
REGRESSION ON AN INDICATOR VARIABLE 
 In this technique, the dependent variable (Y) is an indicator, and takes a

value of either 0 or 1.
 This is called a binary response variable
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Examples  any two categories, any binomial or binary variable

 a) Success-failure, Gender (Male-female), mortality, presence-absence,
pass-fail, etc.

 The results of a simple linear regression is a slope and intercept which will
produce a predicted value which ranges from 0 to 1 over most of the
range of X

 This b  can be interpreted as a probability of obtaining a 1 per unit of X, and"

the predicted value is the probability of obtaining a 1 at some particular
value of X.



Problems with regression on indicator variables

 1) Nonnormal errors : given that   = Y X  , then% " "3 3 ! " 3 

  When Y  = 1, then     = 1 X3 3 ! " 3% " " 

  When Y  = 0, then     = X3 3 ! " 3% " " 

 2) Nonconstant errors

  Let P(Y =1) =    and P(Y =0) = 13 3 3 31 1

  then E(Y ) = 1( ) + 0(1 )   =    =  X3 3 3 3 ! " 31 1 1 " " 

  and  = E[Y   E(Y )]  = (1 )  + (0 ) (1 )5 1 1 1 12 2 2 2
] 3 3 3 3 3 33

   

   =  (1 )  =  E(Y )(1 E(Y ))1 13 3 3 3 

  finally,  Var( ) = Var(Y ),  since  = Y    and  is a constant% % 1 13 3 3 3 3 3

  so   =  (1 )5 1 12
%3 3 3

   =  E(Y )(1 E(Y )) = ( X )(1 X )3 3 ! " 3 ! " 3   " " " "

  and the variance is a function of X3

 3) Constraints on the response function

 If the function is fitted with a line, at some point the predicted value will be
<0 or >1.  As a probability, the true value must be between 0 and 1, so we
must place some restraint on the predicted value.



So we would like to find a function which solves some of these problems, we
might also expect a curve instead of a simple linear and we would like a
curve that can go from 0 to 1 (asymptotically)

Several sigmoid possibilities have been considered, especially

 a) Logistic (symmetric)

 b) cumulative normal distribution (Probit analysis)

 This version of the logistic has several advantages,

   E(Y) = exp( + X )
 1+exp( + X ) 
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  particularly that it can be readily linearized by the transformation

    = log  1w
/ 
 ‘1

11

 This is called a LOGIT transformation, and  is called a logit mean1w

response.

 We can then fit

   = b  + b X1w
3 ! " 3

 and we should closely approximate the logistic.

The logistic can also be fitted directly with nonlinear techniques.

A similar, but more difficult and less flexible, transformation exists for the
cumulative normal distribution, and is called a PROBIT transformation



Weighting to improve variance :  the logit only linearizes the logistic function, it
does not cure the nonhomogeneous variance problem

 The logit,

   = log  1w
/ 
 ‘1
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 is estimated by

  p  = log  w
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 The variance of p   is3

  Var(p ) = w
3 
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 which is estimated by,

  s  = p
1

 n p (1 p ) 
w
3 3 3 3

 we could therefore weight by

  w  = n p (1 p )3 3 3 3

in order to homogenize the variance.



Notes:

 1) logits are readily extendible to multiple regression.

 2) Logistic regression has many applications.  One common application in
the biological sciences is the calculation of the dose needed to cause
mortality.  However, small doses cause small mortalities and large doses
cause large mortalities.  We therefore calculate an LD , which is the&!

“lethal dose for 50% mortality".

 for example, given the equation below

   = b  + b X  = -2.64 + 0.673*dose1̂
w
3 ! " 3

 the LD  is given by50

   = log   = 01̂
w
&! / 

 ‘50
1 50

  0 = -2.64 + 0.673*dose&!

  dose =  = 3.923, or a dose of about 4&!
2.64
0.673


