Model Assessment and Selection

Bin Li

IIT Lecture Series

/32

Loss functions

v

Typical choices for quantitative response Y':

» Squared error: L(Y,)A‘A(X)) =(Y - 7A‘A(X))2

» Absolute error: L(Y, (X)) =Y — f(X)|
Typical choices for categorical response Y:

> 0-1loss: L(Y,F(X)) = I(Y # (X))

» Deviance (-2log-likelihood):

LY, (X)) = =255, I(Y = k)logpx = —2logpy

Training error is the average loss over the training sample
(e.g. MSE and misclassification rate.)

Test error is the average loss over an independent test sample.
In-sample error is the expected prediction error conditioned on
training set.

Generalization error (or extra-sample error) is the expected
prediction error over an independent test sample.

N

S

Performance assessment

» The generalization performance of a statistical model relates
to its prediction capability on independent test data.
Evaluation of this performance is extremely important in
practice.

» Model selection — estimating the performance of different
models in order to choose the best one.

» Model assessment — having chosen a final model, estimating
its prediction error (generalization error) on new data.

» Three types of model assessment

> In-sample error: performance on the sample used to develop
model.

» Without adjustment: in-sample optimism.

» With adjustment: various information criteria: AlIC, BIC, etc.

> Internal: split sample, cross validation, bootstrapping.
» External: independent test data.

Recap: a fundamental picture
=
o High Bias Low Bias
LE Low Variance High Variance
o
©)
04:1
-3
'_8 Test Sam
=
Ay
Training Sample
Low High

Figure from HTF 2001.

Model Complexity

32

In-sample Optimism

>

Let 7 be the training set and Y° the N new response values at each of
the training points {x;}/;.

The optimism is defined as:

=1 XN: [Y,,fx,))|T]—W

where €r7 is the training error for loss function L(,).

For squared error, 0-1 and other loss functions, we can show the
expectation of optimism over training set is

E, (Op Z COV(}/H}//

The amount of optimism depends on how strongly y; affects its own
prediction. The harder we fit the data, the greater Cov (¥, yi) will be.

Assume additive model: Y = f(X) + € and if §; is from a linear fit with d
inputs, it simplifies to Ey(op) =2.952

Mallow C,, AIC and BIC

» Estimate the in-sample error by adding the optimism to the
training error. Used for model selection.

» Mallow C, and AIC work in this way for a special class of
estimates that are linear in their parameters.

» Mallow C,, statistic (squared error loss with d parameters):
d,
Co=cerr+2- Naf

» Akaike information criterion (AIC) a more generally applicable
estimate of in-sample error when a log-likelihood loss function
is used:

2 2
AlIC = N log-likehood + N d

For Gaussian model, AlIC is equivalent to C, statistic.
» Bayesian information criterion (BIC):

BIC = —2log-likehood + log N - d

6

32

Phoneme example

> Input features: log-periodograms measured at 256 frequencies.
> Response: two phonemes “aa” and “ao”.
» Training/test sets: 1000/717 samples.
» Figure below shows 15 periodograms for each class.
Phoneme Examples
& -
8 4
=
©
g o
8
2 o
& 2 LA
a3 | W |
o |
o |
0 50 100 150 200 250
Frequency
Figure from HTF 2009. =} = E = DA

7/32

Training, test and AIC curves

> Logistic regression using spline basis functions.

> Left: Log-Likelihood loss is used for AIC. AIC is reasonably good except
for the extremely over-parametrized case.

» Right: 0-1 loss is used for AIC, which also does a good job.

Log-likelihood Loss 0-1 Loss
0 & g
i] o
o Train
Test O
AIC 8
o o
~ 5
) o 8 1\ 0
o (=4 o
2 8
s @9 | K \O o/
= - £ o \ -
= BN A O/O
g Q 8 o
a \ E
o Q =
e \o\ o s 9 |
O—o—;o"o =]
o
n —
S o
2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Basis Functions Number of Basis Functions

Figure from HTF 2009.

AlIC or BIC?

v

A lower AIC means a model is considered to be closer to the
truth.

A lower BIC means that a model is considered to be more
likely to be the true model. Note BIC is an estimate of a
function of the posterior probability of a model being true.

BIC is asymptotically consistent as a selection criterion. That
means, given a family of models including the true model, the
probability that BIC will select the correct one approaches one
as the sample size becomes large.

AIC does not have the above property. Instead, it tends to
choose more complex models as N — oo.

For small or moderate samples, BIC often chooses models that
are too simple, because of its heavy penalty on complexity.

