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In case you don’t remember all that matrix 
algebra off the top of your head…

Matrix Algebra and Matrix Notation:
A Brief Refresher
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Scalars and Vectors 
Scalar: A single value, constant, or observation.

Vector: A row or column of values, responses, or 
observations.
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Column vector: 
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Row vector: 5 2 4 8
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Vectors are denoted by 
lowercase bold letters.

Scalars are denoted 
by lowercase italics.
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Matrices
Matrix: A rectangular array of values arranged in rows 

and columns, denoted by its size, n × p such that 
n is the number of rows and p is the number of 
columns.

5 2 7
2  3 Matrix: 

4 1 3

5 4
3  2 Matrix: 2 1

7 3
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Matrices are 
denoted by 
uppercase 
bold letters.
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Transpose to switch 
rows and columns
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Special Properties of Matrices
Square: n = p

Symmetric: Area above the diagonal is a mirror image of the 
area below the diagonal, or x12 = x21, x23 = x32,…
xij = xj .
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3 1 2
6 2 1
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Transposing Matrices
A matrix X is transposed (X ) by changing rows to 
columns and columns to rows:

Transposing matrices can make it possible to multiply 
them.

Notice that for a matrix X, the matrix equivalent of
x2 is X X.
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Commonly Used Matrices
SSCP 

Identity

Variance-covariance

Correlation

1 0 0
0 1 0
0 0 1
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Summarizing Variability: Trace

Trace: Sum of diagonal elements

1Tr( ) 2 1 0 3= + + =X
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2 3 6
5 1 2
5 8 0
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Summarizing Variability: Determinant
Determinant: A single value that characterizes a square 
matrix, the determinant represents the volume of the       
n × p space. 

Application: the determinant of a covariance matrix is 
the generalized variance of a set of variables. 
Denoted |A|.
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Determinant: Simplest Case
The determinant of a 2 × 2 matrix is simple to calculate:

For a matrix A:

|A| =  ad - bc

Now consider the determinant of a 3 × 3 matrix.

a b
c d
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Determinant of a 3 × 3 Matrix
For 3 × 3 matrices, follow the arrows:
Step 1. Add the products in one direction:

1 2 3
2 4 5
3 5 6
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A (1*4*6) (2*5*3) (3*5*2)
24 30 30
84
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Step 2. Add the products in the other direction:
Determinant of a 3 × 3 Matrix

1 2 3
2 4 5
3 5 6
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A (3*4*3) (5*5*1) (6*2*2)
36 25 24
85
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Step 3. Subtract the results of Steps 1 and 2:
Determinant of a 3 × 3 Matrix

84 85
1

−

= −A
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Matrix Addition and Subtraction
Equal-sized matrices are added or subtracted by adding 
or subtracting corresponding elements:

2 1 6 12
   

10 8 5 4

8 13 4 11
         

15 12 5 4
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Matrix Multiplication
If pA = nB, the sum of the products of the ith row of A and the 
jth column of B make the elements of the resulting matrix.
The resulting matrix will be of size nA× pB:

5 2
5 2 4 1

4 7
3 6 2 5

9 3

5( 5) 2(3) 5(2) 2(6) 5(4) 2( 2) 5(1) 2(5)
4( 5) 7(3) 4(2) 7(6) 4(4) 7( 2) 4(1) 7(5)
9( 5) 3(3) 9(2) 3(6) 9(4) 3( 2) 9(1) 3(5)

31 2 24 5
1 50 2 39
36 36 30 24
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Matrix Division: Inverse

Inverse: The multivariate equivalent of division. 

Denoted A-1
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Inverse: Matrix Division
The inverse of a matrix is one that solves the following:
A-1A = AA-1 = I
To find the inverse of a 2 × 2 matrix by hand, first create a 
pattern matrix with alternating + and – signs across each 
row:

Next, find the determinant:
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Inverse: Matrix Division
Attach the signs from the pattern matrix to the original 
matrix elements and swap the elements on the positive 
diagonal:

Finally, divide each element by the determinant of the 
matrix:
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3 4
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Singular Matrices: A Real Problem
Notice that if the determinant of a matrix=0, the inverse 
cannot be calculated. Matrices whose determinant=0 are 
known as singular matrices. 
Collinear variables in a matrix can cause singularity. 
Matrix inversion is used extensively in multivariate 
statistics, and therefore collinear variables (and singular 
matrices) pose a real problem for analysis.
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Eigenvalues and Eigenvectors
Eigenvalue (also called a characteristic root; denoted λ):

the consolidated variance of a square matrix 
the variance accounted for by a linear combination 
of the variables. 

Eigenvector (also called a characteristic vector): 
a nonzero vector that forms a linear combination of 
a set of variables that maximizes shared variance 
among p variables.

If a matrix A is of size p × p, then there are 
p eigenvalues of A. Eigenvalues can have values 
of less than or equal to zero. 
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Properties of Eigenvalues
For a square matrix X with p eigenvalues λi:
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