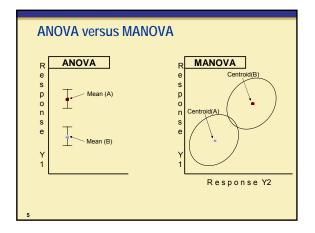


Sas Excert Section 2.1 Introduction to Multivariate Analysis of Variance


Objectives

- Understand when to use multivariate analysis of variance (MANOVA).
- Review concepts and definitions related to matrices and vectors in multivariate statistics.
- Understand the assumptions of MANOVA.
- Recognize multivariate test statistics and how they are calculated.

What Is MANOVA?

A linear model.

- A statistical method for identifying group differences on a set of dependent variables.
- A method that incorporates the interrelationships among dependent variables in examining group differences.

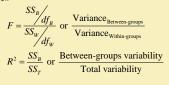
Statistical Advantages of MANOVA

Compared to ANOVA with multiple dependent variables, $\ensuremath{\mathsf{MANOVA}}$

- reduces overall type-I error rate
- accounts for important information such as correlation among the dependent variables
- accounts for joint effects in the responses that would be missed otherwise in univariate tests (MANOVA increases power)
- allows you to examine multiple scores to screen for overall differences without combining scores into a single composite.

(Stevens 1996)

The MANOVA Model


$$\mathbf{Y} = \mathbf{X}\mathbf{\beta} + \mathbf{E}$$

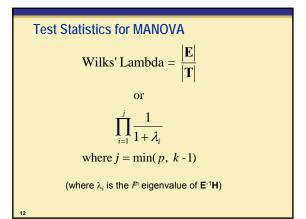
where

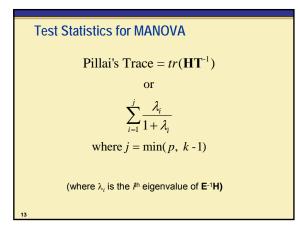
- Y the $n \times p$ matrix of p dependent variables for n observations
- X the model matrix
- β the parameter matrix
- E the error (residual) matrix.

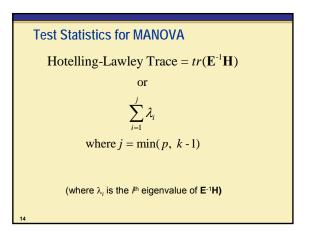
Statistics Used in Linear Models

Recall the *F*-statistic used to test hypotheses in linear models and the coefficient of determination, R², used to identify the proportion of variance accounted for by terms in the linear model:

In multivariate models, you will see statistics that are multivariate generalizations of familiar univariate statistics.

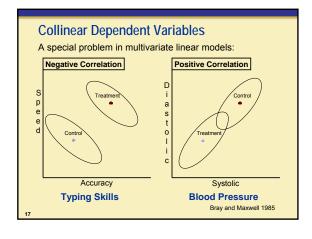

Partitioning Variances for MANOVA


- ${\rm H}$ the matrix of hypothesized effects. This is analogous to the ${\rm SS}_{\rm B}$ in univariate ANOVA.
- $\label{eq:stable} \begin{array}{ll} \textbf{E} & \mbox{the error, or residual, matrix. This is analogous to} \\ & \mbox{the SS}_{W} \mbox{ in univariate ANOVA.} \end{array}$
- **T** the total variability matrix. This is analogous to the corrected total sum of squares in ANOVA.



Matrices for MANOVA Test Statistics

- $\label{eq:holdsystem} \begin{array}{ll} \textbf{H} & \text{the matrix of hypothesized effects. This is} \\ & \text{analogous to the SS}_{\text{B}} \text{ in univariate ANOVA.} \end{array}$
- **T** the total variability matrix. This is analogous to the corrected total sum of squares in ANOVA.



Test Statistics for MANOVA

Roy's Maximum Root = λ , or largest eigenvalue of $\mathbf{E}^{-1}\mathbf{H}$

Assumptions of MANOVA

- Random sample
- Independent observations
- Multivariate normality
- Homogeneity of covariance matrices

Sample Size

Most multivariate analyses are large-sample procedures. Rules of thumb for **minimum** sample size:

 greater of 100 observations or 5 times the number of parameters

- or
- 20+ observations per group.

For small-effects sizes and large variances, larger samples are necessary for adequate statistical power.