 In the traditional regression analysis, the form of the regression function has been specified. For example, we might use linear model: y = β₀ + β₁x + β₂x² + β₃x³ + ε a cubic polynomial. However in some situations we don't have enough information to make an assumption like this, or we don't want to. Instead we might want to only assume: y = f(x) + ε with some smoothness assumptions on f(x), such as derivatives f(x), fn(x). So we would like to find a <i>nonparametric</i> estimate of f(x) based on the data. 	 ▲□▼▲間▼▲目▼▲目▼▲目▼▲目▼ ○へ 2/50 	Other the state of the state o
Nonparametric Regression and Generalized Additive Models (GAM) Bin Li IT Lecture Series	 <1/> <1/> <1/> <1/> <1/> 	Battery voltage drop example The battery voltage drop in a guided missile motor was observed over the first 20 seconds of the launch. The data was collected to develop a digital-analog simulation model of the missile.

Nonparametric regression

data
battery
of
fit
Quartic
\mathbf{U}

However the quartic model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_3 x^4 + \epsilon$$

seems reasonable based on the the following two plots.

Piecewise polynomials

- polynomial function f(x) by dividing the domain of X into Instead of using the quartic model, we can use piecewise contiguous intervals, and representing f by a separate polynomial in each interval.
- The top right panel on next slides shows a piecewise linear fit which needs six parameters.
- knots. In this case, since there are two restrictions, we only piecewise linear, but restricted to be continuous at the two Usually we would prefer the lower left panel, which is also needs four parameters.
- A more direct way to proceed in this case is to use a basis that incorporates the constraints:

$$h_1(X) = 1, h_2(X) = X, h_3(X) = (X - \xi_1)_+, h_4(X) = (X - \xi_2)_+$$

where subscript + denotes the positive part.

0 Q Q Q

Piecewise polynomials (cont.)

- achieved by increasing the order of the local polynomial. We often prefer smoother functions, and these can be
- polynomials fit to the same data with increasing orders of Figure on the next slide shows a series of piecewise-cubic continuity at the knots.
- The function in the lower right panel is continuous, and has continuous first and second derivatives at the knots. It is known as a cubic spline.
- continuous first and second derivatives. It is claimed that cubic splines are the lowest-order spline for which the Note cubic spline is the lowest order of splines with knot-discontinuity is not visible to the human eye.
- We can show that the function in lower right panel on next slides has the following six basis:

$$egin{array}{ll} h_1(X)=1, & h_3(X)=X^2, & h_5(X)=(X-\xi_1)^3_+\ h_2(X)=X, & h_4(X)=X^3, & h_6(X)=(X-\xi_2)^+_+ \end{array}$$

ମ ହ (8 / 50

Figure from HTF 2009.

7 / 50

Piecewise cubic polynomials

□▼▲蘭▼▲山▼▲山▼ ④ 33.00 9/50

B-spline and natural spline basis

B-splines

- These fixed-knot splines are also known as regression splines.
 - In practice, one needs to select the order of the spline, the number of knots and their placement.
- One simple approach is to parameterize a family of splines by the number of basis functions or degrees of freedom, and have the observations x_i determine the positions of the knots.
 - For example: bs(x, df=7) in R generates a basis matrix of cubic-spline functions evaluated at the N observations in X, with the 7 – 3 = 4 interior knots (ns() function omits by default the constant term in the basis) at the appropriate percentiles of X (20, 40, 60 and 80th.)
- One can be more explicit, bs(x, degree=1, knots = c(0.2, 0.4, 0.6)) generates a basis for linear splines, with three interior knots.
- The B-spline basis allows for efficient computations even when the number of knots is large.

