I It seems the family is still over-parametrized, since there are
as many as N knots, which implies N d.f. However, the
penalty term shrinks some of the way toward the linear fit.

I Since the solution is a natural spline, we can write it as

f (x) =
n∑

j=1

Nj(x)θj

where the Nj(x) are an n-dimensional set of basis functions.

17 / 50



Smoothing splines (cont.)

I It can be shown the criterion reduces to

RSS(θ, λ) = (y −Nθ)T (y −Nθ) + λθTΩNθ

where {N}ij = Nj(xi ) and {ΩN}ij =
∫

N ′′j (t)N ′′k (t)dt. The
solution is easily seen to be

θ̂ =
(

NTN + λΩN

)−1
NTy

a generalized ridge regression.

I The N-vector of fitted values f̂ (xi ) at xi is:

f̂ = N
(

NTN + λΩN

)−1
NTy = Sλy

where Sλ is known as the smoother matrix, which only
depends on x and λ.

I The effective d.f. of a smoothing spline is dfλ = trace(Sλ).
The choice of λ can be chosen by CV or Generalized CV.
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Generalized cross-validation
I Generalized cross-validation provides a convenient

approximation to leave-one-out cross-validation (LOOCV), for
linear fitting under squared-error loss.

I A linear fitting method is one for which we can write ŷ = Sy.
I For many linear fitting methods, the average LOOCV error is:

1

N

N∑

i=1

[yi − f̂ −i (xi )]2 =
1

N

N∑

i=1

[
yi − f̂ (xi )

1− Sii

]2

where Sii is the ith diagonal element of S.
I The GCV approximation is

GCV (f̂ ) =
1

N

N∑

i=1

[
yi − f̂ (xi )

1− trace(S)/N

]2

I GCV can have a computational advantage in some settings,
where the trace of S can be computed more easily than the
individual elements Sii .

19 / 50



Revisit battery voltage drop example
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Preset DF=30

library(splines)

fit3 <- smooth.spline(data$Time,data$Voltage,cv=F) #GCV chosen

fit4 <- smooth.spline(data$Time,data$Voltage,df=30) #preset df
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Other smoothers: kernel smoother

Figure from http://en.wikipedia.org/wiki/Kernel_smoother
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Revisit old faithful example using kernel smoothering

plot(waiting~eruptions,faithful,main="bandwidth=0.1",pch=".")

lines(ksmooth(eruptions,waiting,"normal",0.1))

plot(waiting~eruptions,faithful,main="bandwidth=0.5",pch=".")

lines(ksmooth(eruptions,waiting,"normal",0.5))

plot(waiting~eruptions,faithful,main="bandwidth=2",pch=".")

lines(ksmooth(eruptions,waiting,"normal",2))
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KernSmooth is a comprehensive kernel smoothing package in R.
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Other smoothers: local linear/polynomial regression

Figure from http://en.wikipedia.org/wiki/Kernel_smoother
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Loess smoother
I For each point xi = (zi , yi ), the α× n nearest points are

identified based on the distance |zi − z |. We call this
neighborhood of α× n points “N (z)”.

I With α = 0.30 and n = 164, the algorithm puts 49 points into
N (z).

I A weighted least-squares linear regression

r̂z(Z ) = β̂z,0 + β̂z,1Z

is fit to the α× n points in N (z), where the weights wz,j are
positive numbers which depend on |zj − z |. Let

uj =
|zj − z |

maxN (z) |zk − z | ,

the weights wj equal (1− u3
j )3.

I Finally, the loess estimate r̂loess(z) is set equal to the value of
r̂z(Z ) at Z = z .
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Revisit old faithful example using loess smoother

f <- loess(waiting~eruptions,span=0.1)

i <- order(eruptions)

plot(waiting~eruptions,faithful,main="span=0.1",pch=".")

lines(f$x[i],f$fitted[i])
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Motivation of generalized additive models

I Traditional linear model: Y = β0 +
∑

j βjXj + ε
I Pros: simple and easy to interpret.
I Ideal for linear effect and small sample size data.
I Cons: In real life, the effects are often not linear

I Multiple nonparametric models: Y = f (X1,X2, · · · ,Xp) + ε
I Pros: allow nonlinearity and all possible interactions.
I Ideal for large n small p data with nonlinear effects and

interactions.
I Cons: Estimates is hard to interpret and highly unstable due to

the “curse of dimensionality”.
I In high-dimensional, data is sparse. Neighborhood with fixed

proportion of pts become less local as p ↑ (see next slides).
I For high-dimensional problem, we need a huge sample size

(e.g. to get the same density as N = 100 and p = 1 in
p = 10, we need to have N = 10010.

