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Boosting a weak learner

> Weak learner L produces an h with error rate § = % —€e< %
with Pr > 1 — ¢ for any D. L has access to continuous stream
of training data and a class oracle.
1. L learns h; on first N training points.
2. L randomly filters the next batch of training points, extracting
N /2 points correctly classified by hy, N/2 incorrectly classified,
and produces h,.
3. L builds a third training set of N points for which h; and h;
disagree, and produces hs.
4. L ouptuts h = Majority Vote(hy, ha, h3)

» Theorem (Schapire, 1990): “The Strength of Weak
Learnability”

errorp(h) < 36% — 283 < 38

)
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Plot of error rate 3% — 233
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What is AdaBoost?
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Figure from HTF 2009.
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AdaBoost (Freund & Schapire, 1996)

1. Initialize the observation weigths: w; = 1/N, i=1,2,... N.

2. For m=1 to M repeat steps (a)-(d):

(a) Fit a classifier Gp(x) to the training data using weigths w;
(b) Compute

SN wil (v # Gun(x))
Z,,'V:1 Wi

(c) Compute o, = log((1 — errpy)/errm).
(d) Update weights for i =1,..., N:

err, =

w; — w; - exp[am - 1(yi # Gm(x:))]
and renormalize w; to sum to 1.

3. Output G(x) = sign [Zn’\le amGm(x)
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An example of AdaBoost

/e]

erry =32, wil(G1(x) # y;) = 0.3
a1 = log *gp = 0.847
w; for misclassified points: 0.1 x exp(0.847) = 0.233.

.. . . . 0.233
After normalizing, w; for wroing points is 093331017

. - 0.1
For correct pOIntS, w; 1S 0.233x310.1x7

x3+40.1x7
= 0.0714

= 0.1667.

48



An example of AdaBoost (cont.)

Dy
+ +
+ + - + +
- + 0
— +
erry = > wil(Ga(x;) # yi) =3 x0.07 =0.21
ap = log lgrer';rz ~1.3

DA
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An example of AdaBoost (cont.)

+

A + = -
err3 = 0.14
asz = log 1:;;3 = 1.84

Do
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An example - final classifier

+0.65

+0.92

Do
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A simulation - “nested spheres” example

Ten features Xi, ..., Xio are independent N(0,1) r.v. The
deterministic target Y is defined by

y_ [ 1if 3% X2 > x3,(0.5) = 9.34
—1 otherwise

v

2000 training observations (about 1000 cases in each class),
and 10,000 test observations.

v

Bayes error is 0% (noise-free).

v

A stump is a two-node tree, after a single split.

v

We use stump as the “weak learner” in the AdaBoost
algorithm.
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NS examp|e (figure from HTF 2009)
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Training and testing errors (figure from HTF 2000)
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Boosting drives the training error to zero. Further iterations

continue to improve test error.
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Boosting for noisy problems (figure from HTF)
Nested spheres example with added noise - Bayes error is 25%
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Weak classifiers in AdaBoost

In the illustrative example, after fitting the first classifier the
normalized weights w; for wrong and correct points are 0.1667 and
0.0714. Then what is the sum of weights for wrong and correct
points separately?
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Weak classifiers in AdaBoost (cont.)

Sum of weights for wrongly classified points:

Z wiexp(am)
iyi#G(x;)
<1—errm>
errm
iryi#G(x;)
. W,<Z,-W;l(y;:Gm(x,~))>
' Wil (yi # Gm(xi
ityiZG(x;) Z’ W (y 7& (X))
= D> willyi=Gn(x)= > w

ityi=G(x;)

Error rate is 1/2 on the new weighting scheme.

The next weak classifier is “independent” to the previous one.
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Boosting as an additive model

> Boosting builds an additive model: f(x) = S"M_. Bmb(x; Ym).-
For example, in boosting trees b(x;vm) is a tree, and v,
parametrizes the splits.
> We use additive models in statistics all the time!
» Multiple linear regression: f(x) = . Bjx;
> Generalized additive model: £(x) = 3, £(x)
» Basis expansions in spline model: f(x) = Zf\nﬂzl Omhm(x)
» Traditionally, the parameters f,,, 6, are fit jointly (i.e. least
squares, maximum likelihood).

