In case you don't remember all that matrix algebra off the top of your head...

Matrix Algebra and Matrix Notation: A Brief Refresher

Scalars and Vectors

Scalar: A single value, constant, or observation.

$$
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Scalars are denoted } \\
\text { by lowercase italics. }
\end{array} & \frown x=[5] \\
\hline
\end{array}
$$

Vector: A row or column of values, responses, or

Row vector: $\mathbf{x}^{\prime}=\left[\begin{array}{llll}5 & 2 & 4 & 8\end{array}\right]$
Matrix Algebra Review

Special Properties of Matrices

Square: $n=p$

$$
\mathbf{X}_{1}=\left[\begin{array}{lll}
2 & 3 & 6 \\
5 & 1 & 2 \\
5 & 8 & 0
\end{array}\right]
$$

Symmetric: Area above the diagonal is a mirror image of the area below the diagonal, or $x_{12}=x_{21}, x_{23}=x_{32}, \ldots$ $\mathrm{x}_{\mathrm{ij}}=\mathrm{x}_{\mathrm{j}}$.

$$
\mathbf{X}_{2}=\left[\begin{array}{lll}
1 & 3 & 6 \\
3 & 1 & 2 \\
6 & 2 & 1
\end{array}\right]
$$

Transposing Matrices

A matrix \mathbf{X} is transposed (\mathbf{X}^{\prime}) by changing rows to columns and columns to rows:

$$
\mathbf{X}=\left[\begin{array}{lll}
5 & 2 & 7 \\
4 & 1 & 3
\end{array}\right] \quad \mathbf{X}^{\prime}=\left[\begin{array}{ll}
5 & 4 \\
2 & 1 \\
7 & 3
\end{array}\right]
$$

Transposing matrices can make it possible to multiply them.

Notice that for a matrix \mathbf{X}, the matrix equivalent of X^{2} is $X^{\prime} X$.

Matrix Algebra Review

Commonly Used Matrices

SSCP

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{ccc}
S S_{1} & S P_{12} & S P_{13} \\
S P_{21} & S S_{2} & S P_{23} \\
S P_{31} & S P_{32} & S S_{3}
\end{array}\right]
$$

Identity
$\mathbf{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Correlation
$\mathbf{R}=\left[\begin{array}{ccc}1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1\end{array}\right]$

Summarizing Variability: Trace

Trace: Sum of diagonal elements

$$
\mathbf{X}_{1}=\left[\begin{array}{lll}
2 & 3 & 6 \\
5 & 1 & 2 \\
5 & 8 & 0
\end{array}\right] \quad \operatorname{Tr}\left(\mathbf{X}_{1}\right)=2+1+0=3
$$

Determinant: Simplest Case

The determinant of a 2×2 matrix is simple to calculate:

Determinant of a 3×3 Matrix

For 3×3 matrices, follow the arrows:
Step 1. Add the products in one direction:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \square \begin{aligned}
& (1 * 4 * 6)+(2 * 5 * 3)+(3 * 5 * 2) \\
& =24+30+30 \\
& =84
\end{aligned}
$$

Summarizing Variability: Determinant

Determinant: A single value that characterizes a square matrix, the determinant represents the volume of the $n \times p$ space.

- Application: the determinant of a covariance matrix is the generalized variance of a set of variables.
- Denoted |A|.

For a matrix A:

$|\mathbf{A}|=a d-b c$

Now consider the determinant of a 3×3 matrix.