I GAM is more flexible than linear model, but still interpretable.
Since each nonlinear term is estimated in low dimension, it
avoids the curse of dimensionality.
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Curse of dimensionality
2.5 Local Methods in High Dimensions 23
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FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

distance from the origin to the closest data point is given by the expression

d(p,N) =
(
1− 1

2

1/N)1/p

(2.24)

(Exercise 2.3). A more complicated expression exists for the mean distance
to the closest point. For N = 500, p = 10 , d(p,N) ≈ 0.52, more than
halfway to the boundary. Hence most data points are closer to the boundary
of the sample space than to any other data point. The reason that this
presents a problem is that prediction is much more difficult near the edges
of the training sample. One must extrapolate from neighboring sample
points rather than interpolate between them.

Another manifestation of the curse is that the sampling density is pro-
portional to N1/p, where p is the dimension of the input space and N is the
sample size. Thus, if N1 = 100 represents a dense sample for a single input
problem, then N10 = 10010 is the sample size required for the same sam-
pling density with 10 inputs. Thus in high dimensions all feasible training
samples sparsely populate the input space.

Let us construct another uniform example. Suppose we have 1000 train-
ing examples xi generated uniformly on [−1, 1]p. Assume that the true
relationship between X and Y is

Y = f(X) = e−8||X||2 ,

without any measurement error. We use the 1-nearest-neighbor rule to
predict y0 at the test-point x0 = 0. Denote the training set by T . We can

Figure from HTF 2009.
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Generalized additive models in regression

I Model assumes that the mean response is a sum of terms
each depending on (usually) a single predictor:

Y = β0 + f1(X1) + f2(X2) + · · ·+ fp(Xp) + ε

where fj are arbitrary functions estimated from the data; the
errors ε are assumed to have constant variance and a mean of
zero.

I if the fj ’s are linear terms, this is just traditional regression

I if they are step functions main effect of a factor term

I Additive regression models essentially apply local regression to
low dimensional projections of the data
– That is, they estimate the regression surface by a
combination of a collection of one- (or two-) dimensional
functions.

28 / 50



Choices of terms in GAMs

I The fj represents arbitrary trend that can be estimated by
some non-linear smoothers.

I In some cases the additive terms may be known.

I Local regressions such as loess smoother.

I Splines with fixed degrees of freedom.

I Splines with known knots and boundary knot positions.

I Harmonic terms and etc.

I In general the degrees of smoothness of fj ’s are chosen by
cross validation.
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Fitting generalized additive models

I Now comes the question: How do we find these arbitrary
trends?

I If the X ’s are completely independent – which will not be the
case – we could simply estimate each functional form using a
nonparametric regression of Y on each of the X ’s separately.

I However, since the X ’s are related, however, we need to
proceed in another way. For a particular j , in order to
estimate the trend of fj(Xj), we need to remove the effects of
other predictors.

I We use a procedure called backfitting to find each curve,
controlling for the effects of the others.
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Backfitting algorithm
298 9. Additive Models, Trees, and Related Methods

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: α̂ = 1
N

∑N
1 yi, f̂j ≡ 0, ∀i, j.