> Friedman et al. (2000) have shown that AdaBoost is
equivalent to stagewise additive logistic regression using the
exponential loss criterion L(y, f(x)) = exp(—yf(x)).

> yf(x) is called "margin” (> 0 classified correctly, < 0
misclassified).
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Stagewise additive modeling

Based on Friedman, Hastie and Tibshirani (2000)'s result, the
AdaBoost is equivalent to the following modeling strategy.

Forward Stagewise Additive Modeling.

1. Initialize fy(x) = 0.
2. Form=1to M:
(a) Compute

N
(Bm, ym) = arg min > L(yis fmo1(xi) + Bb(xi;7)) -
W=l

(b) Set fm(x) = fm—1(x) + Bmb(x; Ym)

Compare with stepwise approach, stagewise additive modeling
slows the process down, and tends to overfit less quickly.
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Exponential loss vs. misclassification loss (figure from HTF, 2009)
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Why exponential loss?

» The AdaBoost algorithm was originally motivated from a very
different perspective.
» What is the statistical property for exponential loss?
» What does it estimate? The population minimizer of e is:
1 Pr(Y = 1|x)

Liog =A%) i By, (e Y7
2 Py = _1x)  ERG YR (e )

» AdaBoost estimates one-half the log-odds of P(Y = 1|x) and
uses its sign as the the classification rule.

» Binomial negative log-likelihood or deviance has the same
population minimizer.

(Y, £(x)) = log (1+ e72Y0))

Yf

» Note e~ " is not a proper log-likelihood.
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Loss functions for classification (figure from HTF, 2009)
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FIGURE 10.4. Loss functions for two-class classification. The response is
y = =+1; the prediction is f, with class prediction sign(f). The losses are
misclassification: 1(sign(f) # y); exponential: exp(—yf); binomial deviance:
log(1 + exp(—2yf)); squared error: (y — f)?; and support vector: (1 — yf)+ (see
Section 12.3). Each function has been scaled so that it passes through the point
(0,1).
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Loss functions for classification (cont.)

» Should penalize negative margins more heavily than positive
ones.

» Both exponential and deviance loss are monotone continuous
approximations to misclassification loss.

» Exponential loss concentrates much more influence on
observations with large negative margins than binomial
deviance.

» Binomial deviance is far more robust in noisy settings, where
the Bayes error rate is not close to zero, and especially in
situations where there is misspecification of the class labels in
the training data.

» The performance of AdaBoost has been empirically observed
to dramatically degrade in such situations.
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Loss function for multicategory classification
The logistic model generalizes naturally to K classes as
efk(x)

S SR et

which ensures that 0 < pi(x) < 1 and they sum to one. In
addition, we traditioally set fx(x) = 0.

pk(X) k:]-?"'aKv

The binomial deviance extends naturally to the K-class
multinomial deviance loss function:

Lly,p(x)) = I(y = Gr) log pi(x)

M= 11

I(y = Gk)f(x) + log (Z ef’(x)>

x
I
—



Loss functions for regression (figure from HTF, 2000)

Squared Error
Absolute Error
—— Huber

Loss

Huber loss criterion:

=P for |y — f(x)] < 6
Ly, £00) = { 2}:5(|y — f(x)| — 6?) othe}r/wise
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Gradient descent for optimization

The gradient of f(x) (denote /f) at a point (u1, u2, ..., up) can
be thought of as a vector indicating which way is “uphill”.

G
o{“"}'/’l

“ ) ' ""

0177228
' S 232
RN

If this is an error function, we want to move “downhill” on it, i.e.,

in the direction opposite to the gradient.
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Gradient descent

» The basic algorithm for gradient descentassumes that /f is
easily computed.

» We want to produce a sequence of vectors ul,u?, ... with the

goal that:
» f(ut) > f(u?) > f(ud) > ...
> limpmoo F(u™) = f(u*) and f(u*) is locally optimal.

» The gradient descent algorithm: do for m=10,1,2,...
Fu(™ ) = F(u™) - a; 7 f(u™),

where a; > 0 is the step size or learning rate for iteration m.

