
POLYNOMIAL REGRESSION   (Chapter 9)
We have discussed curvilinear regression from transformations and polynomials
 1) Transformations generally more interpretable, often more easily

interpreted in terms of a possible functional relationship.  (extrapolation,
interpretation of parameters)

 However, there are cases where the functional relationship is a polynomial.
Parabolic shapes exist for a number of relationships, particularly in
engineering.

2) Polynomials very flexible, and useful where a model must be developed
empirically.  They fit a wide range of curvature.

 use when the functional relationship is overly complicated, but a repeatable
pattern of the dependent variable is likely.

 When applied in this context, we generally fit a quadratic, cubic, maybe a
quartic, and then see if we can reduce the model by a few terms.

In this case, the polynomial may provide a good approximation of the relationship
Basically, with polynomials we can
 1) Determine if there is a curvilinear relationship between the Y and X .3 3

 2) Determine if the curvature is Quadratic?  Cubic?  Quartic?  ...
 3) Obtain the curvilinear predictive equation for Y on X .3 3

Simplest Polynomial : One independent variable - Second order
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Next larger Polynomial : One independent variable - Third order
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NOTES on POLYNOMIAL REGRESSION
1) Polynomial regressions are fitted successively starting with the linear term (a

first order polynomial).  These are tested in order, so Sequential SS are
appropriate.

2) When the highest order term is determined, then all lower order terms are also
included.

 If for instance we fit a fifth order polynomial, and only the CUBIC term is
significant, then we would OMIT THE HIGHER ORDER NON-
SIGNIFICANT TERMS, BUT RETAIN THOSE TERMS OF SMALLER
ORDER THAN THE CUBIC.

 This does not mean that Y  = b  + b X  + e  is not a useful model, only that3 ! " 3 3

this is not a "polynomial".

3) If there are s different values of X , then s-1 polynomial terms (plus the3

intercept) will pass through every point (or the mean of every point if
there are more than one observation per X  value.3

 It is often recommended that not more than 1/3 of the total number of points
(different X  values) be tied up in polynomial terms.3

 eg. If we are fitting a polynomial to the 12 months of the year, don't use
more than 4 polynomial terms (quartic).

4) All of the assumptions for regression apply to polynomials.

5) Polynomials are WORTHLESS outside the range of observed data, do not try to
extend predictions beyond this range.  Extrapolation is useless unless the
functional relationship is actually a parabola.

INFLECTIONS for Polynomial Regression lines
 Linear  straight line, no curve or inflections
 Quadratic  one parabolic curve, no inflections
 Cubic  two parabolic rates of curvature with the possibility of an

 inflection point.

 Each additional term allows for another change in the rate of curvature and
allows for an additional inflection.



APPLICATIONS of Polynomial Regression lines

1) If enough polynomial terms are used, these curves will fit about anything.
However, there is usually no good theoretical reason for using
polynomial curves.

 eg.  Suppose we have a model where we expect an exponential type growth
curve to result.  We could fit this with a quadratic or cubic or quartic
polynomial, but the exponential curve would fit with two advantages.

 a) Good interpretation of the regression coefficient (proportional growth)

 b) Uses fewer d.f. in a simpler model.

2) Polynomials are useful for testing for the presence of curvature, and the nature
of that curvature (inflections or no), and can be used to fit trends with
complex curvature where no particular theoretical function is known to
be applicable.

 This is also a useful “covariable" in designs

3) The successive terms in polynomials are highly correlated.  This is not a
problem when Sequential SS are used.

4) Recall Lack of Fit.  Each individual X  value has a mean, and the Pure error43

results from fitting this mean and calculating deviations from this mean.

 If a high order polynomial is used such that the order is one less than the
number of different X  values, then Pure error is obtained.4

 eg.   Two different X  values can be fitted to a line4

  Three different X  values can be fitted to a line + quadratic, etc.4

Therefore, fitting too high an order polynomial is no more meaningful as a
“regression" than fitting Pure error (ie all X  are categories).4

Conceptually, we GAIN understanding and interpretability when we fit,
say 12 levels, with only 2 or 3 degrees of freedom (hopefully with no
Lack of Fit) as opposed to 11.

Therefore, a meaningful fit should be provided by a relatively low order poly
(generally no more than  of the possible dg, certainly no more than )," "

$ #

and hopeful such that there is no Lack of Fit.  Otherwise, you may as well
go to ANOVA with CLASSES X;.



When fitting polynomials, particularly high order polynomials, there are a number
of problems.

 1) Variables can get very large.  Imagine a model done over time (within a
year),

 We may regress on the julian data (from 1 to 365 days)

 If we fit only a 4 order polynomial, by mid-Dec we are up to
350 =15,006,250%

 The corresponding regression coefficient will be very small.  SAS advises
when the regressions coefficients get too small to insure a minimum of
precision.

 A simple solution is to rescale the regression, use months 1.0 to 12.9, or
even year = days*  = a decimal year.1

365

2) There is a high correlation between the different variables which are powers of
X.

 This causes problems with regressions coefficients.