Natural splines

- The behavior of polynomials fit to data tends to be erratic near the boundaries, and extrapolation can be dangerous.
- Extrapolation problem is even worse with splines. The polynomials fit beyond the boundary knots behave more wildly than the corresponding global polynomials in that region (see the figure in next slide).
- A natural cubic spline adds additional constraints, namely that the function is linear beyond the boundary knots. This frees up four d.f. (two constraints each in both boundary regions).
- Natural splines can spent more profitably by sprinkling more knots in the interior region.
 - The price paid in bias near the boundaries, but assuming the function is linear near the boundaries (where we have less information anyway) is often considered reasonable.
- A natural cubic spline with K knots is represented by K basis functions.

fu معربہ 11/50

Pointwise variance curves for four different models

R code

- > fit1 <- lm(waiting~ns(eruptions,df=10),data=faithful)</pre>
 - > pred1 <- predict(fit1,newdata=data)
 > plot(x,pred1,type="1",xlab="Duration",ylab="Waiting"
 - xlim=range(x),ylim=range(c(pred1,waiting)))
 - > points(eruptions,waiting,col="blue",pch="o")
- > fit2 <- lm(waiting^{bs}(eruptions,df=10),data=faithful)
 - > pred2 <- predict(fit2,newdata=data)</pre>
- > par(mfrow=c(2,1)
- > plot(x,pred2,type="l",xlab="Duration",ylab="Waiting",
- + xlim=range(x),ylim=range(c(pred1,waiting)))
 - > points(eruptions,waiting,col="blue",pch="o")
- > title("bs() fit")
- > plot(x,pred1,type="1",xlab="Duration",ylab="Waiting",
 - + xlim=range(x),ylim=range(c(pred1,waiting)))
 - > points(eruptions,waiting,col="blue",pch="o")
 - > title("ns() fit")

▲□▼★団▼★団▼ ▲ 山 ぐ) (<) 15/50

Old Faithful geyser example

Smoothing splines

- To avoid knot selection problem in regression splines, smoothing splines uses a maximal set of knots.
- ► The complexity of the fit is controlled by regularization.
- Considering the following problem: among all functions f(x) with second continuous derivatives minimize the penalized residual sum of squares

$$RSS(f,\lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int_{a}^{b} (f''(x))^2 dt$$

where λ is a fixed smoothing parameter.

- The first term measures the closeness of the data where the second term penalizes the curvature of the function, and λ establishes the tradeoff between the two.
 - For the left of the large of the second sec
- ▶ If $\lambda = \infty$: the least squares straight line fit, since no second derivative can be tolerated.

16 / 50

(cont.)
splines
Smoothing

- Even though the criterion is defined on an infinite-dimensional function space, it ends up it has an explicit, finite-dimensional unique minimizer!
- The optimizer is a natural cubic spline with knots at the unique values of x_i, i = 1,...,n. This is a piecewise cubic polynomial.
- It seems the family is still over-parametrized, since there are as many as N knots, which implies N d.f. However, the penalty term shrinks some of the way toward the linear fit.
 - Since the solution is a natural spline, we can write it as

$$f(x) = \sum_{j=1}^{n} N_j(x)\theta_j$$

where the $N_{i}(x)$ are an *n*-dimensional set of basis functions.

▲□▶▲問▶▲昰▶ ▲ ■ ~) A (?) 17/50

Generalized cross-validation

- Generalized cross-validation provides a convenient approximation to leave-one-out cross-validation (LOOCV), for linear fitting under squared-error loss.
- A linear fitting method is one for which we can write $\hat{\mathbf{y}} = \mathbf{S}\mathbf{y}$.
- For many linear fitting methods, the average LOOCV error is:

$$rac{1}{N}\sum_{i=1}^{N}[y_i-\hat{f}^{-i}(x_i)]^2 = rac{1}{N}\sum_{i=1}^{N}\left[rac{y_i-\hat{f}(x_i)}{1-S_{ii}}
ight]^2$$

where \mathbf{S}_{ii} is the *i*th diagonal element of \mathbf{S} .

