- AIC (Akaike Information Criterion) a screening method for various models. It is based on the likelihood estimate and is called a "penalized likelihood" where the penalty is a reduction in size based on the degrees of freedom.
 - Use of this criterion assumes that all candidate models are fitted to the same observations and the full likelihood is fitted to the same response (i.e. not to different transformation).
 - AIC an asymptotically unbiased estimator
 - AIC = -2 (Mean Expected Log Likelihood} + 2K = 2K 2 (Mean Expected Log Likelihood) where K is the number of parameters fitted
 - Given an initial AIC_k value and a second AIC₀ derived for an "intercept only" model, then a pseudo R^2 can be calculated as $1 (AIC_0 / AIC_k)$
- AICC (Akaike Information Criterion) an empirical adjustment for smaller sample sizes that converges on the AIC as sample sizes increases. This model could be used for all cases.

AICC = AIC + (2k(k+1) / (n-k-1))

BIC (Bayesian Information Criterion or Schwarz BIC) - very similar to the AIC

AIC = -2 (Mean Expected Log Likelihood) + log(n)K where K is the number of parameters fitted and n is the sample size

Testing for differences – in comparing two models, the difference in –2 (Log Likelihood) values follows a Chi square distribution. The degrees of freedom are equal to the difference in d.f. between the two models.

Fit statistics for the models in the milk protein example (n = 1337).

Model	-2RLL	AIC	AICC	BIC	Cov df.
Heterogeneous Toeplitz	-68.6	5.4	7.6	93	37
Toeplitz	9.9	47.9	48.6	93	19
Unstructured	-329	51	117.6	501.2	190
Variance Components, Heterogeneous Autoregressive	40.3	82.3	83	132	21
Ante-dependence	27.6	101.6	103.8	189.2	37
Variance Components, Spatial Power	107.2	113.2	113.2	120.3	3
Variance Components, Autoregressive	126.8	132.8	132.8	139.9	3
Heterogeneous Compound Symmetry	366.6	406.6	407.3	454	20
Compound Symmetry	427.5	431.5	431.5	436.3	2