> If o is too large, oscillation may occur. If too small, the
process is slow.
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Example of gradient descent traces
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Boosting as gradient descent optimization

Gradient Boosting Algorithm (Friedman, 2001)

1- FO(X) — arg minp le\lzl L(y”p)
2. For m =1 to M do:
vo— _ | 9L F(x))

a. yi= [ OF (x) }F(x):Fm_1(X)

b. a, = argmin, g Zf\lzl[)"/,- — Bh(x;; a)]?
¢ pm = argming Sy L(yi, Foo1 (%) + pmb(xi; am)
d. Fpn(x) = Fr—1(X) + pmh(x; am)
3. endFor loop
end Algorithm

Li=1,...,N.

2.a: ¥; is the negative gradient shows the “downhill” direction for

L(y,f).
2.b Find the optimal model h(x;a) based on ¥; using least squares.
2.c Find the optimal learning rate pn,.
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Least square gradient boosting

Response y, predictors (x1,x2, ..., xp) and loss function L(y, f).

1. Fo(X) =y
2. For m=1to M do:
a. yi=yi— Fpo1(x), i=1,... N.
b. (pmvam) = argmina,p Z,N:l[)"/, - ph(x,-; a)]
. Fn(x) = Fp—1(x) + pmh(x;am)
3. endFor loop
end Algorithm

2

2.a: For squared loss function L(y, F) = (y — F)?/2,

Vi =yi — Fm—1(x;) (i.e. current residual).

2.b Since we are using squared loss, pn, is simultaneously estimated
in Step 2.b.
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Gradient boosting for other problems

» Gradient boosting is very general. It can be applied to any
problem as long as the gradient is available.

» Gradient boosting can be applied to

>

>
>
>

Cox proportional hazard model in survival analysis
Poisson regression

Quantile regression

Ly regression using absolute loss (LAD).

» If the base learner is tree, it directly inherits nice properties
from trees:

>

able to handle mix-type predictors (categorical and
continuous);

» able to handle missing values;
> able to incorporate high order interactions;
> able to catch non-linear effects.
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Shrinking the learning rate

Incremental gradient boosting.

1. Fo(x) = argmin,, ZIN:I L(yi, p)
2. For m=1 to M do:
~ | 9Ly, F(xi)) -
a. yi = |: 8F(X,‘) :| F(x):Fm_l(x)' 1 ]., ey

b. a, = argmin, g Zf\lzl[)"/,- — Bh(x;; a)]?
C. pm =argmin, Z,N:1 L(yi, Fn—1(x;) + pmh(x;;am))
d. Fp(x) = Fo1(X) + v - pmh(x; am)
3. endFor loop
end Algorithm

N.

Here v is a shrinkage factor, and often 0 < v < 1. Shrinkage
slows the stagewise model-building even more, and typically leads
to better performance.
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Shrinkage effects (figure from Friedman, 2001)

Absolute error
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The four curves correspond to shrinkage parameter
v =1, 0.25,0.125, 0.06 in the order (top to bottom) at the
extreme right of the plot.
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Least square boosting with linear regression

Below is a version of least squares boosting for linear regression:
(assume predictors are standardized).

(Incremental) Forward Stagewise Linear Regression

1. Start with r =y, p1,52,...,8, = 0.

2. Find the predictor x; most correlated with r.

3. Update §j <— j + 6; , where §; = € - sign(r, x;).

4. Set r <— r — J;x; and repeat Step 2 and 3 many times.

dj = (r, x;) gives usual forward stagewise; different from forward
stepwise.
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Stagewise least square regression vs. Lasso
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Least square boosting with trees

Response y and predictors (xi, X2, ..., Xp).

el

Start with function F(x) = 0 and residual r = y.
Fit a CART regression tree to r giving f(x).

Set F(x) < F(x) + ef(x)

Set r <— r — ef(x) and repeat Step 2 and 3 many
times.
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Subsampling

» Bagging improves the performance of a noisy classifier by
subsampling.

» Subsampling in stochastic gradient boosting (Friedman,
1999.) improves performance and computational efficiency.

> At each iteration, we sample a fraction 7 of training
observations (without replacement) and grow the tree (or
other learners) using that subsample.