The GCV approximation is

$$\mathcal{GCV}(\hat{f}) = rac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} \left[rac{y_i - \hat{f}(x_i)}{1 - ext{trace}(\mathbf{S})/\mathcal{N}}
ight]^2$$

 GCV can have a computational advantage in some settings, where the trace of S can be computed more easily than the individual elements S_{ii}.

୦୦୯ 19/50

Smoothing splines (cont.)

It can be shown the criterion reduces to

$$RSS(\theta, \lambda) = (\mathbf{y} - \mathbf{N}\theta)^{T} (\mathbf{y} - \mathbf{N}\theta) + \lambda \theta^{T} \mathbf{\Omega}_{N} \theta$$

where $\{N\}_{ij} = N_j(x_i)$ and $\{\Omega_N\}_{ij} = \int N_j''(t)N_k''(t)dt$. The solution is easily seen to be

$$\hat{ heta} = \left(\mathbf{N}^T \mathbf{N} + \lambda \mathbf{\Omega}_N
ight)^{-1} \mathbf{N}^T \mathbf{y}$$

a generalized ridge regression.

The N-vector of fitted values $\hat{f}(x_i)$ at x_i is:

$$\hat{\mathbf{f}} = \mathbf{N} \left(\mathbf{N}^T \mathbf{N} + \lambda \Omega_N \right)^{-1} \mathbf{N}^T \mathbf{y} = \mathbf{S}_\lambda \mathbf{y}$$

where S_{λ} is known as the *smoother matrix*, which only depends on x and λ .

• The *effective d.f.* of a smoothing spline is $df_{\lambda} = \text{trace}(\mathbf{S}_{\lambda})$. The choice of λ can be chosen by CV or Generalized CV.

library(splines)

fit3 <- smooth.spline(data%Time,data%Voltage,cv=F) #GCV chosen fit4 <- smooth.spline(data%Time,data%Voltage,df=30) #preset df</pre>

▲田・▲田・▲四・▲口

Other smoothers: kernel smoother

りへへ 21/50 Figure from http://en.wikipedia.org/wiki/Kernel_smoother 👩 💡

Other smoothers: local linear/polynomial regression

Revisit old faithful example using kernel smoothering

plot(waiting eruptions, faithful, main="bandwidth=0.1", pch=".") plot(waiting eruptions,faithful,main="bandwidth=0.5",pch=".") plot(waiting eruptions, faithful, main="bandwidth=2", pch=".") lines(ksmooth(eruptions,waiting,"normal",0.5)) lines(ksmooth(eruptions,waiting,"normal",0.1)) lines(ksmooth(eruptions,waiting,"normal",2))

KernSmooth is a comprehensive kernel smoothing package in R.

22 / 50

Loess smoother

- \blacktriangleright With $\alpha=0.30$ and n=164, the algorithm puts 49 points into For each point $\mathbf{x}_i = (z_i, y_i)$, the $\alpha \times n$ nearest points are identified based on the distance $|z_i - z|$. We call this neighborhood of lpha imes n points " $\dot{\mathcal{N}}(z)$ ". $\mathcal{N}(z)$.
 - A weighted least-squares linear regression

$$_{z}(Z) = \hat{eta}_{z,0} + \hat{eta}_{z,1}Z$$

is fit to the $\alpha imes n$ points in $\mathcal{N}(z)$, where the *weights* $w_{z,j}$ are positive numbers which depend on $|z_j - z|$. Let

$$u_j = \frac{|z_j - z|}{\max_{\mathcal{N}(z)} |z_k - z|},$$

the weights w_j equal $(1 - u_i^3)^3$.

Finally, the loess estimate $\hat{r}_{loess}(z)$ is set equal to the value of $\hat{r}_z(Z)$ at Z = z.

