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Boosting a weak learner

I Weak learner L produces an h with error rate β = 1
2 − ε < 1

2 ,
with Pr ≥ 1− δ for any D. L has access to continuous stream
of training data and a class oracle.

1. L learns h1 on first N training points.
2. L randomly filters the next batch of training points, extracting

N/2 points correctly classified by h1, N/2 incorrectly classified,
and produces h2.

3. L builds a third training set of N points for which h1 and h2

disagree, and produces h3.
4. L ouptuts h = Majority Vote(h1, h2, h3)

I Theorem (Schapire, 1990): “The Strength of Weak
Learnability”

errorD(h) ≤ 3β2 − 2β3 < β
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Plot of error rate 3β2 − 2β3
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What is AdaBoost?
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AdaBoost (Freund & Schapire, 1996)

1. Initialize the observation weigths: wi = 1/N, i = 1, 2, . . . ,N.

2. For m = 1 to M repeat steps (a)-(d):

(a) Fit a classifier Gm(x) to the training data using weigths wi

(b) Compute

errm =

∑N
i=1 wi I (yi 6= Gm(xi ))

∑N
i=1 wi

(c) Compute αm = log((1− errm)/errm).
(d) Update weights for i = 1, . . . ,N:

wi ←− wi · exp [αm · I (yi 6= Gm(xi ))]

and renormalize wi to sum to 1.

3. Output G (x) = sign
[∑M

m=1 αmGm(x)
]
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An example of AdaBoost

Example (2)

Example taken from (R. Schapire)

ε1 = 0.3, α1 = 0.42, wrong pattern: d2i = 0.166, correct: d2i = 0.07

computation see next slide

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 10

err1 =
∑

i wi I (G1(xi ) 6= yi ) = 0.3
α1 = log 1−err1

err1
= 0.847

wi for misclassified points: 0.1× exp(0.847) = 0.233.
After normalizing, wi for wroing points is 0.233

0.233×3+0.1×7 = 0.1667.

For correct points, wi is 0.1
0.233×3+0.1×7 = 0.0714
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An example of AdaBoost (cont.)Example (3)

Example taken from (R. Schapire)

ε2 = 0.21, α2 = 0.65

computation see next slide

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 12

err2 =
∑

i wi I (G2(xi ) 6= yi ) = 3× 0.07 = 0.21
α2 = log 1−err2

err2
≈ 1.3
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An example of AdaBoost (cont.)Example (4)

Example taken from (R. Schapire)

ε2 = 0.14, α2 = 0.92

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 14

err3 = 0.14
α3 = log 1−err3

err3
= 1.84
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An example - final classifier

Example (5)

Example taken from (R. Schapire)

Final classifier:

Martin Riedmiller, Albert-Ludwigs-Universität Freiburg, Martin.Riedmiller@uos.de Machine Learning 15
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A simulation - “nested spheres” example

Ten features X1, . . . ,X10 are independent N(0, 1) r.v. The
deterministic target Y is defined by

Y =

{
1 if

∑10
j=1 X

2
j > χ2

10(0.5) = 9.34

−1 otherwise

I 2000 training observations (about 1000 cases in each class),
and 10,000 test observations.

I Bayes error is 0% (noise-free).

I A stump is a two-node tree, after a single split.

I We use stump as the “weak learner” in the AdaBoost
algorithm.
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NS example (figure from HTF 2009)

January 2003 Trevor Hastie, Stanford University 17
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A stump is a two-node tree, after a single split.

Boosting stumps works remarkably well on the

nested-spheres problem.
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Training and testing errors (figure from HTF 2009)

January 2003 Trevor Hastie, Stanford University 18

Boosting & Training Error

Nested spheres in R10 — Bayes error is 0%.
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iterations continue to improve test error in many

examples.

Boosting drives the training error to zero. Further iterations
continue to improve test error.