> A typical value for n is 0.5, although for large N, n can be
substantially smaller than 0.5.

» Figure (on next slide) shows the effect of subsampling in a
classification and a regression example.

» Subsampling along with shrinkage slightly outperforms the rest
in both cases.
» Subsampling without shrinkage does poorly.
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Subsampling example
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Right-sized trees for boosting trees

» A complicated approach.

» For each iteration, grow a very large tree (oversized) first.

» Then a bottom-up procedure procedure is employed to prune it
to the estimated optimal number of terminal nodes (tree size).

> Trees tend to be too large, especially in the early iterations.

» Degrades performance and increases computation.

» A simple approach.

» Restrict all trees to be the same size J.
» The interaction level is limited by the tree size J.
> J =2 (single split “stump”), produces boosted models with
only main effects
» With J = 3 or J = 4, two-variable interactions are allowed.
» Experience so far indicates that 4 < J < 8 works well. It is
unlikely that J > 10 is required.

> In "nested spheres” example (next slide), the generative
model is additive. Boosting model with J > 2 incurs
unnecessary variance and hence the higher test error.
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Nested spheres example
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Estimate the optimal number of iterations

There are three ways to estimate the optimal number of iterations
after a boosting model has been fit.

» Monitering the performance based on an independent test set.

» Cross-validation.

» Out-off-bag (OOB) approach. It evaluates the reduction in
deviance on those observations not used in constructing the
current regression tree. Studies show that the OOB estimator
(of the optimal number of iteration) tends to under-estimates
the reduction in deviance. As a result, it is usually too
conservative in its selection for the optimal number of
iterations.

The boxplots on next slide show the comparative performance
relative to the best method on each of the 13 datasets. 5-fold CV
is consistently the best. OOB, using a 33% and 20% test set, all
have datasets for which they perform considerably worse than the
best method.
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A com parative StUdy (from Ridgeway, 2007)
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California housing data

» Available at CMU StatLib repository
(http://1lib.stat.cmu.edu/datasets/).

» Originally used by Pace and Barry (1997).

» Consist of aggregated data from each of 20640 neighborhoods
(1990 census block groups) in California.

» The response variable is the median house value in each
neighborhood measured in units of $100,000.

» Eight continuous input variables, which are demographics
(e.g. median income), housing density and occupancy,

housing properties (e.g. number of rooms/bedrooms), and
location of each neighborhood.

» Randomly divide the dataset into a training set (80%) and a
test set (20%).
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CA house example - error curves

feel
o
~N o 7
[ =}
0 o
S
o 9]
2,8 g
3 ©8qy S
=] 25 ©
) 8325
7] e
S I c£8
o © =< 3
2 e 84
2 o L 8&E =
o J | S§Q
%2} 3 j=2)
g © s
< <&@
=} L SES o
— O 9 |
[S] Som S
(o) o
o]
3 L8 o
o - © 8
I S
T T T T T o T T T T T
0 200 400 600 800 0 200 400 600 800
Iteration Iteration

Red (black) curve on the left plot is the test (train) error (average
of absolute error). The optimal number of iterations based on
OOB improvement is around 600. The red (black) curve on the
right plot is the smoothed (raw) OOB changes in AE.
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CA house example - relative variable importance
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Figure from HTF (2009)
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CA house example - partial dep
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CA house example - partial dependence plots

30
20

HouseAge

5 AveOccup

Figure from HTF (2009)

45 / 48



CA house example - spatial effects
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Packages in R for boosting

» gbm package provides an internal regression tree engine,
marginal plots and additional utilities for optimizing a wider
range of loss functions outside of classification.

» mboost package is an advanced boosting tool for processing
several base learners and arbitrary loss functions.

» ada package provides an R implementation for discrete, real,
and gentle stochastic boosting (see Friedman, Hastie and
Tibshirani, 2000) under both logistic and exponential loss for
classification, ideally suited for small to moderate-sized data
sets.

» xgoost (eXtreme Gradient BOOSTing) package is an efficient
and scalable implementation of gradient boosting. It can
automatically do parallel computation. Input data can be
from sparse matrix format. Regularization is used to avoid
overfitting.
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