
Building a Regression Model.

1) Think about the regression in advance.

 a) What variables are needed?  Is it available?  Is it readily measurable?  Are
there redundancies?

 b) How many observations are needed?  More variables to be examined
requires more cases.

 Data should be edited (outliers).

2) Model considerations.

We frequently have more variables than we need.  We must consider some
technique to reduce the number of variables.

Considerations on variable reduction.  We want to determine what would be a
good subset of variables for the model, including polynomial terms and
interactions.

One thing we cannot do is fit all the variables and leave off the non-significant
ones.  Since the behavior of fully adjusted variables is unpredictable,
particularly when two are highly correlated, leaving off all non-
significant variables may well leave off an important variable which is
correlated with another variable (such that neither appears significant).

All possible regressions Procedure:

All possible (or reasonable) regressions are fitted.  Some criteria is used to
determine which few models would be worthy of more consideration.

 first, you cannot fit a model which has more variables than observations
(you shouldn't even be very close).

Then we evaluate all possible models,



Criterion:

a) R  criterion  =     =   1  2 SSReg SSError
SSTotal SSTotal:
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 Note:  This is simply the coeff of mult determination.

 We do not search for a “maximum" because adding variables always makes
R  go up.  However, it should level off after all important variables are2

in.  Therefore, plot values of R  on the number of observations.2
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b) MSE  or  R  criterion  =   1 *   =  1 : +
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 This R   is the adjusted coeff of mult determination.  This value can go back2
+

down for increasing number so variables added.  Since for a given
problem the SSTotal/n-1 is constant, this value will go up or down as
MSE goes up or down, hence the

 MSE  criterion  :  this can also be graphed, and examined for a minimum:

 We want to reduce the MSE  value, and cause it to be a minimum.  If values:

which take up 1 df do not account for at least 1 MSE unit is SS, then the
MSE  will go up.  Of course, these variables have an F value of 1, and:

may not be significant.
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c) C  criterion:

 Consider the Total Mean Square Error :  E(Y )    ^
3 3 .

 where E(Y ) is the predicted value for a particular regression, and  is the^
3 3.

true regression response.

 If we consider the random error component, we get the usual,    +  B ,52 2
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where the B is a bias term
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 where the failure of the regression line to fall on the true value is a bias

 Then the Total Mean Square Error is given by
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 If we have a good measure of the value of , then we can create a criteria52

by calculating
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 If the full model is , the estimate of this the C  statistic, andcarefully chosen :

is given by

  C   =   - (n 2p):
SSE

MSE(X ,X ,...,X )
:

" # : "-


 where SSE  comes from the fitted regression.  This ratio should have a:

value approximately equal to p when there is no bias.
  C:

Graphic follows pattern similar to MSE  above:

Use of the C  statistic requires more care in choosing the full set of variables, in:

order for MSE(Full) to be unbiased.  Include all quadratic and cubic
terms, all interactions, but exclude all extemporaneous variables.



d) PRESS  criterion  (PRESS = Prediction SS):

 This criterion is based on deleted residuals.
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There are n deleted residuals in each regression, and

  PRESS   =  d   =  (Y   Y ): 33 3Ð3Ñ
!
i=1
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 Since the value of d  is a measure of prediction error, regressions with small3

PRESS  values are good candidates.:

 This statistic can be calculated and graphed similar to the MSE  statistic:



Stepwise Regression : we know that we should not delete batches of variable from
regressions when they are not significant, because we do not know what
the effect of adjusting for each other has been (except when order
dependent TYPE I SS has been used, as in a pure polynomial).

 Generally, when we wish to examine the effect of adding and deleting
variables, this should be done one variable at a time.  There is an
algorithm to do this automatically called stepwise regression.

FORWARD stepwise regression:

Consider p 1 candidate variables.  We want to select the best set.

1) Fit all p 1 SLR's, and evaluate the usual F statistic

  F  = ‡
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 Out of the p 1 variables, the one with the best F statistic is the one which
gives the greatest reduction in MSR(X )5

2) The BEST variable has been selected.  Now, is there a 2 variable model which
is good?

