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Simple linear regression on an indicator variable – a precursor to logistic regression 

Basically it is a simple linear regression where the dependent variable has a value of either 0 or 1.   

   0 1i i iY X eβ β= + +    where Yi = 0, 1 

This is called a binary response, and the interpretation of E(Yi) is different from the usual response 
variable.  Given that E(εi) = 0, then 0 1( )i iE Y Xβ β= + .  If Yi is a Bernoulli random variable 
then the probability distribution is  

  when Yi = 1, ( 1)i iP Y π= =  and when Yi = 0, ( 1) 1i iP Y π= = − .  The expected value of the 
distribution is then given by 0 1( ) 1( ) 0(1 )i i i i iE Y Xβ β π π π= + = + − = .   

Issues when the response variable is binary.   

1) The residuals are not normally distributed.  The residuals, defined as 0 1( )i iY Xβ β− +  will 
only take on two values.  When Yi = 1 the values is 0 11 iXβ β− −  and when Yi = 0 the 
value is 0 1 iXβ β− − .   

2) The residuals are not homogeneous.  The variance is given by 2 2{( ( )) }
iY i iE Y E Yσ = −  = 

2 2(1 ) (0 ) (1 )i i i iπ π π π− + − −  = (1 )i iπ π−  = ( { })(1 { })i iE Y E Y− .   

  Finally the variance for residual is the same as for Yi because εi = Yi – πi, and πi is a 
constant.   2 2{( ( )) }

iY i iE Y E Yσ = −  2 2{( ( )) }
iY i iE Y E Yσ = −  

3) The last issue is that since the response ranges between 0 and 1 there should be a 
constraint on the response such that 0 { } 1iE Y π≤ = ≤ .  

Any solution should address these issues.   

First model, simple linear regression on an indicator variable.  

1

0
 

This is a "primitive" version of regression on an indicator variable.  The predicted value ( Ŷ ) is 
interpreted as “the probability of getting a 1”.  However, this fitted line does not address any 
of the issues stated above.  It does nothing to address the lack of normality, the problem with 
homogeneity of variance or to keep the line from going below zero and above 1.  This 
solution has not particularly desirable properties.    

See SAS example – SLR on p and on indicator variable 
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Second model, a sigmoid response variable.  

 
 

The probit analysis, based on a standard normal cumulative distribution, will be discussed later.  However, 
it is similar to the logistic function.  The probit distribution has a normal density function and the 
logistic function is very similar.   

 The full version of the Logistic Model was discussed in the section on nonlinear models as a common 
growth model.  This three-parameter model is not linear and cannot be fitted with PROC REG or 

PROC GLM or even PROC Logistic. 
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The model fitted by PROC LOGISTIC is much simplified since the upper bound (β2) is known to be 1.    

The logistic mean response function is 10 1
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The final logistic model is then 0 1log
1

i
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⎛ ⎞
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.  The ratio 
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is called the “odds” and the 

natural log of this is called the logit response function.   

 

What are odds?   

Odds are an expression of the likelihood of some event happens compared to the likelihood that it does not 
happen.  If the odds on a horse in a race are 30 to 1, is that horse likely to win?  Or lose.  If the odds 
of an event happening are 50:50, what does that mean?  What if the odds are 1:1?  How is that 
different?   

The odds is simply the ratio of the probability of the occurance of an event to the probability of that 
event not occurring.  The values of 50/50 or 1/1 both produce odds equal to “1”.  They have the same 
odds.   

If the odds ratio is 1, then the likelihood of something happening is equal to the likelihood that it 
will not happen.   

To simplify our concepts we will think of the odds as the ratio of two probabilities.  The probability 
that some event happens (success) will be equal to p.  The probability of failure will be 1–p.  The 
odds is given by p/(1–p).  

  What if the odds ratio is 2?  This means that p is twice as large as (1–p), so success is twice as likely 
as failure.  If the odds ratio is 10 the probability of success is 10 times more likely than failure.   

  Odds are also commonly expressed as percents, so an odds of 1.5 means success is 50% greater than 
the probability of failure.  For odds of 2 the probability of success is 100% greater than the 
probability of success.    

  If the odds are 0.5, then the probability of failure is twice as likely.  An odds of 0.1 means the 
probability of failure is ten times more likely than success.    

Detransforming odds – The logistic analysis produces “log odds” as predicted values of the dependent 
variable.  Odds are obtained by taking the antilog [exp(YHati) = oddsi).  The probability can be 
obtained by calculating pi = oddsi / (1 + oddsi).   