12 / 48



Boosting for noisy problems (figure from HTF)

Nested spheres example with added noise - Bayes error is 25%

January 2003 Trevor Hastie, Stanford University 19

Boosting Noisy Problems

Nested Gaussians in R10 — Bayes error is 25%.
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Here the test error does increase, but quite slowly.
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Weak classifiers in AdaBoost

In the illustrative example, after fitting the first classifier the
normalized weights wi for wrong and correct points are 0.1667 and
0.0714. Then what is the sum of weights for wrong and correct
points separately?
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Weak classifiers in AdaBoost (cont.)

Sum of weights for wrongly classified points:

∑

i :yi 6=G(xi )

wiexp(αm)

=
∑

i :yi 6=G(xi )

wi

(
1− errm
errm

)

=
∑

i :yi 6=G(xi )

wi

(∑
i wi I (yi = Gm(xi ))∑
i wi I (yi 6= Gm(xi ))

)

=
∑

i

wi I (yi = Gm(xi )) =
∑

i :yi=G(xi )

wi

Error rate is 1/2 on the new weighting scheme.
The next weak classifier is “independent” to the previous one.
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Boosting as an additive model

I Boosting builds an additive model: f (x) =
∑M

m=1 βmb(x ; γm).
For example, in boosting trees b(x ; γm) is a tree, and γm
parametrizes the splits.

I We use additive models in statistics all the time!
I Multiple linear regression: f (x) =

∑
j βjxj

I Generalized additive model: f (x) =
∑

j fj(xj)

I Basis expansions in spline model: f (x) =
∑M

m=1 θmhm(x)

I Traditionally, the parameters fm, θm are fit jointly (i.e. least
squares, maximum likelihood).

I Friedman et al. (2000) have shown that AdaBoost is
equivalent to stagewise additive logistic regression using the
exponential loss criterion L(y , f (x)) = exp(−yf (x)).

I yf (x) is called “margin” (> 0 classified correctly, < 0
misclassified).
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Stagewise additive modeling

Based on Friedman, Hastie and Tibshirani (2000)’s result, the
AdaBoost is equivalent to the following modeling strategy.

Forward Stagewise Additive Modeling.

1. Initialize f0(x) = 0.

2. For m = 1 to M:

(a) Compute

(βm, γm) = arg min
β,γ

N∑

i=1

L (yi , fm−1(xi ) + βb(xi ; γ)) .

(b) Set fm(x) = fm−1(x) + βmb(x ; γm)

Compare with stepwise approach, stagewise additive modeling
slows the process down, and tends to overfit less quickly.
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Exponential loss vs. misclassification loss (figure from HTF, 2009)

10.5 Why Exponential Loss? 345
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FIGURE 10.3. Simulated data, boosting with stumps: misclassification error
rate on the training set, and average exponential loss: (1/N)

PN
i=1 exp(−yif(xi)).

After about 250 iterations, the misclassification error is zero, while the exponential
loss continues to decrease.

10.5 Why Exponential Loss?

The AdaBoost.M1 algorithm was originally motivated from a very differ-
ent perspective than presented in the previous section. Its equivalence to
forward stagewise additive modeling based on exponential loss was only
discovered five years after its inception. By studying the properties of the
exponential loss criterion, one can gain insight into the procedure and dis-
cover ways it might be improved.

The principal attraction of exponential loss in the context of additive
modeling is computational; it leads to the simple modular reweighting Ad-
aBoost algorithm. However, it is of interest to inquire about its statistical
properties. What does it estimate and how well is it being estimated? The
first question is answered by seeking its population minimizer.

It is easy to show (Friedman et al., 2000) that

f∗(x) = argmin
f(x)

EY |x(e
−Y f(x)) =

1

2
log

Pr(Y = 1|x)
Pr(Y = −1|x) , (10.16)
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Why exponential loss?

I The AdaBoost algorithm was originally motivated from a very
different perspective.