 The ability to get a good predictive equation is not impaired, (unless the
regression coefficients get too small or large

 also, the actual values of the coefficients themselves are unstable, a common
consequence of multicolinearity

 Fortunately, the solution which helps with multicolinearity will also help
rounding error and large or small errors.



a) One possibility is orthogonal polynomials.  These are transformations of the
powers of X and its powers to extract pure linear, quadratic, cubic, etc.

 These are uncorrelated, and especially useful for design problems.
 eg.  Any three X  values which are equally spaced can be represented as3

     Linear  -1   0   1
     Quadratic  -1   2  -1

 Any four equally spaced X  values can be replaced by3

     Linear  -3   -1   1   3
     Quadratic  -1   1   1  -1
     Cubic  -1   3   -3   1

 Any four equally spaced X  values can be replaced by3

     Linear  -2  -1   0   1   2
     Quadratic   2  -1  -2  -1   2
     Cubic  -1   2   0  -2   1
     Quartic   1  -4   6  -4   1

These are available in tables for equally spaced values.  They can be obtained in
SAS with the PROC IML “ORPOL" statement.

These are used by simply entering the coefficients in place of the X or X  or X2 $

These are commonly used to subdivide TREATMENT SS in a design into
components



Orthogonal polynomials
Advantages
 1) These are orthogonal, with all of the desirable properties of orthogonal

independent variables.  The order of entry and adjustment in the model is
not important.

 2) The have few problems with rounding error or very large (small)
regression coefficients

Disadvantages
 1) They are abstract.  If you want a predicted value for an X which was not

observed, you will have difficulty.  (eg. if X's are 10, 20 and 30 and you
want a predicted value for X=27.

 interpolation is not linear and must ge done on each orpol level

 2) The values must be obtained and entered by hand in most cases.

b) Another possibility is stabilizing the regression coefficients by just centering
them on zero.  This is easily done by subtracting the mean of X from each
X.

  x  = X  - X–3 3

 The higher order terms are then calculated on the x3

Advantages
 1) These are not orthogonal, but will reduce multicolinearity substantially

(kind of like a poor mans Orthogonal Polynomial)

 2) The have few problems with rounding error or very large (small)
regression coefficients

 3) They are somewhat abstract, but getting values in between the observed
is no problem.  These values are easily transformed and detransformed.

Disadvantages
 1) This will reduce multicolinearity, but not as much as orthogonal

multipliers.  This reduction is strongest for lower orders, and deteriorates
for higher orders.

 2) The order of entry must te considered to some degree.



Detransforming deviation scores
 Starting with highest order (where b  is the original)w

 b  = b    ,  this reg coeff has same units in both casesw
"" ""

 b  = b 2b X–w
" " ""

 b  = b b X+b X   for the intercept (we have seen this calculation– –w
! ! " "" 2

before)

 Applying this to our example,

Reduced model with Di values
Parameter Estimates
               Parameter    Standard    T for H0:
Variable  DF    Estimate       Error   Parameter=0  Prob > |T|
INTERCEP   1  705.473810  3.20799304       219.911      0.0001
D1         1   54.892857  1.05006221        52.276      0.0001
D2         1   -4.248810  0.60625370        -7.008      0.0001

 b  = b    =  -4.2488w
"" ""

 b  = b 2b X    = 54.8928 2*(-4.2488)*  = 80.3856–w
" " ""  42

14

 b  =b b X b X– –w
! ! " ""  2

  =705.4738 54.8928* (-4.2488) =502.5560 42 42
14 14

2 ‘
These values are the same as those obtained by fitting the polynomial directly on

X and X2

Parameter Estimates
               Parameter      Standard    T for H0:
Variable  DF    Estimate         Error   Parameter=0  Prob > |T|
INTERCEP   1  502.555952    4.85002959       103.619      0.0001
X1         1   80.385714    3.78605314        21.232      0.0001
X2         1   -4.248810    0.60625370        -7.008      0.0001

These detransformations are possible, and may prevent some rounding error.
However, unless the rounding error is extreme, it is easier to fit the X
values directly.



Summary of Polynomials
1) A model consisting of successive power terms.  Each model will include the

highest order term plus all lower order terms (significant or not).

 The models are order dependent and Type I SS should be used for
interpretation.

2) Polynomial models are an effective and flexible curve fitting technique.  They
are not usually based on theoretical derivations, and do not usually
address an underlying functional model.

 These models particularly should not be extended outside the range of
observed data!!!!!!!!!!

3) As with many models exhibiting multicolinearity, the regression coefficients
and their variance is not likely to be stable.

 Use of a transform, x =(X X), may help stabilize–
3 3 

 Even if this transformation is not used, it may be necessary to rescale the X3

values to avoid precision and rounding error problems.

4) Orthogonal polynomials are completely uncorrelated and will provide
essentially perfect stability and either type SS can be used (they are the
same).

5) If enough polynomial terms are added (one for each X ) then a perfect fit is3

achieved to each X (just as if an ANOVA of X  was done).–
3

 If fewer terms are used, then the difference between the model with the
maximum number of power terms and the number of power terms
actually employed is LOF.



Aptness of the model and confidence intervals :
1) In terms of judging the adequacy of the regression line, all of the usual

diagnostics of the residuals apply.