 Suppose that the first fit of SLR showed that X  was best.  Now fit all$(

possible (p-2) regressions with X  included, and find the best of these$(

with the statistic,
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 We have assumed that X  belongs in the model, and fit all 2 factor$(

regressions to see if any other variable works well with X .  Suppose$(

that X  enters, and is the best variable in conjunction with X .* $(



3) The BEST 2 factor model has been selected.  Now, is there a 3 variable model
which is good?  We assume that X  and X  belong in that model, these$( *

are retained.

 Now fit all possible (p-3) regressions with X  and X  included.$( *
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This process can be continued until no variables will enter into the model and be
significant.

 This process is called FORWARD stepwise regression.  Sometimes, no
single variable will enter and be significant, but some group of 2 or 3,
between them, will lower the MSE sufficiently for all to be significant.
FORWARD will not catch this.

BACKWARDS elimination.

1) Fit the full model (p-1 variables).  Examine the F statistic (TYPE II, fully
adjusted for all other variables in the model).

 Find the least significant variable, and eliminate this variable only.  THIS IS
DONE ONE VARIABLE AT A TIME.

2) Fit the full model, minus the eliminated variable (p-2 variables).  Again find the
least significant and eliminate this variable.

3) Repeat until all variables in the model are significant.

 Sometimes, a variable added to a model by FORWARD selection is not
significant at some later point, after other variables are in the model.

STEPWISE selection (FORWARD selection with a backward glance)

 This selection proceeds as does FORWARD, but after each addition all
variables in the model are examined to insure that they remain significant.
If not significant, they are eliminated.



Additional Considerations:

 1) At what level do we enter a variable?  When do we stop?

 Sometimes we want to examine variables at a level lower than =0.05,!
perhaps =0.10 or =0.15.  Do we want only significant variables, or do! !
we want to identify variables which may be important even if not
significant?  Also, these may become significant later as MSE is reduced.

 SAS PROGRAMMING
  PROC REG;
  MODEL Y = X1 X2 X3 X4 X5 X6 / SELECTION=FORWARD;

Selection options: FORWARD, BACKWARD, STEPWISE, NONE (full model)
These do the selection techniques discussed.  Additional options working with

these are;
 SLENTRY = alpha value, level of entry for stepwise and forward
 SLSTAY = alpha value, level of remaining for backward and stepwise
 INCLUDE = n, automatically puts the first n variables of the list into the

regression (do not remove)

Other selection techniques

MAXR and MINR : instead of examining the F statistic, these approaches do
stepwise regression by evaluating the increase in R  for adding and2

swapping variables to get the “best one, ... two, ..., three" factor models.

RSQUARE, ADJRSQ, CP : These are like all possible regressions.  These will
simply calculate the R , R  and C  statistic for all models to find the best2 2

: + :

ones.

Additional options
  START = n
  STOP = n  (will stop all methods)
  BEST = n
eg. with these options we could determine the best 5 models at each level, starting

with 3 factors, ending with 6 factors



Model Validation

Problem : When numerous variables are examined, especially when the number of
observations is relatively small, it is possible that a model is developed
which predicts very well for the data base, but does not work well for the
real world (sometimes called prediction bias).

How to avoid this?

Validation data

The best way is to develop the model, then collect new data and validate the
model.

Alternatively, we can set aside part of the database as a validation set.

How large a part to set aside?  You generally want 6 to 10 times the number of
observations as variables to be examined.  This should be enough to
develop a reliable model.   The remaining variables can be set aside for
validation.

 If not enough observations are present, try a 50:50 split.



Validation procedure

Various possibilities;

1) Recalculate the model on the validation data and compare the parms

2) Use the model to get Y values for the validation data and fit the observed on the^

predicted to compare.  The MSE and the R  should be similar2

 Example: a model to predict salinity on the coast from discharges nearby.
Original model examined combinations of 6 tributaries (with lags) on 19
variables, and achieved R  of 77%.  Model was 2 factors (lagged and2

unlagged sums), and was planned for use.

 Only fit 45% of the variation in 65 new observations.

New examination revealed simpler model fit 58% of the variation (season and sum
tribs lagged 1 mo).  Stepwise on many variables & combinations came up
with a 69% model which needs validation.