I What is the statistical property for exponential loss?
I What does it estimate? The population minimizer of e−yf is:

1

2
log

Pr(Y = 1|x)

Pr(Y = −1|x)
= arg min

f (x)
EY |x

(
e−Yf (x)

)

I AdaBoost estimates one-half the log-odds of P(Y = 1|x) and
uses its sign as the the classification rule.

I Binomial negative log-likelihood or deviance has the same
population minimizer.

−l(Y , f (x)) = log
(

1 + e−2Yf (x)
)

I Note e−Yf is not a proper log-likelihood.
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Loss functions for classification (figure from HTF, 2009)

10.6 Loss Functions and Robustness 347
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FIGURE 10.4. Loss functions for two-class classification. The response is
y = ±1; the prediction is f , with class prediction sign(f). The losses are
misclassification: I(sign(f) �= y); exponential: exp(−yf); binomial deviance:
log(1 + exp(−2yf)); squared error: (y − f)2; and support vector: (1− yf)+ (see
Section 12.3). Each function has been scaled so that it passes through the point
(0, 1).

f(x) = 0. The goal of the classification algorithm is to produce positive
margins as frequently as possible. Any loss criterion used for classification
should penalize negative margins more heavily than positive ones since
positive margin observations are already correctly classified.

Figure 10.4 shows both the exponential (10.8) and binomial deviance
criteria as a function of the margin y · f(x). Also shown is misclassification
loss L(y, f(x)) = I(y ·f(x) < 0), which gives unit penalty for negative mar-
gin values, and no penalty at all for positive ones. Both the exponential
and deviance loss can be viewed as monotone continuous approximations
to misclassification loss. They continuously penalize increasingly negative
margin values more heavily than they reward increasingly positive ones.
The difference between them is in degree. The penalty associated with bi-
nomial deviance increases linearly for large increasingly negative margin,
whereas the exponential criterion increases the influence of such observa-
tions exponentially.

At any point in the training process the exponential criterion concen-
trates much more influence on observations with large negative margins.
Binomial deviance concentrates relatively less influence on such observa-
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Loss functions for classification (cont.)

I Should penalize negative margins more heavily than positive
ones.

I Both exponential and deviance loss are monotone continuous
approximations to misclassification loss.

I Exponential loss concentrates much more influence on
observations with large negative margins than binomial
deviance.

I Binomial deviance is far more robust in noisy settings, where
the Bayes error rate is not close to zero, and especially in
situations where there is misspecification of the class labels in
the training data.

I The performance of AdaBoost has been empirically observed
to dramatically degrade in such situations.
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Loss function for multicategory classification

The logistic model generalizes naturally to K classes as

pk(x) =
efk (x)

∑K
l=1 e

fl (x)
, k = 1, . . . ,K ,

which ensures that 0 ≤ pk(x) ≤ 1 and they sum to one. In
addition, we traditioally set fK (x) = 0.

The binomial deviance extends naturally to the K -class
multinomial deviance loss function:

L(y , p(x)) = −
K∑

k=1

I (y = Gk) log pk(x)

= −
K∑

k=1

I (y = Gk)fk(x) + log

(
K∑

l=1

efl (x)

)
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Loss functions for regression (figure from HTF, 2009)
350 10. Boosting and Additive Trees
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FIGURE 10.5. A comparison of three loss functions for regression, plotted as a
function of the margin y−f . The Huber loss function combines the good properties
of squared-error loss near zero and absolute error loss when |y − f | is large.

exponential loss one performs a weighted fit of the base learner to the
output values yi, with weights wi = exp(−yifm−1(xi)). Using other more
robust criteria directly in their place does not give rise to such simple
feasible boosting algorithms. However, in Section 10.10.2 we show how one
can derive simple elegant boosting algorithms based on any differentiable
loss criterion, thereby producing highly robust boosting procedures for data
mining.