2. Cycle: j = 1, 2, . . . , p, . . . , 1, 2, . . . , p, . . . ,

f̂j ← Sj
[
{yi − α̂−

∑

k �=j

f̂k(xik)}N1

]
,

f̂j ← f̂j −
1

N

N∑

i=1

f̂j(xij).

until the functions f̂j change less than a prespecified threshold.

cubic spline in the component Xj , with knots at each of the unique values
of xij , i = 1, . . . , N . However, without further restrictions on the model,
the solution is not unique. The constant α is not identifiable, since we
can add or subtract any constants to each of the functions fj , and adjust

α accordingly. The standard convention is to assume that
∑N

1 fj(xij) =
0 ∀j—the functions average zero over the data. It is easily seen that α̂ =
ave(yi) in this case. If in addition to this restriction, the matrix of input
values (having ijth entry xij) has full column rank, then (9.7) is a strictly
convex criterion and the minimizer is unique. If the matrix is singular, then
the linear part of the components fj cannot be uniquely determined (while
the nonlinear parts can!)(Buja et al., 1989).

Furthermore, a simple iterative procedure exists for finding the solution.
We set α̂ = ave(yi), and it never changes. We apply a cubic smoothing

spline Sj to the targets {yi − α̂ −∑
k �=j f̂k(xik)}N1 , as a function of xij ,

to obtain a new estimate f̂j . This is done for each predictor in turn, using

the current estimates of the other functions f̂k when computing yi − α̂ −∑
k �=j f̂k(xik). The process is continued until the estimates f̂j stabilize. This

procedure, given in detail in Algorithm 9.1, is known as “backfitting” and
the resulting fit is analogous to a multiple regression for linear models.

In principle, the second step in (2) of Algorithm 9.1 is not needed, since
the smoothing spline fit to a mean-zero response has mean zero (Exer-
cise 9.1). In practice, machine rounding can cause slippage, and the ad-
justment is advised.

This same algorithm can accommodate other fitting methods in exactly
the same way, by specifying appropriate smoothing operators Sj :

• other univariate regression smoothers such as local polynomial re-
gression and kernel methods;

I Backfitting algorithm fits fj(xj) using the partial residuals

(y − α̂−∑k 6=j f̂k(xk)) on xj .

I The algorithm fits the cycle (f1, f2, . . . , fp) iteratively until the
estimates converge.

Figure from HTF 2009.
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GAMs for various types of response

I In general, the generalized additive models can be written as:

g [µ(X )] = α + f1(X1) + f2(X2) + · · ·+ fp(Xp)

where µ(X ) is the conditional mean of the response and g is
the link function.

I g(µ) = µ is the identity link for Gaussian response data.

I g(µ) = logit(µ) = log[µ(X )/(1− µ(X ))] is additive logistic
regression for modeling binomial probabilities (note:
µ(X ) = Pr(Y = 1|X )).

I g(µ) = probit(µ) (inverse Gaussian cumulative distribution) is
also for modeling binomial probabilities.

I g(µ) = log(µ) for log-linear or log-additive models for Poisson
count data.
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Various types of nonlinear terms in GAMs

I The nonlinear terms are not restricted to main effects. They
can have nonlinear components in two or more variables, or
separate curves in Xj for each level of the factor Xk .

I Suppose X , Z , W are quantitative variables and V is a
qualitative variables with d levels.

I g(µ) = Xβ +
∑d

k=1 αk + f (Z ) is a semiparametric model: X
is modeled linearly; αk the effect for the kth level of a
qualitative input V ; Z is modeled nonparametrically.

I g(µ) = f (X ) +
∑d

k=1 gk(Z ) includes an interaction term

between V and Z (i.e. g(V ,Z ) =
∑d

k=1 gk(Z )).

I g(µ) = f (X ) + g(Z ,W ) includes a nonparametric function g
in two predictors.
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GAMs in R

I There are two excellent packages for fitting generalized
additive models in R.

I The gam (for generalized additive model) function in the mgcv
(multiple smoothing parameter estimation with generalized
cross validation) fits generalized additive models using
smoothing splines.

I The smoothing parameter can be chosen automatically using
cross-validation or manually by specifying the degrees of
freedom.

I The gam function in the gam package allows either loess
(lo(x)) or smoothing splines (s(x)) to be specified. Other
smoothers can be added by the users with appropriate
interface functions.

I The anova function can be used for both functions, allowing
different models to be easily compared.
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Example: the Iowa wheat yield data

I An example from Draper N R, and Smith H, Applied
regression analysis, 2nd Ed., John Wiley & Sons, New York,
1981.