Determinant of a 3×3 Matrix

Step 2. Add the products in the other direction:

Determinant of a 3×3 Matrix

Step 3. Subtract the results of Steps 1 and 2:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \rightarrow \begin{aligned}
& (3 * 4 * 3)+(5 * 5 * 1)+(6 * 2 * 2) \\
& =36+25+24 \\
& \\
& =85
\end{aligned}
$$

Matrix Addition and Subtraction

Equal-sized matrices are added or subtracted by adding or subtracting corresponding elements:
$\mathbf{A}=\left[\begin{array}{cc}2 & 1 \\ 10 & 8\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cc}6 & 12 \\ 5 & 4\end{array}\right]$
$\mathbf{A}+\mathbf{B}=\left[\begin{array}{cc}8 & 13 \\ 15 & 12\end{array}\right]$
$\mathbf{A}-\mathbf{B}=\left[\begin{array}{cc}-4 & -11 \\ 5 & 4\end{array}\right]$

Matrix Multiplication

If $p_{\mathbf{A}}=n_{\mathbf{B}}$, the sum of the products of the $\mathrm{i}^{\text {th }}$ row of \mathbf{A} and the $\mathrm{j}^{\text {th }}$ column of \mathbf{B} make the elements of the resulting matrix.
The resulting matrix will be of size $n_{\mathrm{A}} \times p_{\mathrm{B}}$:
$\mathbf{A B}=\left[\begin{array}{cc}5 & -2 \\ 4 & 7 \\ 9 & 3\end{array}\right]\left[\begin{array}{cccc}-5 & 2 & 4 & 1 \\ 3 & 6 & -2 & 5\end{array}\right]$
$=\left[\begin{array}{llll}5(-5)-2(3) & 5(2)-2(6) & 5(4)-2(-2) & 5(1)-2(5) \\ 4(-5)+7(3) & 4(2)+7(6) & 4(4)+7(-2) & 4(1)+7(5) \\ 9(-5)+3(3) & 9(2)+3(6) & 9(4)+3(-2) & 9(1)+3(5)\end{array}\right]$
$\mathbf{A B}=\left[\begin{array}{cccc}-31 & -2 & 24 & -5 \\ 1 & 50 & 2 & 39 \\ -36 & 36 & 30 & 24\end{array}\right]$
14

Matrix Division: Inverse

Inverse: The multivariate equivalent of division.

Denoted \mathbf{A}^{-1}

Inverse: Matrix Division

The inverse of a matrix is one that solves the following:
$\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}$
To find the inverse of a 2×2 matrix by hand, first create a pattern matrix with alternating + and - signs across each row:

$$
\left[\begin{array}{ll}
+ & - \\
- & +
\end{array}\right]
$$

Next, find the determinant:

$$
|A|=\left|\begin{array}{ll}
4 & 1 \\
3 & 4
\end{array}\right|=(4 * 4)-(1 * 3)=13
$$

Inverse: Matrix Division

Attach the signs from the pattern matrix to the original matrix elements and swap the elements on the positive diagonal:

$$
\left[\begin{array}{cc}
4 & -1 \\
-3 & 4
\end{array}\right]
$$

Finally, divide each element by the determinant of the
matrix:

$$
\mathbf{A}^{-1}=\left[\begin{array}{cc}
\frac{4}{13} & \frac{-1}{13} \\
\frac{-3}{13} & \frac{4}{13}
\end{array}\right]
$$

Singular Matrices: A Real Problem

Notice that if the determinant of a matrix $=0$, the inverse cannot be calculated. Matrices whose determinant=0 are known as singular matrices.
Collinear variables in a matrix can cause singularity. Matrix inversion is used extensively in multivariate statistics, and therefore collinear variables (and singular matrices) pose a real problem for analysis.

Eigenvalues and Eigenvectors

Eigenvalue (also called a characteristic root; denoted λ):

- the consolidated variance of a square matrix
- the variance accounted for by a linear combination of the variables.
Eigenvector (also called a characteristic vector):
- a nonzero vector that forms a linear combination of a set of variables that maximizes shared variance among p variables.
If a matrix \mathbf{A} is of size $p \times p$, then there are p eigenvalues of \mathbf{A}. Eigenvalues can have values of less than or equal to zero.

Properties of Eigenvalues

For a square matrix \mathbf{X} with p eigenvalues λ_{i} :

$$
\begin{gathered}
\sum_{i=1}^{p} \lambda_{i}=\operatorname{tr}(\mathbf{X}) \\
\text { and } \\
\prod_{i=1}^{p} \lambda_{i}=|\mathbf{X}|
\end{gathered}
$$