10.7 “Off-the-Shelf” Procedures for Data Mining

Predictive learning is an important aspect of data mining. As can be seen
from this book, a wide variety of methods have been developed for predic-
tive learning from data. For each particular method there are situations
for which it is particularly well suited, and others where it performs badly
compared to the best that can be done with that data. We have attempted
to characterize appropriate situations in our discussions of each of the re-
spective methods. However, it is seldom known in advance which procedure
will perform best or even well for any given problem. Table 10.1 summarizes
some of the characteristics of a number of learning methods.

Industrial and commercial data mining applications tend to be especially
challenging in terms of the requirements placed on learning procedures.
Data sets are often very large in terms of number of observations and
number of variables measured on each of them. Thus, computational con-

Huber loss criterion:

L(y , f (x)) =

{
[y − f (x)]2 for |y − f (x)| ≤ δ
2δ(|y − f (x)| − δ2) otherwise
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Gradient descent for optimization

The gradient of f (x) (denote 5f ) at a point 〈u1, u2, . . . , un〉 can
be thought of as a vector indicating which way is “uphill”.

Gradient descent for optimization

• The gradient of f at a point 〈u1, u2, . . . , un〉 can be thought of
as a vector indicating which way is “uphill”.

• If this is an error function, we want to move“downhill” on it, i.e.,

in the direction opposite to the gradient

September 6, 2005 27 COMP-652 Lecture 2

If this is an error function, we want to move “downhill” on it, i.e.,
in the direction opposite to the gradient.
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Gradient descent

I The basic algorithm for gradient descentassumes that 5f is
easily computed.

I We want to produce a sequence of vectors u1,u2, . . . with the
goal that:

I f (u1) > f (u2) > f (u3) > . . .
I limm→∞ f (um) = f (u∗) and f (u∗) is locally optimal.

I The gradient descent algorithm: do for m = 0, 1, 2, . . .

f (u(m+1)) = f (um)− αi 5 f (um),

where αi > 0 is the step size or learning rate for iteration m.

I If αi is too large, oscillation may occur. If too small, the
process is slow.
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Example of gradient descent tracesExample gradient descent traces

September 6, 2005 29 COMP-652 Lecture 2
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Boosting as gradient descent optimization

Gradient Boosting Algorithm (Friedman, 2001)

1. F0(x) = arg minρ
∑N

i=1 L(yi , ρ)

2. For m = 1 to M do:

a. ỹi = −
[
∂L(yi ,F (xi ))
∂F (xi )

]
F (x)=Fm−1(x)

, i = 1, . . . ,N.

b. am = arg mina,β
∑N

i=1[ỹi − βh(xi ; a)]2

c. ρm = arg minρ
∑N

i=1 L(yi ,Fm−1(xi ) + ρmh(xi ; am))
d. Fm(x) = Fm−1(x) + ρmh(x; am)

3. endFor loop
end Algorithm

2.a: ỹi is the negative gradient shows the “downhill” direction for
L(y , f ).
2.b Find the optimal model h(x; a) based on ỹi using least squares.
2.c Find the optimal learning rate ρm.
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Least square gradient boosting

Response y , predictors (x1, x2, . . . , xp) and loss function L(y , f ).

1. F0(x) = ȳ

2. For m = 1 to M do:

a. ỹi = yi − Fm−1(xi ), i = 1, . . . ,N.

b. (ρm, am) = arg mina,ρ
∑N

i=1[ỹi − ρh(xi ; a)]2

c. Fm(x) = Fm−1(x) + ρmh(x; am)

3. endFor loop
end Algorithm

2.a: For squared loss function L(y ,F ) = (y − F )2/2,
ỹi = yi − Fm−1(xi ) (i.e. current residual).
2.b Since we are using squared loss, ρm is simultaneously estimated
in Step 2.b.
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Gradient boosting for other problems

I Gradient boosting is very general. It can be applied to any
problem as long as the gradient is available.

I Gradient boosting can be applied to
I Cox proportional hazard model in survival analysis
I Poisson regression
I Quantile regression
I L1 regression using absolute loss (LAD).