Odds ratios  

Although the odds are a ratio they are usually referred to as just “odds”.  The “odds ratio” is a different 
value.  In Analysis of Variance the tests of interest are often difference in means, and in regression 
the tests of interest often involve the change in Y per unit X, which is the difference between the 
mean of Y at Xi and the mean of Y at Xi+1.  When odds are used as the dependent variable the 
difference in “means” is the difference in the estimated odds.  For analysis of variance the 

difference would be /(1 )log ( /(1 )) log ( /(1 )) log /(1 )
i i

e i i e j j e
j j

π ππ π π π π π
⎛ ⎞−− − − = ⎜ ⎟−⎝ ⎠

.  This term 

would be referred to as the “odds ratio”.  Likewise for regression, where the slope is the change in 

Y per unit X the slope would be given as an odds ratio, 1 1/(1 )log /(1 )
X X
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X X

π π
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Recall the three issues previously 
mentioned for working with 
0, 1 indicator variables.  The 
use of logistic or probit 
analyses addresses the third 
issue mentioned above, the 
constraint that the response 
ranges between 0 and 1.  
These sigmoid curves can be 
limited to this range.  Also 
note that the odds are not 
restricted to the 0, 1 range.  
The probit function is based 
on a Z distribution 
transformation, and has a 
standard normal density function.  The logistic density function is very similar, but not quite normal 
(having slightly heavier tails).  

  To address the last issue of lack of homogeneity of the residuals the analysis is sometimes weighted.  
The weights apply when there are repeat observations at several levels of the response variable in 
which case the outcomes are binomial distributed and a pi can be calculated.  If the transformed 

variables are designated ' log
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the lack of homogeneity of variance weighting is done by the inverse of the variance, or njπj(1–πj).   

 

See examples – weighted SLR on logit and NLIN on p  

 

Logistic regression in SAS  

The procedure is fitted using maximum likelihood.  Several common fit statistics are provided 
including –2 residual log likelihood (–2 Log L) the Akaike Information Criterion (AIC), and the 
Schwartz criterion (SC).  The last two are penalized log likelihood based estimates.   

The procedure supports weight and frequency statements, and the CLASS statement.  The model 
statement looks similar to regression, but can be set up in one of two ways.   

 1) MODEL Indicator = independent variables  

 2) MODEL Success / TotalTrials = independent variables  

The analysis provides tests of the model.  The Wald test is an application of large sample statistics 
and is based on the Z distribution.  Wald can also be used to place confidence intervals on the 
estimates.  A likelihood ratio test is also available.   
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Model fit statistics 
Model Fit Statistics         Intercept 
              Intercept            and 
Criterion          Only     Covariates 
AIC            2063.911       1684.291 
SC             2069.225       1694.917 
-2 Log L       2061.911       1680.291 

1) Akaike Information Criterion   AIC = 2log( ) 2L p− +  

  where Log(L) is the log likelihood and p is the number of parameters 

2) Schwarz Criterion     SC = 2log( ) log( )j
j

L p f− + ∑  

3) -2log L      [ ]
1

ˆ ˆ2 log ( ) (1 ) log (1 )
n

i e i i e i
i

Y Yπ π
−

− + − −∑   

This is analogous to the SSE in regression and is given in SAS as the “-2 Log L”.   

Two models (full and reduced) can be compared by calculating the difference in “-2 Log L” 
for both models.  This difference follows a chi square distribution with a d.f. equal to 
the difference in d.f. for the two models.  

4) Generalized R2    

2

(0)1
( )

nL
L θ

⎛ ⎞
− ⎜ ⎟
⎝ ⎠

, where L(0) is the intercept only model.   

Since this value reaches its maximum of less than 1 for discrete models an adjustment has 

been proposed.  This is called the Max-rescaled Rsquare in SAS.  
2

2
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R

 

Global tests  
Testing Global Null Hypothesis: BETA=0 
Test                 Chi-Square       DF     Pr > ChiSq 
Likelihood Ratio       381.6204        1         <.0001 
Score                  352.7372        1         <.0001 
Wald                   296.9818        1         <.0001 

 
Wald : used to test individual parameter estimates and to place confidence intervals.  It is based on a 
large sample assumption of asymptotic normality.  The Chi-square test is given by  

2 2/ ( ) = [ / ( )]i i i iVar Stderrβ β β β  and the confidence interval is ( )ˆ ˆi ii i
ˆ ˆ( 1.96 ) ( 1.96 )

e e 0.95
S S

P iβ ββ β
β

− −
≤ ≤ = .   

Analysis of Maximum Likelihood Estimates 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
Intercept     1     -2.6435      0.1561      286.7841        <.0001 
X             1      0.6740      0.0391      296.9818        <.0001 
 
Odds Ratio Estimates 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
X            1.962       1.817       2.118 