I Response: Yield of wheat in bushels/acre for the state of Iowa
for the years 1930-1962

I Predictors: Year (as surrogate), Rain0, 1, 2, 3, Temp1, 2, 3, 4

I Objective: Build a predictor for Yield from the predictors
available.

I Note: with only 33 observations and 9 possible predictors some
care has to be taken in choosing a model.
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An initial linear model

> Iowa <- read.table("Iowa.csv",header=T,sep=",")

> iowa.lm1 <- lm(Yield ~ ., Iowa)

> iowa.step <- stepAIC(iowa.lm1, scope = list(lower = ~ Year,

+ upper = ~ .), k = log(nrow(Iowa)), trace = F)

> dropterm(iowa.step, test = "F", k = log(nrow(Iowa)),

+ sorted = T)

Model:

Yield ~ Year + Rain0 + Rain2 + Temp4

Df Sum of Sq RSS AIC F Value Pr(F)

<none> 1554.6 144.6

Temp4 1 188.0 1742.6 144.9 3.4 0.07641 .

Rain0 1 196.0 1750.6 145.0 3.5 0.07070 .

Rain2 1 240.2 1794.8 145.9 4.3 0.04680 *

Year 1 1796.2 3350.8 166.5 32.4 4.253e-06 ***
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Initial reflections

I With the BIC penalty on model complexity, only two of the
terms found are borderline significant in the conventional
sense – a consequence of the small sample size.

I Nevertheless the terms found are tentatively realistic:
I Year: surrogate for crop improvements
I Rain0: a measure of pre-season sowing conditions
I Rain2: rainfall during the critical growing month
I Temp4: climatic conditions during harvesting

I Are strictly linear terms in these variables reasonable?
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Additive models

I Here we use gam function in gam library.
I Consider a non-parametric smoother in each term:

> library(gam)

> iowa.gam <- gam(Yield ~ s(Temp4) + s(Rain0) +

+ s(Rain2) + s(Year), data = Iowa)

> par(mfrow = c(2,2))

> plot(iowa.gam, se = T, ylim = c(-30, 30),

+ resid = T)

I s specifies a smoothing spline fit in gam formula. The default
is s(x, df=4, spar=1). Note if df=1, it fits a linear model.
spar is the smoothing parameter between 0 and 1.

I For specifying loess smoother in gam formula, use lo. The
default is lo(x, span=0.5, degree=1). Note degree=1

specifies the degree of local polynomial to be fit. It is
restricted to be 1 or 2 (i.e. local quadratic regression).

I It can be important to keep the y -axes of these plots
approximately the same to allow comparisons between terms.
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Component plot for each term
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The univariate histogram or rugplot is displayed along the base of each plot.
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Speculative comments

I Temp4: Two very hot years had crop damage during harvest.

I Rain0: Wide range where little difference, but very dry years
may lead to a reduced yield and very wet years to an
enhanced one.

I Rain2: One very dry growing month led to a reduced yield.

I Year: Strongest and most consistent predictor by far. Some
evidence of a pause in new varieties during the war and
immediately post-war period.
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Tentative inference

> summary(iowa.gam) # (result edited)

Call: gam(formula = Yield ~ s(Temp4) + s(Rain0) + s(Rain2) +

+ s(Year), data = Iowa)

(Dispersion Parameter for Gaussian family taken to be 31.1175 )

Residual Deviance: 497.8868 on 16.002 degrees of freedom

Number of Local Scoring Iterations: 2

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)

(Intercept) 1

s(Temp4) 1 3 2.4709 0.09917

s(Rain0) 1 3 3.0301 0.05993

s(Rain2) 1 3 1.3746 0.28638

s(Year) 1 3 3.6841 0.03437
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Use lm to fit an additive model

> iowa.ns <- lm(Yield ~ ns(Temp4, df=3) + ns(Rain0, df=3)

+ + ns(Rain2, df = 3) + ns(Year, df=3), Iowa)

> termplot(iowa.ns, se = T, rug = T, partial = T)

> dropterm(iowa.ns, test = "F", k = log(nrow(Iowa)))

Single term deletions

Model:

Yield ~ ns(Temp4, df = 3) + ns(Rain0, df = 3) + ns(Rain2, df = 3) +

ns(Year, df = 3)

Df Sum of Sq RSS AIC F Value Pr(F)

<none> 726.26 147.47

ns(Temp4, df = 3) 3 274.60 1000.86 147.56 2.52 0.08706

ns(Rain0, df = 3) 3 332.31 1058.57 149.41 3.05 0.05231

ns(Rain2, df = 3) 3 70.61 796.87 140.04 0.65 0.59327

ns(Year, df = 3) 3 2022.93 2749.19 180.91 18.57 0.00001

Unlike gam package use backfitting to fit GAMs, this model is fitted by simple
least squares.
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Component plot for each term
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Final remarks on Iowa wheat example

I Very similar pattern to the components as for the additive
model

I Now clear that the term in Rain2 is not significant (can you
see that on the plot?)

I The Temp4 and Rain0 terms will need to be reassessed.

I The term in Year stands out as dominant with a clear pattern
in the response curve and the partial residuals following it
closely.

I Small data sets like this can be very misleading! Extreme
caution is needed.
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Rock data example

I Response (perm) is the permeability in milli-Darcies

I Three predictors: area (area of pores space), peri (perimeter
in pixels) and shape (perimeter/sqrt(area)).

I Problem: build a predictor for log(perm) using the available
predictors

> rock.lm <- lm(log(perm) ~ area + peri + shape,

+ data = rock)

> summary(rock.lm)

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 5.3331 0.5487 9.720 0.000

area 0.0005 0.0001 5.602 0.000

peri -0.0015 0.0002 -8.623 0.000

shape 1.7570 1.7560 1.000 0.323
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Rock data example (cont.)

> rock.gam <- gam(log(perm) ~ s(area) + s(peri) + s(shape), control =

+ gam.control(maxit = 50, bf.maxit = 50), data = rock)

> summary(rock.gam)

Anova for Parametric Effects

Df Sum Sq Mean Sq F value Pr(>F)

s(area) 1.000 14.577 14.577 19.5788 8.988e-05 ***

s(peri) 1.000 75.670 75.670 101.6321 6.856e-12 ***

s(shape) 1.000 0.413 0.413 0.5548 0.4613

Residuals 35.001 26.060 0.745

Anova for Nonparametric Effects

Npar Df Npar F Pr(F)

(Intercept)

s(area) 3 0.34165 0.7953

s(peri) 3 0.94055 0.4315

s(shape) 3 1.43200 0.2500

>

> anova(rock.lm, rock.gam) # shows no improvement

Model 1: log(perm) ~ area + peri + shape

Model 2: log(perm) ~ s(area) + s(peri) + s(shape)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 44.000 31.949

2 35.001 26.060 8.9995 5.8891 0.8789 0.5528
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Rock data example (cont.)

> rock.gam1 <- gam(log(perm) ~ area + peri + s(shape), data = rock)

> summary(rock.gam1)

Anova for Nonparametric Effects

Npar Df Npar F Pr(F)

area

peri

s(shape) 3 1.3901 0.2594

>

> anova(rock.lm, rock.gam1, rock.gam)

Model 1: log(perm) ~ area + peri + shape

Model 2: log(perm) ~ area + peri + s(shape)

Model 3: log(perm) ~ s(area) + s(peri) + s(shape)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 44.000 31.949

2 41.000 28.999 3.0000 2.9495 1.3205 0.2833

3 35.001 26.060 5.9995 2.9396 0.6581 0.6835

>

> par(mfrow=c(2,3),mar=c(5,5,1,1), cex.lab=1.5, cex.axis=1.3,

+ cex.main=2, pty = "s")

> plot(rock.gam, se = T)

> plot(rock.gam1, se = T)
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Component plot for each term
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Lessons

I Although suggestive, the curve in shape is not particularly
convincing.

I Choosing the degree of smoothness can be tricky. The gam

function in Simon Wood’s R implementation (mgcv library)
offers a way around this.

I In this case, Simon Wood’s gam function suggests essentially
linear terms, at most, in all three variables.
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