I If the base learner is tree, it directly inherits nice properties
from trees:

I able to handle mix-type predictors (categorical and
continuous);

I able to handle missing values;
I able to incorporate high order interactions;
I able to catch non-linear effects.
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Shrinking the learning rate

Incremental gradient boosting.

1. F0(x) = arg minρ
∑N

i=1 L(yi , ρ)

2. For m = 1 to M do:

a. ỹi = −
[
∂L(yi ,F (xi ))
∂F (xi )

]
F (x)=Fm−1(x)

, i = 1, . . . ,N.

b. am = arg mina,β
∑N

i=1[ỹi − βh(xi ; a)]2

c. ρm = arg minρ
∑N

i=1 L(yi ,Fm−1(xi ) + ρmh(xi ; am))
d. Fm(x) = Fm−1(x) + ν · ρmh(x; am)

3. endFor loop
end Algorithm

Here ν is a shrinkage factor, and often 0 < ν � 1. Shrinkage
slows the stagewise model-building even more, and typically leads
to better performance.
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Shrinkage effects (figure from Friedman, 2001)
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ν = 1, 0.25, 0.125, 0.06 in the order (top to bottom) at the
extreme right of the plot.
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Least square boosting with linear regression

Below is a version of least squares boosting for linear regression:
(assume predictors are standardized).

(Incremental) Forward Stagewise Linear Regression

1. Start with r = y , β1, β2, . . . , βp = 0.

2. Find the predictor xj most correlated with r .

3. Update βj ← βj + δj , where δj = ε · sign〈r , xj〉.
4. Set r ← r − δjxj and repeat Step 2 and 3 many times.

δj = 〈r , xj〉 gives usual forward stagewise; different from forward
stepwise.
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Stagewise least square regression vs. Lasso

August 2007 Trevor Hastie, Stanford Statistics 7
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Least square boosting with trees

Response y and predictors (x1, x2, . . . , xp).

1. Start with function F (x) = 0 and residual r = y .

2. Fit a CART regression tree to r giving f (x).

3. Set F (x)← F (x) + εf (x)

4. Set r ← r − εf (x) and repeat Step 2 and 3 many
times.
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Subsampling

I Bagging improves the performance of a noisy classifier by
subsampling.

I Subsampling in stochastic gradient boosting (Friedman,
1999.) improves performance and computational efficiency.

I At each iteration, we sample a fraction η of training
observations (without replacement) and grow the tree (or
other learners) using that subsample.

I A typical value for η is 0.5, although for large N, η can be
substantially smaller than 0.5.

I Figure (on next slide) shows the effect of subsampling in a
classification and a regression example.

I Subsampling along with shrinkage slightly outperforms the rest
in both cases.

I Subsampling without shrinkage does poorly.
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Subsampling example 10.13 Interpretation 367
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FIGURE 10.12. Test-error curves for the simulated example (10.2), showing
the effect of stochasticity. For the curves labeled “Sample= 0.5”, a different 50%
subsample of the training data was used each time a tree was grown. In the left
panel the models were fit by gbm using a binomial deviance loss function; in the
right-hand panel using square-error loss.

The downside is that we now have four parameters to set: J , M , ν and
η. Typically some early explorations determine suitable values for J , ν and
η, leaving M as the primary parameter.

10.13 Interpretation

Single decision trees are highly interpretable. The entire model can be com-
pletely represented by a simple two-dimensional graphic (binary tree) that
is easily visualized. Linear combinations of trees (10.28) lose this important
feature, and must therefore be interpreted in a different way.

10.13.1 Relative Importance of Predictor Variables

In data mining applications the input predictor variables are seldom equally
relevant. Often only a few of them have substantial influence on the re-
sponse; the vast majority are irrelevant and could just as well have not
been included. It is often useful to learn the relative importance or contri-
bution of each input variable in predicting the response.