つく(C) 24 / 50

Motivation of generalized additive models	• Traditional linear model: $Y = \beta_0 + \sum_j \beta_j X_j + \epsilon$ • Pros: simple and easy to interpret. • Ideal for linear effect and small sample size data. • Cons: In real life, the effects are often not linear	• Multiple nonparametric models: $Y = f(X_1, X_2, \cdots, X_p) + \epsilon$	 Fros. anow nominearity and an possible interactions. Ideal for large n small p data with nonlinear effects and interactions. Cons: Estimates is hard to interpret and highly unstable due to the "curse of dimensionality". In high-dimensional, data is sparse. Neighborhood with fixed proportion of pts become less local as p 1 (see next slides). For high-dimensional problem, we need a huge sample size (e.g. to get the same density as N = 100 and p = 1 in p = 10, we need to have N = 100¹⁰. GAM is more flexible than linear model, but still interpretable. Since each nonlinear term is estimated in low dimension, it avoids the curse of dimensionality. 	Generalized additive models in regression	Model assumes that the mean response is a sum of terms each depending on (usually) a single predictor:	$Y=\beta_0+f_1(X_1)+f_2(X_2)+\dots+f_p(X_p)+\epsilon$	where f_j are arbitrary functions estimated from the data; the errors ϵ are assumed to have constant variance and a mean of zero.	 if the f_i's are linear terms, this is just traditional regression if they are step functions main effect of a factor term 	 Additive regression models essentially apply local regression to low dimensional projections of the data That is, they estimate the regression surface by a combination of a collection of one- (or two-) dimensional functions. 	▲□▼▲街▼▲街▼▲街▼▲山▼ (0) 4 (2) 28 / 50
Revisit old faithful example using loess smoother	<pre>f <- loess(waiting~eruptions,span=0.1) i <- order(eruptions) plot(waiting~eruptions,faithful,main="span=0.1",pch=".") lines(f\$x[i],f\$fitted[i])</pre>	span=0.5	eruptions eruptions	Curse of dimensionality	Unit Cube	istance		Neighborhood C. 0.2 0.4 0.6 Fraction of Volume	FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in a unit cube. The figure on the right shows the side-length of the subcube needed to capture a fraction r of the volume of the data, for different dimensions p . In ten dimensions we need to cover 80% of the range of each coordinate to capture 10% of the data.	Figure from HTF 2009. 4 ロ ト 4 個 ト 4 組 ト 4 組 ト 4 組 ト 4 組 ト 4 組 ト 4 組 ト 4 組 ト 4 4 4 4

28 / 50

- Fitting generalized additive models
- The f_j represents arbitrary trend that can be estimated by some non-linear smoothers.
- In some cases the additive terms may be known.
- Local regressions such as loess smoother.
- Splines with fixed degrees of freedom.
- Splines with known knots and boundary knot positions.
- Harmonic terms and etc.
- In general the degrees of smoothness of f_j's are chosen by cross validation.

▲□▼▲園▼▲□▼▲□▼ □ ○300 29/50

Backfitting algorithm

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: $\hat{\alpha} = \frac{1}{N} \sum_{1}^{N} y_i, \hat{f}_j \equiv 0, \forall i, j.$ 2. Cycle: $j = 1, 2, \dots, p, \dots, 1, 2, \dots, p, \dots$

$$\begin{split} \hat{f}_j &\leftarrow \mathcal{S}_j \left[\{ y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f}_k(x_{ik}) \}_1^N \right], \\ \hat{f}_j &\leftarrow \hat{f}_j - \frac{1}{N} \sum_{i=1}^N \hat{f}_j(x_{ij}). \end{split}$$

until the functions \hat{f}_j change less than a prespecified threshold.

- Backfitting algorithm fits $f_j(x_j)$ using the *partial residuals* $(y - \hat{\alpha} - \sum_{k \neq j} \hat{f}_k(x_k))$ on x_j .
- ▶ The algorithm fits the cycle (f_1, f_2, \ldots, f_p) iteratively until the estimates converge.

