
WEIGHTED LEAST SQUARES - used to give more emphasis to selected points in the analysis

What are weighted least squares?

Recall, in OLS we minimize     Q =     =    (Y  -  - X )! !n n

i=1 i=1

2 2% " "3 3 ! " 3

    or     Q  =  (Y - X ) (Y - X )_ __ _" "w

In weighted least squares, we minimize
    Q  =  e     w Y   Y  b X )

i j i j
–

DD DD2 2
3 3 3 " 3œ  c d

The normal equations become 
   b w  + b w X   =  w Y! 3 " 3 3 3 3D D D

   b w X  + b w X  = w X Y! 3 3 " 3 3 3 3D D Di
2

For the intermediate calculations we get (where w  is the weight)3

    w X ,   w Y ,   w X Y ,   w X ,   w Y ,    w
t

i j i j i j i j i j i j

n           
D D DD DD DD DD DD

3

3 3 3 3 3 3 3 33ij ij
2 2

ij
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the intercept is calculated with X and Y as usual, but these are calculated as– –
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It the weights are 1, then all results are the same as OLS
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WEIGHTED LEAST SQUARES handout
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If the weights are 1, then all results are the same as OLS

The normal equations become 
  b w  + b w X   =  w Y! 3 " 3 3 3 3D D D
  b w X  + b w X  = w X Y! 3 3 " 3 3 3 3D D Di

2

For the intermediate calculations we get (where w  is the weight)3

   w X ,   w Y ,   w X Y ,   w X ,   w Y ,    w
t

i j i j i j i j i j i j

n           
D D DD DD DD DD DD

3

3 3 3 3 3 3 3 33ij ij
2 2

ij

Calculation of the corrected sum of squares is

   y  =   w (Y  Y..)   =  w Y    
i j i j i j

_
DD D D DD2 2 2

ij ijij

( w Y )
i j

i j
w3 3 

DD

DD

3

3

ij
2

the slope is

    =  b  = "̂" "





 w Y X   
i j

 w X     
i j

DD

DD

3 3

3 3

3

3 3

3 3

3

ij

( w Y X )
i j ij

w

2
( w X )

i j
2

i j
w

DD

D

DD

DD

the intercept is calculated with X and Y as usual, but the means are calculated as
_ _

  Y.. =       and     X..  =  
_ _DD DD

DD DD
i j i j

w Y w X

i j i j
w w

3 3 3

3 3

ij

The variance is      =   =    = 5 5 52 2 2
Y w3 %

5
3 3 3

2

For multiple regression
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In a multiple regression, we minimize
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The matrix equations for the regression solutions are,
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Estimating weights
For ANOVA this may be relatively easy if enough observations are available in

each group.  Variances can be estimated directly.

However, in regression we usually have a "smooth" function of changing residuals
with changing X  values3 Þ

 To estimate these we note that can be estimated by the residuals |e |.53 3

 We can then estimate the residuals with OLS, and regress the residuals
(squared or unsquared) on a suitable variable (usually one of the X3

variables or Y ).^
3

 The procedure can be iterated.  That is, if the new regressions coefficients
differ substancially from the old, the residuals can be estimated again
from the weighted regression and the weights can be calcalated again and
the regression fit again with the new weights.



Weighting may be used for various cases

1) One common use is to adjust for non-homogeneous variance.
 One common approach is assume that the variance is non-homogeneous

because it si a function of X .3
 Then we must determine what that function is, for simple linear regression,

the function is commonly

   = X ,         = X ,          = X  5 5 5 5 5 52 2 2 2 2 2 2
3 3 3 33 3È

 to adjust for this, we would weight by the inverse of the function

2) Another common case is where the function is not known, but the data can be
subset into smaller groups.  These may be separate samples, or they may
be cells from an analysis of variance (not regression, but weighting also
works for (ANOVA).

 Then we determine a value of  for each cell i, and the weighting function52
3

is the reciprocal (inverse) of the variance for each subgroup  ’ “1
52
3

3) The values analyzed are means, then mean will differ between “observations" if
the sample size are not equal.  Since we may still assume that the variance
of the original observations is homogeneous, The the variance of each
point is a simple function of n   (where the variance of a mean is , or3
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 we would weight by the inverse of the coefficient, of simply n

If we could not assume that the variances were equal then for each mean we would

have the variance of , and the weight would be 5
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NOTE: the actual value of a weight is not important, only the proportional value
between weights, so all weights could be multiplied or divided by some
constant value.  Some people recommend weighting by    withoutn3

35
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concern for the homogeneity of variance.  Since all  are equal to 5 52 2
3

when the variance is homogeneous, this is the same as taking all n3

weights, and multiplying by a constant 1
52



8. ROBUST REGRESSION  There are many regressions developed that call
themselves "robust".  Some are based on the median deviation, others on
trimmed analyses.  The one we will discuss uses weighted least squares,
and is called ITERATIVELY REWEIGHTED LEAST SQUARES.

a) ordinary least squares is considered "robust",

but is sensitive to points which deviate greatly from the line

 this occurs 
 (1) with data which is not normal or symmetrical
   data with a large tail
 (2) when there are outliers (contamination)

b) ROBUST REGRESSION is basically weighted least squares where the     where
the weights are an inverse function of the residuals

 (1) points within a range "close" to the regression line get a weight of 1 if
all weights are 1 then the result is ordinary least squares regression

 (2) points outside the range get a weight less than 1

 (3) ordinary least squares minimize
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 where w  is some function of the standardized residual and w  should be3 3

chosen to minimize the influence of  .  The w  chosen is alarge residuals 3
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 if the proper function is chosen, the calculations may be done as a weighted
least squares, minimizing
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(4) the function chosen by Huber was chosen such that if the residual is small ( Ÿ
1.345 ) there is no weight5̂

 First we define a robust estimate of variance as called the median absolute

deviation (MAD) such that , where theMAD = 7/.3+8Öl/ 7/.3+8Ð/ Ñl×
!Þ'(%&
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constant 0.6745 will give an unbiased estimate of  for independent5
observations from a normal distribution.

  MAD is an alternative estimate of MSEÈ
 Then  we define a scaled residual as where .ß . = /
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 where 1.345 is called the tuning constant, and is chosen to make the
technique robust and 95% efficient.  Efficiency refers to the ratio of
variances from this model relative to normal regression models.

 (5) The solution is iterative
  (a) do regression, obtain e  valuesij

  (b) compute the weights
  (c) run the weighted least squares analysis using the weights
  (d) iteratively recalculate the weights and rerun the weighted least

squares analysis  UNTIL

  (1) there is no change in the regression coefficients
   to some predetermined level of precision
  (2) note that the solution may not be the one with the minimum sum

of squares deviations



(6) PROBLEMS
 (a) this is not an ordinary least squares, but the hypotheses are likely to be

tested as if they were

 the distributional properties of the estimator are not well documented

 (b) Schreuder, Boos and Hafley (Forest Resources Inventories Workshop
Proc., Colorado State U., 1979)

 suggest running both regressions

 if "similar", use ordinary least squares

 if "different" find out why; if because of an outlier then robust regression is
"probably" better

they further suggest using robust regression as "a tool for analysis, not a cure all
for bad data"

The technique is useful for detecting outlierS.