Figure from HTF (2009)
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Right-sized trees for boosting trees

I A complicated approach.
I For each iteration, grow a very large tree (oversized) first.
I Then a bottom-up procedure procedure is employed to prune it

to the estimated optimal number of terminal nodes (tree size).
I Trees tend to be too large, especially in the early iterations.
I Degrades performance and increases computation.

I A simple approach.
I Restrict all trees to be the same size J.
I The interaction level is limited by the tree size J.

I J = 2 (single split “stump”), produces boosted models with
only main effects

I With J = 3 or J = 4, two-variable interactions are allowed.
I Experience so far indicates that 4 ≤ J ≤ 8 works well. It is

unlikely that J > 10 is required.

I In “nested spheres” example (next slide), the generative
model is additive. Boosting model with J > 2 incurs
unnecessary variance and hence the higher test error.
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FIGURE 10.9. Boosting with different sized trees, applied to the example (10.2)
used in Figure 10.2. Since the generative model is additive, stumps perform the
best. The boosting algorithm used the binomial deviance loss in Algorithm 10.3;
shown for comparison is the AdaBoost Algorithm 10.1.

so on This suggests that the value chosen for J should reflect the level

Figure from HTF (2009)
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Estimate the optimal number of iterations

There are three ways to estimate the optimal number of iterations
after a boosting model has been fit.

I Monitering the performance based on an independent test set.

I Cross-validation.

I Out-off-bag (OOB) approach. It evaluates the reduction in
deviance on those observations not used in constructing the
current regression tree. Studies show that the OOB estimator
(of the optimal number of iteration) tends to under-estimates
the reduction in deviance. As a result, it is usually too
conservative in its selection for the optimal number of
iterations.

The boxplots on next slide show the comparative performance
relative to the best method on each of the 13 datasets. 5-fold CV
is consistently the best. OOB, using a 33% and 20% test set, all
have datasets for which they perform considerably worse than the
best method.
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A comparative study (from Ridgeway, 2007)

gbm.perf(...,method="cv") to obtain the cross validation estimate.
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Figure 4: Out-of-sample predictive performance of four methods of selecting the
optimal number of iterations. The vertical axis plots performance relative the
best. The boxplots indicate relative performance across thirteen real datasets
from the UCI repository. See demo(OOB-reps).

Figure 4 compares the three methods for estimating the optimal number of
iterations across 13 datasets. The boxplots show the methods performance rela-
tive to the best method on that dataset. For most datasets the method perform
similarly, however, 5-fold cross validation is consistently the best of them. OOB,
using a 33% test set, and using a 20% test set all have datasets for which the
perform considerably worse than the best method. My recommendation is to use
5- or 10-fold cross validation if you can afford the computing time. Otherwise
you may choose among the other options, knowing that OOB is conservative.

4 Available distributions

This section gives some of the mathematical detail for each of the distribution
options that gbm offers. The gbm engine written in C++ has access to a C++
class for each of these distributions. Each class contains methods for computing
the associated deviance, initial value, the gradient, and the constants to predict
in each terminal node.

In the equations shown below, for non-zero offset terms, replace f(xi) with
oi + f(xi).

9

40 / 48



California housing data

I Available at CMU StatLib repository
(http://lib.stat.cmu.edu/datasets/).

I Originally used by Pace and Barry (1997).

I Consist of aggregated data from each of 20640 neighborhoods
(1990 census block groups) in California.

I The response variable is the median house value in each
neighborhood measured in units of $100,000.

I Eight continuous input variables, which are demographics
(e.g. median income), housing density and occupancy,
housing properties (e.g. number of rooms/bedrooms), and
location of each neighborhood.

I Randomly divide the dataset into a training set (80%) and a
test set (20%).