Figure from HTF 2009.

▲□▶▲遭▶▲重▶ ▲ ○へへ
 31/50

- Now comes the question: How do we find these arbitrary trends?
- If the X's are completely independent which will not be the case – we could simply estimate each functional form using a nonparametric regression of Y on each of the X's separately.
 - However, since the X's are related, however, we need to proceed in another way. For a particular j, in order to estimate the trend of f_j(X_j), we need to remove the effects of other predictors.
- We use a procedure called **backfitting** to find each curve, controlling for the effects of the others.

GAMs for various types of response

In general, the generalized additive models can be written as:

$$g[\mu(X)] = \alpha + f_1(X_1) + f_2(X_2) + \dots + f_p(X_p)$$

where $\mu(X)$ is the conditional mean of the response and g is the ${\rm link}$ function.

- $g(\mu)=\mu$ is the identity link for Gaussian response data.
- $g(\mu) = \log[\mu(\mu) = \log[\mu(X)/(1 \mu(X))]$ is additive logistic regression for modeling binomial probabilities (note: $\mu(X) = Pr(Y = 1|X)$).
- ▶ $g(\mu) = \text{probit}(\mu)$ (inverse Gaussian cumulative distribution) is also for modeling binomial probabilities.
- g(μ) = log(μ) for log-linear or log-additive models for Poisson count data.

Various types of nonlinear terms in GAMs	GAMs in R
 The nonlinear terms are not restricted to main effects. They can have nonlinear components in two or more variables, or separate curves in X_j for each level of the factor X_k. Suppose X, Z, W are quantitative variables and V is a qualitative variables with d levels. g(μ) = Xβ + Σ_{k=1}^d α_k + f(Z) is a <i>semiparametric</i> model: X is modeled linearly; α_k the effect for the kth level of a qualitative input V; Z is modeled nonparametrically. g(μ) = f(X) + Σ_{k=1}^d g_k(Z) includes an interaction term between V and Z (i.e. g(V, Z) = Σ_{k=1}^d g_k(Z)). g(μ) = f(X) + g(Z, W) includes a nonparametric function g in two predictors. 	 There are two excellent packages for fitting generalized additive models in R. The gam (for generalized additive model) function in the mgcv (multiple smoothing parameter estimation with generalized cross validation) fits generalized additive models using smoothing splines. The smoothing parameter can be chosen automatically using cross-validation or manually by specifying the degrees of freedom. The gam function in the gam package allows either loess (10(x)) or smoothing splines (s(x)) to be specified. Other smoothers can be added by the users with appropriate interface functions. The amova function can be used for both functions, allowing different models to be easily compared.
 ▲□▶< ● ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	< □ > < 雪 > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > 34/50
Example: the lowa wheat yield data	An initial linear model
 An example from Draper N R, and Smith H, <i>Applied regression analysis</i>, 2nd Ed., John Wiley & Sons, New York, 1981. Response: Yield of wheat in bushels/acre for the state of lowa for the years 1930-1962 Predictors: Year (as surrogate), Rain0, 1, 2, 3, Temp1, 2, 3, 4 Objective: Build a predictor for Yield from the predictors available. Note: with only 33 observations and 9 possible predictors some care has to be taken in choosing a model. 	<pre>> Iowa <- read.table("Iowa.csv",header=T,sep=",") > iowa.lm1 <- lm(Vield ~ ., Iowa) > iowa.step <- stepAIC(iowa.lm1, scope = list(lower = ~ Year,</pre>

▲□▼▲(11)▼▲山▼▲山▼ 4) A(小) 35/50

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○)
 36/50

- Additive models
- Here we use gam function in gam library.
- Consider a non-parametric smoother in each term:
- > library(gam)

 With the BIC penalty on model complexity, only two of the terms found are borderline significant in the conventional

Nevertheless the terms found are tentatively realistic:

sense – a consequence of the small sample size.