Validation set approach

» Suppose that we would like to find a set of variables that give
the lowest test (not training) error rate.

» If we have a large data set, we can achieve this goal by
randomly splitting the data into training and
validation(testing) parts.

» We would then use the training part to build each possible
model (i.e. the different combinations of variables) and
choose the model that gave the lowest error rate when applied
to the validation data.

[123 n

722 13 91

Figure from ISLR 2013.

10/32

Example: auto dataset

v

v

Suppose that we want to predict “mpg” from “horsepower”

Two models:

» mpg ~ horsepower

» mpg ~ horsepower + horsepower2
Which model gives a better fit?

» Randomly split Auto data set into training (196 obs.) and
validation data (196 obs.)

» Fit both models using the training data set.

» Evaluate both models using the validation data set.

» The model with the lowest validation (testing) MSE is the
winner!

Pros: Simple and easy to implement.
Cons: The validation MSE can be highly variable (see next
slides). Only a subset of observations are used to fit the

model (training data). Statistical methods tend to perform
worse when trained on fewer observations.

11/32

Result: auto dataset

» Left: Validation error rate for a single split

> Right: Validation method repeated 10 times, each time the
split is done randomly!

> There is a lot of variability among the MSE’s ... Not good!
We need more stable methods!

Mean Squared Error
16 18 20 22 24 26 28
| |
.
L]
L[]
Mean Squared Error
16 18 20 22 24 26 28
Il Il
K

i il i\/

T T T T T T T T T T

2 4 6 8 10 2 4 6 8 10
Degree of Polynomial Degree of Polynomial

Figure from ISLR 2013.
12 /32

Leave-one-out cross-validation (LOOCV)

» LOOCV repeats N times by using a single observation from
the original data as the validation set, and the remaining as

the training set.

» Address the second Cons but more computationally expensive!

[123

]

123

123

Figure from ISLR 2013.

!

13 /32

LOOCV vs. validation set approach

» LOOCV has less bias.

» We repeatedly fit the statistical learning method using training
data that contains N — 1 obs., i.e. almost all the data set is
used.

» LOOCV produces a less variable MSE.

» The validation approach produces different MSE when applied
repeatedly due to randomness in the splitting process, while
performing LOOCV multiple times will always yield the same
results

» LOOCV is computationally intensive (fit the model N times).

» But not always! For many linear fitting methods (i.e. § = Sy),
we have

LOOCV = N Z

where S;; is the i*" diagonal elements of S

2
f(x,)]
1—5

14 /32

k-fold cross validation

» LOOCV is computationally intensive, so we can run k-fold
Cross Validation instead

» With k-fold Cross Validation, we divide the data set into k
different parts (e.g. k =5 or k = 10, etc.)

» We then remove the first part, fit the model on the remaining
k — 1 parts, and see how good the predictions are on the left
out part (i.e. compute the MSE on the first part).

» We then repeat this k different times taking out a different
part each time.

» By averaging the k different MSE's we get an estimated
validation (test) error rate for new observations.

CVihy = Z MSE;

15/32

k-fold cross validation (cont.)

Figure from ISLR 2013.

«O)>» «F)» « =>»

<

i
-

Auto Data: LOOCV vs. k-fold CV

Mean Squared Error

» Left: LOOCV error curve. Right: 10-fold CV was run many
times, and the figure shows the slightly different CV error

rates.

» LOOCV is a special case of k-fold, where k = n.
» They are both stable, but LOOCV is more computationally

16 18 20 22 24 26 28

intensive!
Loocv
o——o——‘\._._.___._./.
T T T T
4 6 8 10

Degree of Polynomial

Figure from ISLR 2013.

Mean Squared Error

16 18 20 22 24 26 28

10-fold CV

T T T T
4 6 8 10

Degree of Polynomial

17 /32

k-fold cross validation on three simulated data

» Blue: True Test MSE
» Black: LOOCV MSE
» Orange: 10-fold MSE

Mean Squared Error
1

Mean Squared Error
1

Mean Squared Error
1

T T T T T T T T T T T T
2 5 10 20 2 5 10 20 2 5 10 20

Flexibility Flexibility Flexibility

Figure from ISLR 2013.

18 /32

Bias- variance trade-off for k-fold CV

» Putting aside that LOOCV is more computationally intensive
than k-fold CV ... Which is better LOOCV or k-fold CV?
» LOOCV is less bias than k-fold CV (when k < n)
» But, LOOCV has higher variance than k-fold CV (when k < n)
» Thus, there is a trade-off between what to use
» Conclusion:
» We tend to use k-fold CV with (k=5 and k = 10)
» These are the magical k's
> It has been empirically shown that they yield test error rate
estimates that suffer neither from excessively high bias, nor
from very high variance.