41 / 48

http://lib.stat.cmu.edu/datasets/


CA house example - error curves
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Red (black) curve on the left plot is the test (train) error (average
of absolute error). The optimal number of iterations based on
OOB improvement is around 600. The red (black) curve on the
right plot is the smoothed (raw) OOB changes in AE.
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CA house example - relative variable importance
10.14 Illustrations 373
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FIGURE 10.14. Relative importance of the predictors for the California housing
data.

value has a nonmonotonic partial dependence on average number of rooms.
It has a minimum at approximately three rooms and is increasing both for
smaller and larger values.

Median house value is seen to have a very weak partial dependence on
house age that is inconsistent with its importance ranking (Figure 10.14).
This suggests that this weak main effect may be masking stronger interac-
tion effects with other variables. Figure 10.16 shows the two-variable partial
dependence of housing value on joint values of median age and average oc-
cupancy. An interaction between these two variables is apparent. For values
of average occupancy greater than two, house value is nearly independent
of median age, whereas for values less than two there is a strong dependence
on age.

Figure 10.17 shows the two-variable partial dependence of the fitted
model on joint values of longitude and latitude, displayed as a shaded
contour plot. There is clearly a very strong dependence of median house
value on the neighborhood location in California. Note that Figure 10.17 is
not a plot of house value versus location ignoring the effects of the other
predictors (10.49). Like all partial dependence plots, it represents the effect
of location after accounting for the effects of the other neighborhood and
house attributes (10.47). It can be viewed as representing an extra premium
one pays for location. This premium is seen to be relatively large near the
Pacific coast especially in the Bay Area and Los Angeles–San Diego re-

Figure from HTF (2009)
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CA house example - partial dependence plots
374 10. Boosting and Additive Trees
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FIGURE 10.15. Partial dependence of housing value on the nonlocation vari-
ables for the California housing data. The red ticks at the base of the plot are
deciles of the input variables.
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FIGURE 10.16. Partial dependence of house value on median age and aver-
age occupancy. There appears to be a strong interaction effect between these two
variables.

The red ticks at the base of the plot are deciles of the input
variables.
Figure from HTF (2009)
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CA house example - partial dependence plots

374 10. Boosting and Additive Trees
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FIGURE 10.15. Partial dependence of housing value on the nonlocation vari-
ables for the California housing data. The red ticks at the base of the plot are
deciles of the input variables.
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FIGURE 10.16. Partial dependence of house value on median age and aver-
age occupancy. There appears to be a strong interaction effect between these two
variables.

Figure from HTF (2009)
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CA house example - spatial effects
10.14 Illustrations 375
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FIGURE 10.17. Partial dependence of median house value on location in Cal-
ifornia. One unit is $100, 000, at 1990 prices, and the values plotted are relative
to the overall median of $180, 000.

gions. In the northern, central valley, and southeastern desert regions of
California, location costs considerably less.

10.14.2 New Zealand Fish

Plant and animal ecologists use regression models to predict species pres-
ence, abundance and richness as a function of environmental variables.
Although for many years simple linear and parametric models were popu-
lar, recent literature shows increasing interest in more sophisticated mod-
els such as generalized additive models (Section 9.1, GAM), multivariate
adaptive regression splines (Section 9.4, MARS) and boosted regression
trees (Leathwick et al., 2005; Leathwick et al., 2006). Here we model the

Figure from HTF (2009)
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Packages in R for boosting

I gbm package provides an internal regression tree engine,
marginal plots and additional utilities for optimizing a wider
range of loss functions outside of classification.

I mboost package is an advanced boosting tool for processing
several base learners and arbitrary loss functions.

I ada package provides an R implementation for discrete, real,
and gentle stochastic boosting (see Friedman, Hastie and
Tibshirani, 2000) under both logistic and exponential loss for
classification, ideally suited for small to moderate-sized data
sets.

I xgoost (eXtreme Gradient BOOSTing) package is an efficient
and scalable implementation of gradient boosting. It can
automatically do parallel computation. Input data can be
from sparse matrix format. Regularization is used to avoid
overfitting.
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