 NOTE that, unlike other multiple regressions, residual plots can be done

directly on X, instead of Y.^

2) To determine the highest order polynomial, most of our multiple regression
techniques apply.

 If fitted on orthogonal polynomials, the highest significant order is
determined.  All lower orders are retained, all higher orders deleted.

 If ordinary least squares are used (using either D or X directly), the
variables can be examined in order: X ; X |X ; X |X , X ; etc.  which is" " # $ " #

equivalent to the TYPE I SS.

 Additional use in judging adequacy of the model can be made from
evaluating the Lack of Fit, but if there are k different X values, and k
polynomial terms are fitted, then there is no Lack of Fit remaining.

 (Note: LoF is essentially SSR(X |all lower order terms)D 5
5

 Therefore, if LoF is significant, it can also be interpreted as “a higher order
polynomial is needed".



3) Regression coefficients can be examined, but these are essentially equivalent to
the the TYPE III SS, and are not useful except for D (not for X directly).
However, the regression coefficients are those which provide the best fit,
and except for possible multi-colinearity problems can be employed and
used as any other regression coefficients.

 There is an additional problem in estimating the standard errors with high
correlations.  D would behave better here (or orthogonal polynomials).

 Since the regression coefficients are closely related as coefficients on
different powers of the same X, a joint confidence interval is a natural
option.

 A Bonferroni simultaneous interval is a logical option

   Y B*s^
2 „ Ŷ2

  where B  tœ " à8# .0!
#1  

  and g is the number of cases

4) The predictive ability of polynomials does not suffer from the multicolinearity
aspects of the variables.  Predictions and their confidence intervals
(including simultaneous intervals) are the same as for other multiple
regressions.



My philosophy on fitting polynomials

1) Any better model?  (Airplane handout)

2) Fit 1 or 2 more levels than I feel necessary, no more than  of df.1
2

3) If a single variable, X, is to be fitted alone, use X, X , X , etc.2 $

 Otherwise, consider Orthogonal Polynomials; also if part of an ANOVA

4) Do all Interpretation with Type I SS, if alone.  Consider consequences
otherwise.

5) Do not use regression coefficients for interpretation or testing, only to fit
predicted values.

I do look at the signs to tell if inflections are present.



Two independent variable - Second order

  Y  =   + X  X  + X  X   X X   3 ! " "3 # $ #3 % & "3 #3 3"3 #3" " " " " " %   2 2

 it may be clearer to change the subscripting to

  Y  =   + X  + X    X    X   X X   3 ! " "3 # #3 "" ## "# "3 #3 3"3 #3" " " " " " %   2 2

Two independent variable - higher orders would proceed as follows

 Y  =    + X  + X    X    X   X X3 ! " "3 # #3 "" ## "# "3 #3"3 #3" " " " " "  2 2

  X   X   X X   X X    " " " " %""" ### ""# #3 "## "3 3
$ $
"3 #3 "3 #3   2 2

note that this contains all 3-way levels

 X *X *X ,  X *X *X ,  X *X *X ,  X *X *X ," " " # # # " " # " # #

the next higher order would have all 4 way levels, but we rarely go this far

Three independent variable - Second order

 Y = + X + X X + X X X X X3 ! " "3 # #3 $ $3 "" ## $$ "# "3 #3"3 #3 "3" " " " " " " "   2 2 2

  X X X X  " " %"$ "3 $3 # #3 $3 3



The use of Polynomials suggests that the variables should be order dependent (if
not orthogonal)

 However, the use of 2 or more different X variables suggests that the
variables should be adjusted for each other.

 Who wins?

Hopefully the two X variables are somewhat independent, so which comes first is
not to important

Or the objective is prediction, so hypothesis testing is not so critical

However, the sequential approach for polynomials should be utilized as much as
possible.  In analyzing a second order response surface, you text uses the
following progression (although on the D transformation);

 Y  =   + X  X  + X  X   X X   3 ! " "3 # $ #3 % & "3 #3 3"3 #3" " " " " " %   2 2

 1) SSR(X )"

 2) SSR(X |X )# "

 3) SSR(X |X ,X )2
" " #

 4) SSR(X |X ,X ,X )2 2
# "" #

 5) SSR(X X |X ,X ,X ,X )" # " # " #
2 2

This retains the sequential nature of the squares and interactions,
But it is somewhat arbitrary as to whether X  comes before or after X" #

All aspects of the analysis proceed pretty much as any multiple regression,

 1) Residual analysis is feasible,

 2) Hypothesis testing is sequential for variable retention

 eg.  X  is retained if either a higher order term for X  OR AN" "

INTERACTION TERM CONTAINING X  IS USED IN THE MODEL."

see handout (refer to figure 9.8 in text; a flat surface)



Response Surface Methodology
These are usually two (or more) dimensional representations of a plane, where a

polynomial approach is used to fit a complex shape

See text for discussion

 1) Factorial designs

 2) Optimal response

1 dimension : quadratic - first derivative

the optimum can be estimated even if outside the range of the observed data, this
gives an area of X variables for future research

2 dimensions - same idea