Rain0: a measure of pre-season sowing conditions

Year: surrogate for crop improvements

Rain2: rainfall during the critical growing month

Temp4: climatic conditions during harvesting

- > iowa.gam <- gam(Yield ~ s(Temp4) + s(Rain0) +</pre>
 - + s(Rain2) + s(Year), data = Iowa)
 - > par(mfrow = c(2,2))
- > plot(iowa.gam, se = T, ylim = c(-30, 30),
 - + resid = T)
- s specifies a smoothing spline fit in gam formula. The default is s(x, df=4, spar=1). Note if df=1, it fits a linear model. spar is the smoothing parameter between 0 and 1.
- For specifying loess smoother in gam formula, use lo. The default is lo(x, span=0.5, degree=1). Note degree=1 specifies the degree of local polynomial to be fit. It is restricted to be 1 or 2 (i.e. local quadratic regression).

Are strictly linear terms in these variables reasonable?

It can be important to keep the y-axes of these plots approximately the same to allow comparisons between terms.

> **୬୯୯** 37/50

G

38 / 50

Speculative comments

- ► Temp4: Two very hot years had crop damage during harvest.
- Rain0: Wide range where little difference, but very dry years may lead to a reduced yield and very wet years to an enhanced one.
- Rain2: One very dry growing month led to a reduced yield.
- Year: Strongest and most consistent predictor by far. Some evidence of a pause in new varieties during the war and immediately post-war period.

୬୯୯ 39/50

西米 本西米 本西米 本日

> summary(iowa.gam) # (result edited)

Call: gam(formula = Yield ~ s(Temp4) + s(Rain0) + s(Rain2) + + s(Year), data = Iowa) (Dispersion Parameter for Gaussian family taken to be 31.1175)

Residual Deviance: 497.8868 on 16.002 degrees of freedom

Number of Local Scoring Iterations: 2

DF for Terms and F-values for Nonparametric Effects

$\Pr(F)$		0.09917	0.05993	0.28638	0.03437	
Npar F		2.4709	3.0301	1.3746	3.6841	
Npar Df		С	n	n	ŝ	
Df		Η	μ	μ	μ	
	(Intercept)	s(Temp4)	s(RainO)	s(Rain2)	s(Year)	

<1
 <1
 <1
 <1
 <1

= 1960 25 1950 Rain0 20 Year 1940 5 1930 10 01--30 10 01--30 30 30 Partial for ns(Rain0, df = 3 Partial for ns(Year, df = 3) 8 78 ø 76 Temp4 Rain2 74 72 20 88 III IIII III I ۱ 0 01. 30 30 ٥٢ 01--30 30 Partial for ns(Temp4, df = ? Partial for ns(Rain2, df = 3

Use 1m to fit an additive model

Single term deletions

Model:

0.08706 0.05231 0.59327 Pr(F)0.00001 + = 3) 3) + ns(Rain2, df 2.52 3.05 0.65 18.57 F Value AIC 147.56 149.41 147.47 140.04 180.91 ns(Temp4, df = 3) + ns(Rain0, df =RSS 726.26 796.87 1000.86 1058.57 2749.19 2022.93 332.31 70.61 Sq 274.60 Sum of ns(Year, df = 3)Df ოო ოო ns(Rain2, df = 3)
ns(Year, df = 3) df = 3ns(Rain0, df = 3)<none> ns(Temp4, Yield ~

Unlike gam package use backfitting to fit GAMs, this model is fitted by simple least squares.

▲□▶ 4 🗇 ▶ 4 豆 ▶ 4 豆 ▶ 亘 ぐ) Q (> 42 / 50

Final remarks on lowa wheat example

Component plot for each term

- Very similar pattern to the components as for the additive model
- Now clear that the term in Rain2 is not significant (can you see that on the plot?)
- The Temp4 and Rain0 terms will need to be reassessed.
- The term in Year stands out as dominant with a clear pattern in the response curve and the partial residuals following it closely.
- Small data sets like this can be very misleading! Extreme caution is needed.

