SSaS | Emacion

§SaS | Encaton

Chapter 5

Dimension Reduction and Extraction of Meaningful Factors

Section 5.1

Principal Components
Analysis

Objectives

- Explain the basic concepts for principal components analysis.
- Identify several strategies for selecting the number of components.
- Perform principal components analysis using the PRINCOMP procedure.

Solutions

- Eliminate some redundant variables.
- May lose important information that was uniquely reflected in the eliminated variables
- Create composite scores from variables (sum or average).
- Lost variability among the variables
- Multiple scale scores may still be collinear
- Create weighted linear combinations of variables while retaining most of the variability in the data.
- Fewer variables; little or no lost variation

An Easy Choice

To retain most of the information in the data while reducing the number of variables you must deal with, try principal components analysis.

- Most of the variability in the original data can be retained.

but..

- Components may not be directly interpretable.

Principal Components Analysis
PCA

- is a dimension reduction method that creates variables called principal components
- creates as many components as there are input variables.

Principal Components
Principal components

- are weighted linear combinations of input variables
- are orthogonal to and independent of other components
- are generated so that the first component accounts for the most variation in the $x s$, followed by the second component, and so on.

Details of Principal Components

The j principal components provide a least-squares solution to the following model:

$$
\mathbf{Y}=\mathbf{X B}
$$

where
$\mathbf{Y} \quad n$ by p matrix of scores on the components
$\mathbf{X} \quad n$ by j matrix of centered observed variables
B $\quad j$ by p matrix of eigenvectors of the correlation or covariance matrix of the variables.

Principal Component Scores

Principal component scores can be created

- for each observation in the data set
- on each principal component
- using raw or the standardized weights.

Assumptions of PCA

- Random missingness
- Absence of outliers
- Singularity not a mathematical problem in PCA because matrices are not inverted.

Procedures That Can Perform PCA

The PRINCOMP Procedure

- PRINCOMP

General form of the PRINCOMP procedure:

```
PROC PRINCOMP <options>;
            VAR variables;
RUN
RUN
```

- CORRESP