19/32

Cross validation on classification problems

» So far, we have been dealing with CV on regression problems.

» We can use cross validation in a classification situation in a
similar manner.

» Divide data into k parts.

» Hold out one part, fit using the remaining data and compute
the error rate on the hold out data.

» Repeat k times.

» CV error rate is the average over the k errors we have

computed.

20 /32

CV to choose order of polynomial

» The purple dashed line is the Bayes' boundary with Bayes
error rate 0.133.

» Linear logistic regression (degree 1) is not able to fit the
Bayes' decision boundary.

» Quadratic logistic regression does better than linear.

Degree=1 Degree=2

Figure from ISLR 2013.

21/32

CV to choose order of polynomial (cont.)

» Using cubic and quartic predictors, the accuracy of the model
improves.

Degree=3

Degree=4

Figure from ISLR 2013.

D¢

22/32

CV to choose order of polynomial (cont.)

» Brown: test error
» Blue: training error
» Black: 10-fold CV error

0.20
1
0.20
1

Error Rate
0.16
|
Error Rate
0.16
Il

0.12
1
0.12
1

T T T T T T T T T T T T
2 4 6 8 10 001 002 005 010 020 050 1.0
Order of Polynomials Used 1/K

Figure from ISLR 2013.

23 /32

Revisit the regression simulation example

» Data:
yi = 2sin(1.5x,-) =+ xi + €;,
where €; ~ N(0,1) Y4
» Training set: dat has 100
observation.

10
1

» Fit the data using o -
polynomial regressions.

» Range of polynomial
order: from 1 (SLR) to
10.

» Use 10-fold CV and ~ A
LOOCV to select the
optimal polynomial order. o4

24 /32

CV curves among 50 replications

» The grey lines on the
backgrounds are the CV
errors (in terms of MSE)
based on 50 repetitions.

35
1

» For each repetition, the
data is randomly split
into 10 folds. Then
10-fold CV is applied on
various orders of
polynomial regression.

» The red line is the
average CV errors from 50
repetitions. The optimal
order is 9 although there
is a kink around order=6.

» The blue line is the 2 4 6 8 10
LOOCV error. Polynomial order

CVMSE
25
|

2.0
1

1.0

25/32

R code for cross-validation

K-fold CV function: return a list with

K components. One for each fold.
cv.folds <- function(n,K,seed){
set.seed(seed)
split(sample(1:n),rep(1:K,length=n))

>

>

>

+

+

+

> # cv.pred: function estimate CV errors

> cv.preg<—fuuction(data,ord,K,seed){

+ all.folds<-cv.folds(nrow(data),K,seed)

+ cv.err.mat<-matrix(0, length(ord), K)

+ for (i in seq(K)){

+ for (j in 1:length(ord)){

+ omit <- all.folds[[i]]

+ fit <- lm(y~poly(x,j,raw=T),data[-omit,])
+ pred <- predict(fit,datalomit,])

+ cv.err.mat[j,il<-mean((data$y [omit]-pred)~2)
+)

+)

+ out<-as.vector(apply(cv.err.mat,1,mean))

+ return(out)

+

}

VVVV+4+V+VV++++VVV++HVVVY

10-fold CV
ord <- 1:10; K<-10; iter <- 50
cv.mse <- matrix(0,iter,length(ord))
for (it in 1:iter){
cv.msel[it,] <- cv.preg(dat,ord,K,it)

LOOCV
loocv.mse <- rep(0,10)
for (i in 1:10){
fit<-1lm(y~poly(x,i,raw=T),dat)
loocv.mse[il<-mean(((dat$y-fit$fit)/
(1-hatvalues(fit)))"2)
¥
Plot CV curves on the background
plot(ord,cv.mse[1,],xlab="Polynomial order",
ylab="CVMSE",ylim=range(cv.mse),type="n")
for (it in 1:iter){
lines(ord,cv.mse[it,],1wd=0.3)
}
Average 10-fold CV errors
lines(ord,apply(cv.mse,2,mean),col="red",lwd=2)
LOOCV errors
lines(ord,loocv.mse,col="blue",lwd=2)

26

32

Boston housing example

Split the 506 observations into
training set (100 obs.) and test
set (406 obs.)

Fit multiple linear regression on
the training set

Use 10-fold CV on the training
set to estimate its performance
on new data.