ଏ . 43/50

jilji

▲田▼ ▲田▼ ▲ 昭▼ ▲ 日

Ð
a
Ε
exa
ta
σ
σ
\prec
U U
Ō
\sim

- Response (perm) is the permeability in milli-Darcies
- Three predictors: area (area of pores space), peri (perimeter in pixels) and shape (perimeter/sqrt(area)).
 - Problem: build a predictor for log(perm) using the available predictors

> rock.lm <- lm(log(perm) ~ area + peri + shape, + data = rock)

> summary(rock.lm)

Coefficients:

						■ つく○ 45/50
	Pr(> t)	0.000	0.000	0.000	0.323	▲町▼▲町▼▲
	t value	9.720	5.602	-8.623	1.000	•
	Std. Error	0.5487	0.0001	0.0002	1.7560	
•	Value	5.3331	0.0005	-0.0015	1.7570	
		[ntercept)	area	peri	shape	

Rock data example (cont.)

> rock.gam1 <- gam(log(perm) ~ area + peri + s(shape), data = rock)</pre> par(mfrow=c(2,3),mar=c(5,5,1,1), cex.lab=1.5, cex.axis=1.3, ~ s(area) + s(peri) + s(shape) 2.9495 1.3205 0.2833 2.9396 0.6581 0.6835 F Pr(>F) ~ area + peri + shape ~ area + peri + s(shape) > anova(rock.lm, rock.gam1, rock.gam) Npar Df Npar F Pr(F) 3 1.3901 0.2594 Df Sum of Sq Anova for Nonparametric Effects cex.main=2, pty = "s") plot(rock.gam1, se = T) > plot(rock.gam, se = T) 2 41.000 28.999 3.0000 3 35.001 26.060 5.9995 > summary(rock.gam1) Model 1: log(perm) Model 2: log(perm) Model 3: log(perm) Res.Df RSS 44.000 31.949 s(shape) peri area ^ ^ ^ -^ +

ର ୧୦୦୦ 47/50

西米 本田米 本国米 本日米

Rock data example (cont.)

jilij > rock.gam <- gam(log(perm) ~ s(area) + s(peri) + s(shape), control =</pre> jilji ▼ gam.control(maxit = 50, bf.maxit = 50), data = rock) ||| ▼ ▲ 100 ▼ * * * 75.670 101.6321 6.856e-12 *** 19.5788 8.988e-05 0.4613 Pr(>F) > anova(rock.lm, rock.gam) # shows no improvement ~ s(area) + s(peri) + s(shape) 5.8891 0.8789 0.5528 F Pr(>F) F value ~ area + peri + shape 0.5548 3 0.34165 0.7953 3 0.94055 0.4315 3 1.43200 0.2500 Npar Df Npar F Pr(F) Df Sum of Sq 0.413 Df Sum Sq Mean Sq 14.577 0.745 Anova for Nonparametric Effects Anova for Parametric Effects 1.000 14.577 1.000 75.670 1.000 0.413 Residuals 35.001 26.060 2 35.001 26.060 8.9995 > summary(rock.gam) Model 2: log(perm) Model 1: log(perm) RSS 1 44.000 31.949 (Intercept) Res.Df s (shape) s (shape) s(area) s(peri) s(peri) s (area)

- Although suggestive, the curve in shape is not particularly convincing.
- Choosing the degree of smoothness can be tricky. The gam function in Simon Wood's R implementation (mgcv library) offers a way around this.
- In this case, Simon Wood's gam function suggests essentially linear terms, at most, in all three variables.

- Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models by Julian Faraway.
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd Ed.) by Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
- Generalized Additive Models by Trevor Hastie and Robert Tibshirani.

~□▼★週★★加★★回★ ~○へぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 50 / 50