Models fitl and fit2 are the
same.

Function cv.glm in boot library
calculates the estimated K-fold
CV prediction error for
generalized linear models.
deltal1] is the raw CV
estimate of prediction error.
deltal2] is the bias-adjusted
cross-validation estimate.

library(mlbench)

data(BostonHousing)

bh <- BostonHousing

set.seed(1)
indx<-sample(1:506,size=506,replace=F)
bh.train<-bh[indx[1:100],]
bh.test<-bh[indx[101:506],]

fitl <- lm(medv~.,data=bh.train)

fit2 <- glm(medv~.,data=bh.train,family=gaussian)
summary (fit2)

Null deviance: 8224.8 on 99 degrees of freedom
Residual deviance: 1943.8 on 86 degrees of freedom
AIC: 610.51
> sum(fit2$resi~2) #Residual deviance
[1] 1943.847
> mean(fit2$resi~2)

[1] 19.43847

> pred <- predict(fit2,newdata=bh.test)

> mean((pred-bh.test$medv) "2)

[1] 26.6657

> library(boot)

> val.10.fold<-cv.glm(data=bh.train,glmfit=fit2,K=10)
> val.10.fold$delta

[1] 29.67401 29.04337

VVVVVVVVVYV

27 /32

Cholostyramine example

v

n = 164 men took part in an experiment to see if the drug
cholostyramine lowered blood cholesterol levels. The men
were supposed to take six packets of cholostyramine per day,
but many of them actually took much less.

The explanatory variable, which we call z, is the compliance,
as a percentage of the intended dose actually taken.
The response variable, which we call y, is the improvement

the decrease in total blood plasma cholesterol level from the
beginning to the end of the experiment.

We are interested the nonlinear relationship between the
compliance and improvement.

Cholostyramine example (cont.)

Improvement

20

100

80

40

-20

20

40 60
Compliance

80

T
100

Loess smoother

> For each point x; = (zj, yi), the a X n nearest points are identified based
on the distance |z; — z|. We call this neighborhood of a x n points
“N(2)".
» With o = 0.30 and n = 164, the algorithm puts 49 points into
N(z2).

> A weighted least-squares linear regression
?Z(Z) = BZ,O + BZ,IZ

is fit to the a X n points in N(z), where the weights w; ; are positive
numbers which depend on |z; — z|. Let

5=z
uj = ,
maxy(z) |z« — z|
the weights w; equal (1 — u})*.
> Finally, the loess estimate Foess(2) is set equal to the value of 7,(Z) at
Z =z
> In R, loess is the function to fit Loess smoother. The value of the tuning
parameter a can be specified through option span in loess.

30/32

Cholostyramine example (cont.)

> We use 10-fold CV to select the

optimal value of & minimizing > library(bootstrap)
the MSE > data(cholost); x<-cholost$z; y<-cholost$y
: > sp <- seq(from=0.2,t0=0.8,1le=7)
» The crossval function in > cv.res <- matrix(0,20,7)
. . . > for (i in 1:20){
boot%trap library is a generic + set.seed(i)
function to calculate the + for (j in 1:7){
estimated K-fold CV prediction + 1fit <- function(x,y){loess(y™x,span=sp[j1)}
+ lpred <- function(fit,x){predict(fit,x)}
error. + cv.out<-crossval(x,y,1fit,lpred,ngroup=10)
> We applied 10-fold CV 20 times. + cv.res[i,j] <- mean((y-cv.out$cv.fit)"2)
. . +)
Each time, the crossvalidated 3}
MSE are calculated on a grid > round(cv.res,d=0)
[,11 [,2] (,31 [,4] [,5] [,6] [,7]
gallue of o from 0.2 to 0.8 by [1,] 474 477 476 458 475 468 474

[2,] 481 482 464 469 463 479 467

> Then we average the CV MSE [19,] 519 472 466 460 462 471 484

based on 20 replications for each [20,]1 467 478 475 475 468 464 475
value of a. > plot(sp,cv.res[1,],type="n",xlab="Span value",
+ ylab="CV_MSE",ylim=range(cv.res))
» Based on the plot on next slide, > for (i in 1:20){
we see the optimal value of a is + . lines(sp,cv.res[i,],col=grey(0.5),1wd=0.5)
+
at 0.5. > lines(sp,apply(cv.res,2,mean),col="blue",1lwd=2)

31/32

Cholostyramine example (cont.)

500 510 520
| |

490
|

CV_MSE

470 480
| |

460
|

Span value

32/32

